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Regional and Sectoral Estimates of the Social Cost of Carbon: An 
Application of FUND 

 

1. Introduction 
The social cost of carbon (SCC) is an estimate of the desired intensity of climate policy. 

The SCC specifies the level at which greenhouse gas emissions should be priced in order 

to account for the externalities associated with CO2 emissions. Unsurprisingly, given the 

challenges associated with modeling the global and centuries long effects of CO2 

emissions, the literature has many (>300) estimates of the social cost of carbon covering 

a wide span (Tol 2009). This paper offers a sectoral and regional decomposition of newer 

and, we argue, better estimates. Our goal is to facilitate understanding and discourse 

about the relative contribution of each region and sector and the state of climate change 

impacts science. 

The estimates in this paper are based on version 3.5 of the FUND model. FUND has a 

more detailed representation of the impacts of climate change than other models 

producing SCC estimates (Hope et al. 1993;Hope 2006;Hope 2008;Nordhaus 

1994;Nordhaus 2008;Nordhaus and Boyer 2000;Plamberk et al. 1997). In particular, 

FUND has more regional and sectoral detail. The results presented in this paper focus on 

that detail. (Tol 1999) presented disaggregated results for FUND 1.6, a version that is 

very different from the current version: FUND 3.5 offers a complete update of the impact 

estimates (Tol 2002a;Tol 2002b) and includes additional impacts (Narita et al. 

2009;Narita et al. 2010).  

The social cost of carbon is, to a first approximation, equal to the tax that a benevolent, 

global planner would apply to greenhouse gas emissions in order to fully internalize the 

externalities of those emissions (Pigou 1920). It is less clear how a regional planner 

would set the social cost of carbon (Anthoff and Tol 2010). One reason is that questions 

of strategic interactions between different regions complicate the analysis (Barrett 1994). 

A regionally disaggregated estimate of the social cost of carbon is of interest for two 

reasons: First, it gives insight how a global estimate is distributed between different 



regions; and second, it can inform game theoretic analysis of strategic interactions 

between different world regions with respect to greenhouse gas mitigation options.  

The paper also disaggregates the social costs of carbon by impact “sector”. This reveals 

regional patterns of marginal impacts and identifies the more vulnerable sectors (at the 

margin) as well as priorities for research.  

The paper proceeds as follows. Section 2 presents the model. Section 3 discusses the 

results. Although best guess are shown, the discussion focuses on the sensitivity analyses. 

Section 4 concludes. 

2. The model 
This paper uses version 3.5 of the Climate Framework for Uncertainty, Negotiation and 

Distribution (FUND). FUND is an integrated assessment model of projections of 

populations, economic activity and emissions, carbon cycle and climate model responses, 

and estimates of the monetized welfare impacts of climate change.1 Climate change 

impacts are monetized in 1995 dollars and are modelled over 16 regions. Modelled 

impacts include agriculture, forestry, sea level rise, cardiovascular and respiratory 

disorders influenced by cold and heat stress, malaria, dengue fever, schistosomiasis, 

diarrhoea, energy consumption, water resources, unmanaged ecosystems and tropical and 

extratropical storm impacts. The source code, data, and a technical description of the 

model can be found at http://www.fund-model.org. 

The model distinguishes 16 major regions of the world, viz. the United States of 

America, Canada, Western Europe, Japan and South Korea, Australia and New Zealand, 

Central and Eastern Europe, the former Soviet Union, the Middle East, Central America, 

South America, South Asia, Southeast Asia, China, North Africa, Sub-Saharan Africa, 

and Small Island States. The model runs from 1950 to 3000 in time steps of one year. The 

prime reason for starting in 1950 is to initialize the climate change impact module.  In 

                                                 

1 FUND is one of the few integrated assessment models that produce SCC estimates. Other models include 
DICE (Nordhaus 2008) and PAGE (Hope 2008). 
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FUND, some of the impacts of climate change are assumed to depend on the impact of 

the previous year, this way reflecting the process of adjustment to climate change. 

Because the initial values to be used for the year 1950 cannot be approximated very well, 

both physical and monetized impacts of climate change tend to be misrepresented in the 

first few decades of the model runs.2 The centuries after the 21st are included to assess 

the long-term implications of climate change. Previous versions of the model stopped at 

2300. 

2.1. Scenarios and Climate Module 

The scenarios are defined by the rates of population growth, economic growth, 

autonomous energy efficiency improvements as well as the rate of decarbonization of the 

energy use (autonomous carbon efficiency improvements), and emissions of carbon 

dioxide from land use change, methane and nitrous oxide. The scenarios of economic and 

population growth are perturbed by the impact of climatic change. Market impacts are a 

deadweight loss to the economy. Population decreases with increasing climate change 

related deaths that result from changes in heat stress, cold stress, malaria, and storms. 

Heat and cold stress are assumed to have an effect only on the elderly, non-reproductive 

population. In contrast, the other sources of mortality also affect the reproductive 

population. Heat stress only affects the urban population. The share of the urban 

population among the total population is based on the World Resources Databases 

(http://earthtrends.wri.org). It is extrapolated based on the statistical relationship between 

urbanization and per capita income, which are estimated from a cross-section of countries 

in 1995. Climate-induced migration between the regions of the world also causes the 

population sizes to change. Immigrants are assumed to assimilate immediately and 

completely with the respective host population. 

                                                 

2 The period of 1950–2000 is used for the calibration of the model, which is based on the IMAGE 100-year 
database (Batjes and Goldewijk 1994). The scenario for the period 2010–2100 is based on the EMF14 
Standardized Scenario, which lies in between IS92a and IS92f (Leggett et al. 1992). The 2000–2010 period 
is interpolated from the immediate past (http://earthtrends.wri.org), and the period 2100–3000 extrapolated. 
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The endogenous parts of FUND consist of the atmospheric concentrations of carbon 

dioxide, methane, nitrous oxide and sulphur hexafluoride, the global mean temperature, 

the impact of carbon dioxide emission reductions on the economy and on emissions, and 

the impact of the damages to the economy and the population caused by climate change. 

Methane and nitrous oxide are taken up in the atmosphere, and then geometrically 

depleted. The atmospheric concentration of carbon dioxide, measured in parts per million 

by volume, is represented by the five-box model (Hammitt et al. 1992;Maier-Reimer and 

Hasselmann 1987). The model also contains sulphur emissions (Tol 2006). 

The radiative forcing of carbon dioxide, methane, nitrous oxide, sulphur hexafluoride and 

sulphur aerosols is as in the IPCC (Ramaswamy et al. 2001). The global mean 

temperature T is governed by a geometric build-up to its equilibrium (determined by the 

radiative forcing RF), with an e-folding time of 66 years. In the base case, the global 

mean temperature rises in equilibrium by 3.0°C for a doubling of carbon dioxide 

equivalents. Regional temperatures follow from multiplying the global mean temperature 

by a fixed factor, which corresponds to the spatial climate change pattern averaged over 

14 General Circulation Models (Mendelsohn et al. 2000). The dynamics of the global 

mean sea level are also geometric, with its equilibrium level determined by the 

temperature and an e-folding time of 500 years. Both temperature and sea level are 

calibrated to correspond to the best guess temperature and sea level for the IS92a scenario 

(Kattenberg et al. 1996). 

2.2. Impacts and Damages 

The climate impact module includes the following categories: agriculture, forestry, sea 

level rise, cardiovascular and respiratory disorders related to cold and heat stress, malaria, 

dengue fever, schistosomiasis, energy consumption, water resources, unmanaged 

ecosystems (Tol 2002a;Tol 2002b), diarrhoea (Link and Tol 2004), and tropical and extra 

tropical storms (Narita et al. 2009;Narita et al. 2010). Climate change related damages 

can be attributed to either the rate of change (where damages are calibrated at 0.04°C/yr) 

or the level of change (with damage functions calibrated at 1.0°C). Damages from the 

rate of temperature change slowly fade, reflecting adaptation (Tol 2002b). 
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People can die prematurely due to climate change, or they can migrate because of sea 

level rise. Like all impacts of climate change in FUND, these effects are monetized. The 

value of a statistical life is set to be 200 times the annual per capita income. The resulting 

value of a statistical life lies in the middle of the range of values in the literature (Cline 

1992). The value of emigration is set to be 3 times the per capita income (Tol 1995), the 

value of immigration is 40 per cent of the per capita income in the host region (Cline 

1992). Losses of dryland and wetlands due to sea level rise are modeled explicitly. The 

monetary value of a loss of one square kilometre of dryland was on average $4 million in 

OECD countries in 1990 (Fankhauser 1994). Dryland value is assumed to be proportional 

to GDP per square kilometre. Wetland losses are valued at $2 million per square 

kilometre on average in the OECD in 1990 (Fankhauser 1994). The wetland value is 

assumed to have logistic relation to per capita income. The level of coastal protection is 

based on an internal cost-benefit analysis that includes the value of additional wetland 

lost due to the construction of dikes and subsequent coastal squeeze. 

Other impact categories, such as agriculture, forestry, energy, water, storm damage, and 

ecosystems, are directly expressed in monetary values without an first estimating impacts 

in ‘natural’ units (Tol 2002a). Impacts of climate change on energy consumption, 

agriculture, and cardiovascular and respiratory diseases explicitly recognize that there is a 

climatic optimum, which is determined by a variety of factors, including plant physiology 

and the behaviour of farmers. Impacts are positive or negative depending on whether the 

actual climate conditions are moving closer to or away from that optimum climate. 

Impacts are larger if the initial climate conditions are further away from the optimum 

climate. The optimum climate is of importance with regard to the potential impacts. The 

actual impacts lag behind the potential impacts, depending on the speed of adaptation. 

The impacts of not being fully adapted to new climate conditions are always negative 

(Tol 2002b). 

The impacts of climate change on coastal zones, forestry, tropical and extratropical storm 

damage, unmanaged ecosystems, water resources, diarrhoea, malaria, dengue fever, and 

schistosomiasis are modelled as power functions. Impacts are either negative or positive 

with greater climate change, and they do not change sign (Tol 2002b). 
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Vulnerability to a given climate change is a function of population growth, economic 

growth, and technological progress. Some systems are expected to become more 

vulnerable with increases in these factors, such as water resources (with population 

growth), heat-related disorders (with urbanization), and ecosystems and health (with 

higher per capita incomes). Other systems such as energy consumption (with 

technological progress), agriculture (with economic growth) and vector- and water-borne 

diseases (with improved health care) are projected to become less vulnerable at least over 

the long term (Tol 2002b). The income elasticities (Tol 2002b) are estimated from cross-

sectional data or taken from the literature. 

2.3. Calculation of the Social Cost of Carbon 

We estimated the SCC cost of carbon by computing the difference between the projected 

total monetised impact of climate change along a business as usual path and those along a 

path with an incremental increase in emissions between 2010 and 2019.3 The differences 

in projected impacts are discounted back to the year 2010, and normalised by the 

difference in emissions. The SCC is thereby an estimate of the marginal additional 

damages of additional carbon at a point in time expressed in dollars per tonne. Because 

the estimate is at the margin, it is also a conceptually appropriate measure for the avoided 

damages from reducing emissions by one tonne. That is, 
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where 

SCCr,s is the regional, sector specific social cost of carbon (in 1995 US dollars per tonne 
of carbon); 

r denotes region; 

                                                 

3 The social cost of carbon of emissions in future or past periods is not the focus of this paper. 
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s denotes sector/impact type; 

t and i denote time (in years); 

D are monetised impacts (in 1995 US dollars per year); 

E are carbon emissions (in metric tonnes of carbon); 

δ are incremental emissions (in metric tonnes of carbon); 

ω is the marginal amount of extra emissions; 

ρ is the pure rate of time preference (in fraction per year); 

η is the elasticity of marginal utility with respect to consumption; and 

g is the growth rate of per capita consumption (in fraction per year). 

To compute the SCC for a specific region, we add up the sector specific estimates for that 
region: 

,r r
s

SCC SCC=∑ s
 

We then aggregate, as follows to compute the global social cost of carbon: 
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where 

SCC is the global social cost of carbon (in 1995 US dollar per tonne of carbon); 

SCCr is the regional social cost of carbon (in 1995 US dollar per tonne of carbon); 

r denotes region; 

cref is the average per capita consumption in the reference region (in 1995 US dollars per 
person per year); the reference region may be the world (Fankhauser et al. 1997) or one 
of the regions (Anthoff et al. 2009); 

cr is the regional average per capita consumption (in 1995 US dollars per person per 
year); and 

ε is the rate of inequity aversion; ε = 0 in the case without equity weighing; ε = η in the 
case with equity weighing. 
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3. Core results and sensitivity analysis 

3.1. Time preference 

Figure 1 shows the social cost of carbon for three alternative pure rates of time preference 

(0.1%, 1%, 3% per year) for the world as a whole (simple summation) and for the 

individual regions. 

The social cost of carbon rises as the pure rate of time preference falls: For a 3% rate, the 

SCC is $1.33/tC; it is $30.3/tC for 1%; and $186/tC for 0.1%. The same pattern is 

observed for the regional social costs of carbon, but there are sign changes as well. Six 

regions have a negative social cost of carbon for a 3% rate: Australia and New Zealand; 

Central America; Eastern Europe; Japan and South Korea; Middle East; and South Asia. 

For a 1% rate, only Japan and South Korea benefit at the margin from higher emissions. 

For a 0.1% rate, all regions face negative marginal impacts. This suggests that some 

regions see short-term benefits of climate change. However, all regions are projected to 

experience damages in the long run that surpass the short-term impacts in undiscounted 

terms. The sectoral decomposition shows that these are primarily in agriculture due to 

carbon dioxide fertilization (see below). 

For a 3% rate, some regions benefit from a marginal emission of carbon today. Of these 

regions, Japan and South Korea have the largest share of benefits with 77% of estimated 

benefits, followed by the Middle East with 11%. Of the regions with harmful impacts, the 

USA has by far the largest share of the social cost of carbon (33%), followed by Western 

Europe (18%), the former Soviet Union (16%), sub-Saharan Africa (15%) and North 

Africa (12%). For a 1% rate, only Japan and South Korea benefit from marginal 

emissions. China has the largest share of harmful impacts (31%), followed by Western 

Europe (21%) and the USA (13%). For a 0.1% rate, China has the largest share (48%) 

with Western Europe the only other region with a share above 10% (14%). Increased 

demand for air conditioning is one of the largest impacts in China.  This illustrates both 

the vulnerability of China to climate change and its projected rise to economic 

prominence. 
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Figure 2 shows the social cost of carbon by “sector”. For a 0.1% pure rate of time 

preference, agriculture contributes 68% of the harmful marginal impact and cooling 

energy another 27%. For a 1% rate, the roles are reversed, with cooling making up 64% 

of the harmful marginal impact and agriculture 21%. For a 3% rate, agriculture and 

cooling are roughly equal in size but opposite in sign: -$6.5/tC and $6.8/tC. 

Cooling energy and agriculture are the two most important marginal impacts. Heating 

energy is less important because this benefit is capped by the expenditure in the absence 

of climate change. Forestry is a small sector in the economy, and tropical and 

extratropical storms do, on average, little damage. The marginal impacts of sea level rise 

are relatively small because the level of the sea responds with a lag to changes in 

temperature. For ecosystem impacts, the value of the impact (and hence per capita 

income) is more important than the impact itself. Infectious diseases are brought under 

control (in the model) with rapid economic growth. For cardiovascular and respiratory 

disorders, positive and negative impacts tend to balance. 

The impact of climate change on forestry and heating energy are always positive at the 

margin. The other impacts are always negative, except for agriculture which is positive in 

the short run (and for a high discount rate) but negative in the long run (and for a low 

discount rate). The sign of the marginal impacts follow immediately from the assumed 

signs of the total impacts. 

3.2. Equity weighting 

Figure 3 repeats the results of Figure 1 and adds equity weighting. Equity weighting 

corrects for the fact that a dollar to a poor person is worth more than a dollar to a rich 

person. Figure 3 shows results for equity weights from the perspective of a global planner 

(Fankhauser et al. 1997), and from the perspective of two regional planners (Anthoff et 

al. 2009): USA (with the highest per capita income) and sub-Saharan Africa (with the 

lowest per capita income). 

Global equity weights increase the global social cost of carbon by a factor of 3.0 to 4.5, 

depending on the discount rate. Equity weights themselves are independent of the 

discount rate.  The distribution of regional social costs is not, however. As we first 
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discount impacts to the present, and then aggregate them, equity weights have a different 

effect depending on the discount rate. 

If impacts are equity-weighted from the perspective of the USA, the social cost of carbon 

increases by a factor of 18.6 to 27.6. Because the USA is one of the richest regions, the 

impacts in all other regions (with a lower income) get an equity weight larger than 1, thus 

increasing the social cost of carbon estimate compared to a situation without equity 

weights. If impacts are equity-weighted from a sub-Saharan African perspective, the 

social cost of carbon falls by a factor of 0.29 to 0.43. Sub-Saharan Africa is one of the 

poorest regions in the world. Impacts in all regions with higher incomes (essentially all 

other regions) therefore get an equity weight <1 when a Sub-Saharan perspective is used, 

thereby decreasing the social cost of carbon estimate compared to a situation without 

equity weights. 

Global and two regional equity weighting schemes use a different normalization constant. 

Therefore, the regional share in the equity-weighted global social cost of carbon is 

independent of equity weight. Generally, poorer regions are more important and richer 

regions less important with equity weighting. For a 3% pure rate of time preference, 60% 

of the harmful share of the social cost of carbon is in sub-Saharan Africa, with another 

18% in North Africa and 16% in the former Soviet Union. 36% of the beneficial impacts 

are in South Asia, 27% in the Middle East and 13% in China and Japan each. For a 1% 

rate, China has the largest share (46%) of harmful impacts, followed by sub-Saharan 

Africa (17%) and South Asia (12%). Only Japan has beneficial impacts from a 1% pure 

time preference rate. For a 0.1% rate, China has the largest share (66%), followed by 

South Asia (10%) and sub-Saharan Africa (7%). Figure 4 shows the social cost of carbon 

per sector with and without equity weighing. Equity weighing discounts the marginal 

impact on cooling energy, and puts more emphasis on the marginal impact on agriculture. 

Cooling costs are higher in richer regions, and impacts in those regions are given less 

weight with equity weights. Agricultural impacts are more important in poorer, less 

developed regions and impacts in those regions receive more weight with equity weights.  
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3.3. Scenarios 

We use the FUND scenario as the baseline. We use the four SRES baseline scenarios as a 

sensitivity analysis. The A1 scenario assumes low population growth, rapid economic 

growth, and rapid technological progress. A2 assumes high population growth, slow 

economic growth, and slow technological progress. B1 assumes low population, rapid 

economic growth, and very rapid technological progress particularly in energy supply and 

use. B2 assumes moderate population growth, moderate economic growth, and moderate 

technological progress. 

Figure 5 shows the social cost of carbon as a function of the socio-economic and 

emissions scenario. For a 3% pure rate of time preference, the social cost of carbon is 

highest in the FUND scenario (used in the results presented above). The values for the 

SRES scenarios range from -$2.29/tC (B1) to $1.55 (A2). For a 1% rate, the FUND 

scenario is in the middle; the SRES values range from $8.09/tC (B1) to $45.4/tC (A2). 

For a 0.1% rate, FUND is again in the middle; the SRES values range from $58.1/tC (B1) 

to $1880/tC (A2). 

Figure 6 again shows the social cost of carbon (assuming a 1% pure rate of time 

preference) for the five scenarios, but now as a function of the size of the population in 

2100, the average per capita income in 2100, and the global mean surface air temperature 

in 2100.4 The social cost of carbon increases with the temperature, but more so with the 

population. The dominant effect, however, is per capita income: The social cost of carbon 

tends to fall with income in FUND. Therefore, the relatively poor-but-hot A2 scenario 

has high marginal impacts whereas the rich-but-cool B1 scenario has low marginal 

impacts.   

For a 3% rate, the global social cost of carbon changes sign between scenarios. So does 

the regional social cost of carbon for China, South America, Southeast Asia, Small Island 

States and Western Europe. In these regions, negative and positive impacts are roughly 

                                                 

4 Note that population, income, emissions, and temperature are not independent of one another. 
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balanced, and different assumptions will change the sign of the aggregate impact. The 

regional social cost of carbon of Canada, former Soviet Union, North Africa, sub-Saharan 

Africa and USA is always positive independent of the chosen scenario; and it is always 

negative for Australia and New Zealand, Central America, Eastern Europe, Japan and 

South Korea, Middle East, and South Asia. 

Figure 7 shows the social cost of carbon per sector as a function of the socio-economic 

and emissions scenario. For three of the four SRES scenarios, the pattern is the same as 

for the FUND scenario: Agriculture dominates the marginal impacts in the long run, and 

cooling energy in the short run. The A2 scenario is the exception to this. For a 0.1% pure 

rate of time preference, agriculture is the biggest contributor (55%) to the social cost of 

carbon, followed by mortality (42%) and cooling energy (3.2%). The A2 scenario has the 

lowest per capita income growth. Air conditioning is therefore less widespread, and 

infectious diseases more common. 

3.4. Climate sensitivity 

Figure 8 shows the social cost of carbon for three alternative climate sensitivities: 2.0°C 

equilibrium warming for doubling of atmospheric carbon dioxide, 3.0°C (the value used 

in the runs above) and 4.5°C. The higher the climate sensitivity, the greater the social 

cost of carbon. For a 3% pure rate of time preference, the social cost of carbon is -

$0.708/tC for a climate sensitivity of 2.0°C; this increases to $1.33/tC for 3.0°C; and to 

$2.92/tC for 4.5°C. For a 1% rate, the estimates are $11.5/tC, $30.3/tC and $64.5/tC, 

respectively. For a 0.1% rate, the estimates are $52.8/tC, $186/tC, and $1,510/tC. The 

social cost of carbon is non-linear in the climate sensitivity (increasing at an increasing 

rate). The results for the lower pure rate of time preference reveal that this non-linearity 

becomes more important over time, because the difference in warming grows over time. 

The same pattern is observed for the estimates of the regional social cost of carbon. Two 

regions stand out: the social cost of carbon for China and the Small Island States is 

consistently more non-linear than the global estimate, because in these regions agriculture 

is one of the larger impacts (see below). 
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Figure 9 shows the social cost of carbon per sector for three alternative climate 

sensitivities. Agriculture net damages are more non-linear in the long-run than in the 

short-run, and considerably more non-linear than cooling energy. This is because 

agricultural impacts are assumed to be quadratic in warming while cooling is proportional 

to temperature to the power 1.5. Mortality is even more non-linear in the long run. 

Cooling energy dominates mortality for all but one combination of climate sensitivity and 

pure rate of time preference. However, for a 0.1% rate and a 4.5°C sensitivity, the 

marginal impact on mortality is almost five times higher than the marginal impact on 

cooling energy. This is because, in the long run, all regions are assumed to become rich 

and old enough to suffer from cardiovascular and respiratory disorders, while the positive 

incremental impacts of reduced cold stress disappear if it gets warm enough. 

4. Discussion and conclusion 
We present new estimates of the social cost of carbon, and split them by region and by 

sector. As is known from previous studies (Kuik et al. 2008), estimates vary greatly with 

the pure rate of time preference, equity weighting, scenario, and climate sensitivity. For a 

high pure rate of time preference, the social cost of carbon is dominated by the currently 

rich regions. For a low pure rate of time preference, China is the dominant region with 

low per capita income and significant agricultural and cooling requirement exposure. 

However, all regions exhibit significantly more damages in the future with greater 

climate change than in the near-term. Differences in economic growth are a key 

determinant to differences in the social cost of carbon between scenarios. Slower income 

growth and greater income differences across regions, combined with higher emissions, 

results in larger regional damages. The social cost of carbon is increasing and 

accelerating in climate sensitivity, and more so if the pure rate of time preference is lower 

due the acceleration of damages over time with higher climate sensitivity. Agriculture 

and cooling energy are the largest impacts in the near- and long-term (at the margin), as 

well as extremely responsive to socioeconomic conditions, emissions, and climate 

sensitivity. However, human mortality could be significant in the distant future under 

poor global socioeconomic and emissions conditions or high climate sensitivity. 
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These results come with a number of caveats. Primary among them is the fact that SCC 

estimates are only as good as the impacts research literature. To date there is limited 

knowledge regarding potentially important impacts, such as with respect to biodiversity, 

air pollution, extreme weather events, catastrophic events, ecosystem thresholds, 

variability, geophysical irreversibilities, non-market values, and interactions between 

sectors and regions. This has led some to characterize estimates of the SCC as 

underestimates (Schneider et al. 2007). In addition, it is important to be reminded that the 

SCC is an estimate of marginal damages and therefore suitable for evaluating marginal 

global emissions changes. An incremental change in emissions has little effect on the 

probability of events that may be caused by climate change, such as hurricanes, ice sheet 

collapse, massive methane release from melting permafrost, and large-scale migration. 

Finally, the analysis presented does not attempt to represent uncertainty, only partial 

ranges of possible outcomes. Nor do we reflect the value of risk, other greenhouse gases, 

or changes in the SCC over time. These topics are discussed in companion papers. 

Furthermore, the estimates are sensitive to more than the sensitivities considered in this 

paper, e.g., specification of carbon cycle and climate model, the impact categories 

included and their functional form with respect to development and climate change, and 

their monetization. We do not present these results as definitive regional and sectoral 

estimates, but instead to enhance understanding of marginal impacts and the SCC from 

one model, and to stimulate discussion and impacts research on global regions and 

sectors. 
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Figures 

 

 

Figure 1. Social cost of carbon per region as a function of the rate of pure time 
preference. 
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Figure 2. Social cost of carbon per sector as a function of the rate of pure time preference. 

17 



 

Figure 3. Social cost of carbon per region with and without equity weighing. 
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Figure 4. Social cost of carbon per sector with and without equity weighing. 
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Figure 5. Social cost of carbon per region for alternative socio-economic scenarios. 
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Figure 6. The social cost of carbon for alternative scenarios. 
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Figure 7. Social cost of carbon per sector for alternative socio-economic scenarios. 
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Figure 8. Social cost of carbon per region as a function of the climate sensitivity. 
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Figure 9. Social cost of carbon per sector as a function of the climate sensitivity. 
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