Classification tree
Analysis of Diet, Dental Problems and Obesity in 3 year old children

Crowe M1, O’Sullivan, A2, Cassetti, O1, McGrath C3, and O’Sullivan M1

1Dublin Dental University Hospital, Trinity College Dublin, 2Institute Food and Health, University College Dublin, 3Faculty of Dentistry, The University of Hong Kong

www.growingup.ie
1. Background-common risk factor/data preschoolers/Decision Trees
2. Data analysis-modeller/CHAID
3. Results- Ethnicity, Illness, Income, PCG BMI
4. Conclusions and Policy implications
5. Future work
Jamie’s Sugar Rush – what do we think?

BDJ Team | FEATURE

Jamie’s Sugar Rush

*BDJ Team 2, Article number: 15122 (2015) | doi:10.1038/bdjteam.2015.122
Published online 25 September 2015*

It shocked the nation into action, with his petition reaching 100,000 signatures within 48 hours of the documentary airing, but what did we as a profession make of it? After all, the *British Dental Journal* has been banging on about sugar for 100 years, so what impact could a 60 minute show by a TV chef possibly have? We ask five healthcare professionals for their opinion.
Common Risk Factors

Consumption patterns in Children?

Adverse effects of poor diet: from “Dental to Mental”

Images courtesy Prof Pat Wall
Dental Caries & Overweight Prevalence - Preschool

- Increased Prevalence BOTH since 1990’s
- EU: Caries: 20-40%: 2-5 year olds
- EU: Obesity/Overweight: 5-10%/15-20%: 4-5 year olds
- IRL: Caries: ???
- IRL: Obesity/Overweight: 3-7%/15-16%: 2-4 year olds
Decision Trees

- Tree shaped structures - represent sets of decisions

- Classification - separates data according to outcome (target) variable

- Regression - needed when target is continuous variable

- Recursive partitioning based on interaction

- Visualisation of significant associations
Terms/Advantages

- CHAID (Chi-square Automatic Interaction Detection)
- Nodes: Root-terminal-leaf
- Mixture of variable types in same analysis
- Detect non-linear interactions
- Not distribution dependant
Participants

• Data derived from the infant cohort of the Growing Up in Ireland (GUI) study.

Model Variables

- Target variable = Dental problem
- Physical measures - Height/Weight
- Range of sociodemographic, behavioural, educational and household data measures.
- Child BMI- IOTF classification
- Food Frequency Questionnaire
- Toothbrushing, soothers, accidents, TV viewing
- Reweighted data
Data analysis - SPSS Modeler
<table>
<thead>
<tr>
<th>Child</th>
<th>%</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI Categories (IOTF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underweight</td>
<td>5.7</td>
<td>(557)</td>
</tr>
<tr>
<td>Normal</td>
<td>68.3</td>
<td>(6685)</td>
</tr>
<tr>
<td>Overweight</td>
<td>17.7</td>
<td>(1737)</td>
</tr>
<tr>
<td>Obese</td>
<td>5.7</td>
<td>(559)</td>
</tr>
<tr>
<td>Missing</td>
<td>2.6</td>
<td>(256)</td>
</tr>
<tr>
<td>Dental Problems in last 12 months</td>
<td>5.0</td>
<td>(493)</td>
</tr>
<tr>
<td>Longstanding illness or disability</td>
<td>15.8</td>
<td>(1543)</td>
</tr>
<tr>
<td>Hospital admission (ever)</td>
<td>16.1</td>
<td>(1569)</td>
</tr>
<tr>
<td>PCG</td>
<td>Age (years)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>29.6</td>
<td>(6.1)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.99</td>
<td>(5.16)</td>
</tr>
<tr>
<td>Male</td>
<td>26.96</td>
<td>(4.01)</td>
</tr>
<tr>
<td>Female</td>
<td>25.88</td>
<td>(4.91)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irish</td>
<td>8261</td>
<td>(84.4)</td>
</tr>
<tr>
<td>White non Irish</td>
<td>1018</td>
<td>(10.4)</td>
</tr>
<tr>
<td>Black</td>
<td>252</td>
<td>(2.6)</td>
</tr>
<tr>
<td>Asian</td>
<td>202</td>
<td>(2.1)</td>
</tr>
<tr>
<td>Other</td>
<td>54</td>
<td>(0.6)</td>
</tr>
<tr>
<td>Equivalised Annual Income</td>
<td>17,874</td>
<td>(9,551)</td>
</tr>
</tbody>
</table>
Results 1-
Longstanding Illness

C22. Has <child> been to visit the dentist because of a problem with his/her teeth?

Node 0
Category	%	n
yes | 5.0 | 438
no | 95.0 | 9254
Total | 100.0 | 9692

K15. PCG ethnicity Wave 2
Adj. P-value=0.000, Chi-square=32.847, df=2

Node 1
Category	%	n
yes | 4.7 | 493
no | 95.0 | 8884
Total | 99.7 | 9377

Node 5
Primary Caregiver BMI Wave 2 - measured
Adj. P-value=0.004, Chi-square=13.524, df=1

> 24.918

Node 13
BMI_class_IOTF
Adj. P-value=0.003, Chi-square=18.396, df=2

Node 22
Category	%	n
yes | 10.0 | 56
no | 90.0 | 494
Total | 100.0 | 550

Node 23
Category	%	n
yes | 26.0 | 4
no | 74.0 | 152
Total | 100.0 | 156

Node 24
Category	%	n
yes | 10.0 | 17
no | 90.0 | 72
Total | 100.0 | 89
C22. Has <child> been to visit the dentist because of a problem with his/her teeth?

Node 0
Category % n
- yes 5.0 488
- no 95.0 9254
Total 100.0 9742

K15. PCG ethnicity Wave 2
Adj. P-value=0.000, Chi-square=32.847, df=2

C2. Does <child> have any longstanding illness, condition or disability?
Adj. P-value=0.000, Chi-square=18.615, df=1

Node 5
Category % n
- yes 7.0 97
- no 93.0 1290
Total 14.2 1387

Primary Caregiver's BMI WAVE 2 - measured
Adj. P-value=0.004, Chi-square=13.524, df=1

Node 13
Category % n
- yes 9.5 66
- no 90.5 628
Total 7.1 694

BMI_class_IOTF
Adj. P-value=0.003, Chi-square=18.396, df=2

normal | overweight; 0.000 | obese; underweight

Node 22
Category % n
- yes 10.0 45
- no 90.0 404
Total 4.6 449

Node 23
Category % n
- yes 2.6 4
- no 97.4 152
Total 1.6 156

Node 24
Category % n
- yes 19.1 17
- no 80.9 72
Total 0.9 89
Results - 2
No Longstanding Illness

C22. Has <child> been to visit the dentist because of a problem with his/her teeth?

Node 0

<table>
<thead>
<tr>
<th>Category</th>
<th>%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>5.0</td>
<td>489</td>
</tr>
<tr>
<td>no</td>
<td>95.0</td>
<td>9250</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>9742</td>
</tr>
</tbody>
</table>

K15. PCG ethnicity Wave 2
Adj. P-value = 0.000, Chi-square = 32.847, df = 2

C23. Does <child> have any long-standing illness, condition or disability?
Adj. P-value = 0.000, Chi-square = 18.615, df = 1

Node 1

<table>
<thead>
<tr>
<th>Category</th>
<th>%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>4.7</td>
<td>403</td>
</tr>
<tr>
<td>no</td>
<td>95.3</td>
<td>8334</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>8737</td>
</tr>
</tbody>
</table>

Equivalized Household Annual Income W2
Adj. P-value = 0.000, Chi-square = 18.528, df = 1

Node 4

<table>
<thead>
<tr>
<th>Category</th>
<th>%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>85.7</td>
<td>7047</td>
</tr>
<tr>
<td>no</td>
<td>14.3</td>
<td>1280</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>8327</td>
</tr>
</tbody>
</table>

<= 31000.774

Node 10

<table>
<thead>
<tr>
<th>Category</th>
<th>%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>0.0</td>
<td>230</td>
</tr>
<tr>
<td>no</td>
<td>99.9</td>
<td>1730</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>1960</td>
</tr>
</tbody>
</table>

C25j. Low fat cheese/ low fat yoghurt
Adj. P-value = 0.001, Chi-square = 14.993, df = 1

Node 16

<table>
<thead>
<tr>
<th>Category</th>
<th>%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>5.0</td>
<td>197</td>
</tr>
<tr>
<td>no</td>
<td>95.0</td>
<td>6303</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>6500</td>
</tr>
</tbody>
</table>

C25c. Raw vegetables or salad
Adj. P-value = 0.001, Chi-square = 15.304, df = 1

Node 25

<table>
<thead>
<tr>
<th>Category</th>
<th>%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>5.1</td>
<td>133</td>
</tr>
<tr>
<td>no</td>
<td>94.9</td>
<td>4197</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>4330</td>
</tr>
</tbody>
</table>

Node 26

<table>
<thead>
<tr>
<th>Category</th>
<th>%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>0.6</td>
<td>64</td>
</tr>
<tr>
<td>no</td>
<td>99.4</td>
<td>1117</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>1180</td>
</tr>
</tbody>
</table>
Results 3-
“Other White” ethnicity

C22. Has <child> been to visit the dentist because of a problem with his/her teeth?

Node 0
Category	%	n
yes | 5.0 | 466
no | 95.0 | 2,054
Total | 100.0 | 2,520

K16. PC0 ethnicity Wave 2
Adj. P-value=0.000, Chi-square=32.847, df=2

Any other White background

Node 5
Category	%	n
yes | 84.4 | 93
no | 15.6 | 1007
Total | 102 | 900

Equivalised Household Annual Income Wave 2
Adj. P-value=0.000, Chi-square=12.316, df=1

<= 31003.774

Node 8
Category	%	n
yes | 7.2 | 52
no | 92.8 | 800
Total | 98 | 802

C25k. Water (tap water/ still water/ sparkling water)
Adj. P-value=0.003, Chi-square=6.904, df=1

Not at all; More than once; Once

Node 14
Category	%	n
yes | 5.5 | 51
no | 93.5 | 732
Total | 89 | 783

Node 15
Category	%	n
yes | 13.9 | 11
no | 86.1 | 58
Total | 100 | 79
Model Predictors

- Ethnicity most NB predictor of Dental problem
- Highest prev. Dental Problems: Children obese/underweight with longstanding illness and PCG BMI>24.9
- Food: Low fat cheese/yoghurt. Raw veg/salad, Fresh fruit, French fries - levels 3 and 4 predictors
- Sociodemographic: HH Annual Income, ethnicity
- Oral habits: Soother
Classification

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percent Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>66.8%</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>58.5%</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td>42.8%</td>
<td>57.2%</td>
</tr>
</tbody>
</table>

Growing Method: CHAID

Dependent Variable: C22. Has <child> been to visit the dentist because of a problem with his/her teeth?
Conclusions

• Classification trees useful - large survey data
• Complex multilevel variable relationships
• Target subgroups of population cohort
• Disease prevalence data often imbalanced
• Ethnicity most NB predictor
• Food variables- predictors at higher levels
• Obese/underweight AND dental problems
Future work

- Dietary pattern using NPNS (IUNA) data
- Parallel Coordinates/data visualisation
- 5 Year old Dataset
- Predictive model
Acknowledgments

Thanks to:

GUI infants and parents

ESRI/GUI team

DDUH
I don't care if my PowerPoint presentation has 320 slides. You are staying until it's over.
References