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Economic Costs of Ocean Acidification: A Look into the Impacts on Shellfish 
Production 

1. Introduction 

Human emissions of carbon dioxide (CO2) cause acidification of the ocean as well as climate change. 

While research on various aspects of climate change has generated an enormous number of studies, 

ocean acidification has only recently been recognized as a problem. This new recognition is giving 

rise to an increasing number of studies on ecological impacts of ocean acidification (reviewed by 

Doney et al., 2009), but estimates of economic impacts are still almost absent. 

 

Since the acidification of ocean water is primarily driven by the well-known law of chemical 

equilibrium of CO2 and water, the initial impact of ocean acidification is relatively clear (Caldeira and 

Wickett, 2003, 2005). However, the eventual impact depends on the complex interaction of many 

species. This fact limits the scope for the estimation of economic consequences. Along with coral 

reefs (Brander et al., 2009), however, shellfish, in particular, mollusks,
1
 are an exception in that the 

impact of ocean acidification is relatively better understood because of a relative wealth of scientific 

research on this group and also their low trophic level on the food web. It is for this reason that we 

focus our analysis on this group of shellfish.  

 

An impact assessment of mollusks under ocean acidification has a significant commercial implication 

in itself, as the value of marine mollusks (excluding cephalopods) produced worldwide amounts to 

around 15 billion USD in 2006, 9% of the world total fishery production in value terms (FAO, 2008). 

On a volume basis, the production of marine mollusks constitutes 12% of total fishery production in 

the USA, 15% in EU 15, and 20% in China in 2006 (FAO, 2008). At present, however, such analyses 

are non-existent except for Cooley and Doney (2009), who discuss the issue only in the US context. 

 

In fact, estimation of economic impacts of ocean acidification on mollusk production would provide 

initial hints for economic assessment of ocean acidification in general, as well as more broadly, for 

economic assessment of climate change. Major assessments of the economic impact of climate 

change (e.g., Tol, 2002; Stern, 2006; Nordhaus, 2008) omit ocean acidification altogether.  

 

This study is an initial attempt to fill the research gap by performing an economic assessment of 

global effects of ocean acidification on mollusks by using the framework of a partial-equilibrium 

analysis. We estimate global and regional economic costs of production loss of mollusks due to 

ocean acidification in 2100 under a business-as-usual scenario. Our results show that the costs could 

amount to around 6 billion USD even with an assumption of constant demand of mollusks towards 

the future and could be over 100 billion USD with an assumption of increasing demand of mollusks 

with expected income growths. The major determinants of cost levels are the impacts on the 

Chinese production, which is currently dominant in the world, and the expected demand increase of 

                                                                        
1 The Oxford Dictionary of English (2nd ed.) defines shellfish as “an aquatic shelled mollusk (e.g., an oyster or cockle) or a crustacean (e.g., 
a crab or shrimp), especially one that is edible.” 
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mollusks in today’s low-income countries, which include China, in accordance with their future 

income rise. Our analysis also indicates that in key regions such as China and the USA, the economic 

costs are roughly evenly divided between producers and consumers, implying that the sectoral 

impact of acidification in the fishery industry could be acute with the limited capacity to offset the 

change in supply costs by price increase.  

 

The paper is organized as follows. Section 2 briefly summarizes scientific facts of ocean acidification 

that serve as the basis for our analysis. Section 3 presents our approach of partial-equilibrium 

analysis. Section 4 describes the data that we use as the basis of our analysis. Section 5 shows 

results. Section 6 concludes. 

 

2. Ocean Acidification and Mollusks: A Note on Scientific Mechanisms 

CO2 emissions by humans not only increase the atmospheric concentrations of CO2 but also alter the 

carbonate chemistry of the ocean, which absorbs nearly half of the total emissions from fossil fuel 

combustion and cement manufacturing (Sabine et al., 2004). Enhanced CO2 in the atmosphere 

elevates the acidity of surface seawater (i.e., [H+]) and decreases the concentration of carbonate 

ions ([CO3
2-]) through the following series of chemical reactions:   

 

(1) CO2 (atmos) ↔ CO2 (aq) + H2O ↔ H2CO3 ↔ H+ + HCO3
- ↔ 2H+ + CO3

2- 

 

Reflecting on that fact, there is a growing concern about ocean acidification as a major 

accompanying effect of global climate change. The actual levels of seawater pH exhibit some 

variations across spatial locations as well as by depth, reflecting different levels of physical 

determinants of CO2 solubility (e.g., temperatures) and strengths of ocean circulations and 

biogeochemical processes. However, as atmospheric CO2 is essentially uniform over the world, the 

general tendency of acidification of surface seawater is likely to be observed on a global scale. In 

fact, the global nature of ocean acidification is confirmed by various ocean circulation models (Orr et 

al., 2005). Following the business-as-usual CO2 emission path, pH of surface seawater, whose original 

level is ~8.1 (weakly basic), would be reduced by 0.3-0.4 by the end of the 21st century (Caldeira and 

Wickett, 2003, 2005; Doney et al., 2009). Combined with local patterns of ocean circulations, the 

level of acidification could be even much more serious in specific areas – in fact, there is an 

indication that upwelling of acidified water are already observed in some areas on the North 

American West Coast even at the current level of global CO2 (Feely et al., 2008). Especially in 

productive coastal habitats, which are the primary locations for bivalve mollusk (e.g. mussels, 

oysters) production, the marine carbonate system is much more variable than in the open oceans, 

with pH values significantly lower than 8.0 already today (e.g. Burnett 1997). Future changes in 

seawater pCO2 will be especially strong in these habitats (Thomsen et al. 2010). 

 

It is easy to speculate that ocean acidification has broad implications for the functions of marine 

ecosystems by physically harming individuals of various marine organisms and also disrupting the 

balance of food webs. However, precise estimation of those effects is not simple because of the 

complexity of marine biology. Research is still limited on this issue, but a relatively established fact 
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among the findings is that ocean acidification should have negative effects on the growth of some 

calcifiers including mollusks and corals. The chemical equilibria (1) suggest that acidification of water 

(i.e., high [H+]) reduces the concentrations of carbonate ions ([CO3
2-]) through the far-right reaction. 

Growth of mollusks’ shells, which are composed of calcium carbonate (CaCO3), may be hampered 

because a low level of carbonate ions results in dissolution of calcium carbonate through the 

following reaction:   

 

(2)  CaCO3 ↔ CO3
2- + Ca2+ 

 

In fact, the solubility of calcium carbonate depends on its crystal form as well. The solubility is 

associated with the level of the following saturation state Ω: 

 

(3) Ω = *Ca2+][CO3
2-]/K′sp 

 

where the solubility product K′sp depend on the crystal forms of CaCO3.
2 Negative effects on 

calcification are expected to be high for species whose shell is made of aragonite, which is a 

relatively unstable crystal form of calcium carbonate, although to a lesser extent, effects could also 

be significant for species whose shell is made of calcite, which is a relatively stable crystal form. This 

is particularly problematic for mollusks with a shell that is not covered by protective organic outer 

layers, such as pteropods (Lischka et al. 2011). Organic coating allows bivalve mollusks to calcify 

even in ocean regions that are under saturated with respect to calcium carbonate (e.g. Tunnicliffe et 

al. 2009; Ries et al. 2009 or 2010; Thomsen et al. 2010).  

 

A meta-analysis by Kroeker et al. (2010) indicates that negative effects of ocean acidification on the 

survival and growth of mollusks could become visible by the end of the 21st century under a 

standard scenario of climate change (IS92a), and that the negative effects are stronger on earlier 

developmental stages. It is also important to note, that responses even of closely related bivalve 

molluscs (the genus Mytilus, i.e. mussels) vary strongly between studies, with large negative effects 

in short-term studies (days, e.g. Gazeau et al., 2007) and less dramatic effects in studies that allowed 

for significant physiological acclimation time (several weeks) and high nutrient supply (Michaelidis et 

al., 2005; Thomsen et al., 2010). Meanwhile, the above mentioned meta-analysis shows that under 

the same assumptions, negative effects are much less clear for the crustaceans, the other group of 

shellfish. Despite an increasing abundance of scientific data on species performance under elevated 

seawater pCO2 conditions, it needs to be noted that to date, studies that account for genetic 

adaptation potential of species towards elevated pCO2 are largely missing (an exception is Collins 

and Bell, 2004). Adaptation processes may significantly reduce vulnerability to future climate 

change. 

 

                                                                        
2 Without any external protective mechanism of solid (e.g., coating), dissolution occurs when Ω<1. 
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Mollusks have a high commercial value as food and are an important source of protein for human 

consumption, especially for populations in developing countries (Dey et al., 2008). Mollusks are 

produced both by capture and aquaculture. Capture fisheries, which are mainly performed in coastal 

environments, might be directly affected by ocean acidification. Meanwhile, aquaculture could in 

principle insulate itself from the acidified marine environment and be operated under controlled 

acidity by means of, for example, buffering with sodium bicarbonate. However, as bivalve mollusks 

are often fed with planktonic organisms, which are prevalent in seawater, practices of mollusk 

aquaculture generally involve some period of culture in open water whose acidity is impossible to be 

manipulated. Furthermore, in many cases, juvenile bivalve mollusks are collected from the natural 

ocean environment because hatchery production is often not economical, especially in developing 

countries (Pillay and Kutty, 2005). 

 

3. Analytical Approach: A Partial-Equilibrium Model 

We estimate economic costs of reduced mollusk production due to acidification by using a partial-

equilibrium framework. This approach allows us to capture two factors associated with the 

production damage due to ocean acidification, that is, the welfare losses due to reduced production 

and consumption, and the welfare effects of price increase under tightening supply. Figure 1 

illustrates the demand and supply curves of mollusk production. The equilibrium point (e) of mollusk 

production without acidification is located at the intersection of the demand (D) and supply (S) 

curves. The slopes of the supply and demand curves could be numerically determined by using 

empirical assessments of supply and demand elasticities of mollusks. Introduced as an exogenous 

shock, acidification raises the unit production costs of mollusk production and shifts the supply curve 

leftward (S  S′). The producers offset a part of revenue loss from the increase of unit production 

costs by raising the price (p  p′). As a result, the equilibrium point moves from e to e′. Effective 

costs of ocean acidification for the consumers are the combination of costs from the loss in the 

consumed quantity (q  q′) and the increase in the price. C-A in the graph represents the loss of 

producer surplus due to acidification, whereas A+B corresponds to the loss of consumer surplus. The 

net total loss for the economy is B+C.  

 

Our analytical approach has an advantage over the simple multiplication method of the harvest loss 

rate and the baseline production value (see e.g. Cooley and Doney) in the capacity to assess the 

impact of price increase accompanying the change in supply costs of mollusks under ocean 

acidification. On the other hand, our framework does not take account of some less direct effects, 

such as the general-equilibrium effects of supply change on the entire domestic or world economy.  
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4 Data  

The areas A, B and C in Figure 1 could be quantitatively estimated by using empirical data of mollusk 

production (consumption), of the demand and supply elasticities, of the effects of acidification on 

the development of mollusk individuals, and of the scale of ocean acidification concurrent with 

climate change. Below, we describe the empirical base data used for our analysis.  

 
For information on the relationship between ocean acidification and reduced harvest of mollusks, 

we use the data of Kroeker et al.’s (2010) meta-analysis on effects of acidification on marine 

organisms.3 Following Kroeker et al., we consider the effect of acidification under the climate 

conditions in the year 2100 based on the IPCC IS92a business-as-usual scenario (which they assume 

is associated with a 0.4-unit decrease in pH). As for the relationship between the biological impact of 

lower pH water on mollusks and the harvest loss, we primarily adopt an assumption in line with 

Cooley and Doney’s (2009), which sets the rate of harvest loss of shellfish equal to the decrease in 

calcification rate due to ocean acidification.4 The rate of harvest loss corresponds to the shifting rate 

of the supply curve in our partial-equilibrium framework (i.e., x in Figure 1). Kroeker et al. estimate 

the mean effect of acidification on the calcification rate of mollusks, which is equivalent to 43% loss 

                                                                        
3 Hendriks et al. (2010) also offer a meta-analysis of ocean acidification impacts. However, Kroeker et al. point out that Hendriks et al. do 
not use the standard methods of meta-analysis, which standardize studies for precision, account for variation between studies, and test 
for heterogeneity in effect sizes. Still, as for calcification by bivalves (a group of mollusks), Hendriks et al.’s estimates also show strong 
negative effects of ocean acidification in the future.  
4 Despite the use of the same proxy for acidification damage, their estimates are significantly different from ours as they base their 
analysis on a different study published earlier (Gazeau et al., 2007: the loss rate is 10-25%). 
 

Figure 1. Demand and supply curves of mollusks 
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from the baseline with a 95% confidence interval of 0%-65% (calculated from 9 experiments).
 5 

Meanwhile, as alternative proxy, we also use the survival rate of mollusks under acidification. 

Kroeker et al. report the mean effect of acidification on survival of mollusks (calculated from 17 

experiments), which is equivalent to 35% loss from the baseline with a 95% confidence interval of 

0%-62%.  

 
It should be noted that in either case of using the calcification or survival loss as proxy, there are 

factors leading the assessment to both overestimation and underestimation: on the one hand, a loss 

in calcification or survival might not result in an equivalent commercial loss (e.g., mollusks with 

thinner shells might still have commercial value); on the other hand, the actual effect of acidification 

could be greater than implied by each individual rate because the actual effect experienced by the 

producers is a combination of both calcification and survival losses.  

 

Mollusks are produced both through capture fisheries and aquaculture. As we noted in Section 2, 

there is a strong reason to assume that not only capture fisheries but also aquaculture of mollusks is 

affected by acidification. In this analysis, we simply assume that the effect of acidification equally 

falls on capture fisheries and aquaculture. 

 

As for production quantities of mollusks, we base our estimates on data provided by the FAO 

Fisheries and Aquaculture Department
6
 and by the See Around Us Project.

 7
 Annual information on 

total aquaculture and capture production by country is obtained for the period 1997-2006. The FAO 

database contains data of aquaculture production in value (in USD) by country and species. Our 

aquaculture dataset covers 134 gastropod and bivalve species belonging to the following five species 

groups: “abalones, winkles and conches,” “oysters,” “mussels,” “scallops and pectinids,” and “clams, 

cockles, and arkshells.” Meanwhile, the FAO database does not include data on capture production 

in value (it has only volume data). Tto supplement the FAO data we use data from the See Around Us 

database. The database provides landing value data for an aggregate category “molluscs” 8 whose 

capture takes place within the exclusive economic zones (EEZ) of individual countries. All value data 

used in the analysis are normalized in 2000 USD. 

 

We aggregate the country-level production data by region by using the regional categories of the 

IMPACT model (Delgado et al., 2003). 9 In the following, we mainly discuss the ten regions and 

countries, which constitute the current major producers of marine mollusks: USA, EU15, Japan, 

                                                                        
5 They report their results in the following ln-transformed response ratio

CE XXRLnRR lnlnln , where 
EX , 

CX are 

the mean response in the experimental and control treatments, respectively. We use numbers converted from logarithmic rates into 
percentages, whose conversion is made by ourselves. 
6 http://www.fao.org/fishery/statistics/en 
7 http://www.seaaroundus.org/data/ 
8 Cephalopods (octopuses, squids, etc.) are excluded from this category. 
9 In total there are 37 regions. IMPACT regional categories omit a number of small island nations, but the combined production quantities 
of mollusks from those countries are not negligible. To address this problem, we set up an additional regional category named “Other 
Small Island States.” The results that we present in the Appendix contain our estimates for that region as well. The following are 
categorized as “Other Small Island States”: American Samoa, Anguilla, Antigua and Barbuda, Cook Islands, Kiribati, New Caledonia, Palau, 
Samoa, Solomon Islands, St. Pierre and Miquelon, and Tonga. 
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Australia, Other Developed Countries,
 10

 Mexico, Turkey, Viet Nam, China, and South Korea. In Table 

1 information is provided on GDP (nominal and PPP), population, and production volumes of total 

fisheries and mollusks by aquaculture and capture for those selected ten regions and the entire 

world. 

 
  GDP  

(109 USD) 
GDP PPP 
 (109 
USD) 

Population 
(106) 

Capture 
fisheries  
(103 t) 

Aquaculture 
(103 t) 

Marine 
mollusks 
capture 
 (103 t) 

Marine 
mollusks 
aquaculture 
(103 t) 

Marine 
mollusks 
capture 
 (% of 
total 
fisheries) 

Marine 
mollusks 
aquaculture  
(% of total 
fisheries) 

USA 10,112 11,412 286 4,915 498 543 135 10 2.5 

EU15 8,217 11,012 380 5,931 1,245 352 728 5 10.1 

Japan 4,745 3,691 127 4,946 1,297 397 451 6 7.2 

Australia 433 592 20 222 36 19 13 7 5.1 

Other dev'd 
countries 

1,503 2,088 99 7,026 801 132 120 2 1.5 

Mexico 583 1,189 99 1,360 81 68 3 5 0.2 

Turkey 282 662 68 514 80 28 1 5 0.2 

Viet Nam 36 142 80 1,674 830 57 78 2 3.1 

China 1,433 4,027 1,274 14,820 31,023 1,045 8,133 2 17.7 

South 
Korea 

572 944 47 1,863 887 77 267 3 9.7 

World 33,128 50,906 6,193 92,041 39,503 3,188 10,436 2 7.9 

 
 
 

For data of future economic conditions, we utilize GDP projections to the year 2100 based on IPCC’s 

A1B scenario, as the scenario corresponds to almost an identical level of atmospheric CO2 

concentrations (around 710ppm) to that of the old IS92a scenario (IPCC, 2001, WG I report Annex II; 

see also Caldeira and Wickett, 2005). Country-level GDP values that we use in our analysis are those 

disaggregated by Gaffin et al. (2004) and van Vuuren et al. (2007) from A1B scenario. Meanwhile, we 

adopt the income elasticity levels of mollusk consumption11 employed in the IMPACT model.12 As for 

the demand and supply elasticities, we adopt the parameter levels used by the IMPACT model 

(Delgado et al., 2003).13 Those levels are generally in agreement with various empirical estimates, 

such as those by Dey et al. (2008).  

                                                                        
10 Canada, Iceland, Israel, Malta, New Zealand, Norway, South Africa, and Switzerland 
11 Categorized as “High Value Other Aquaculture” and “High Value Other Capture” in IMPACT 
12 Values are set region by region and lie in the range of [0.15, 0.65]. 
13 Values are set region by region and lie in the ranges of [-1.11, 0.77] for the demand elasticity and of [0.2, 0.4] for the supply elasticity. 

 

Table 1. Current (1997-2006 average) GDP, population and volumes of fisheries of selected 10 regions and the entire world 
(the nominal GDP and GDP PPP are based on the 2000 constant USD and on the 2005 constant international USD, 
respectively) 
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5. Scenarios and Results  

We examine a number of scenarios in our analysis. As the base case, we assess the economic costs 

of ocean acidification when acidification exogenously affects the current level of mollusk production, 

which is set at the average over 1997-2006 based on the FAO data. An implicit assumption for this 

case is that demand of mollusks will stay constant in the future. Alternatively, we also consider a 

more realistic case that the demand for mollusks becomes greater because of economic 

development by the time when acidification becomes significant. This factor magnifies the economic 

damage of ocean acidification. Economic costs are assessed as the difference between the enhanced 

levels of production without ocean acidification and with ocean acidification. We estimate the 

demand increase to 2100 by multiplying GDP projections by estimated income elasticity data of 

mollusk consumption.  

 

In total we use nine different scenarios in analysis. They are coded with scenario names consisting of 

characters (e.g., B_T_P). Characters signify the following: 

 

B:  No income rise (“baseline”)  
V: Income rise according to van Vuuren et al. (2007) 
G:  Income rise according to Gaffin et al. (2004) 
T: Aquaculture + capture (“total”) 
A: Aquaculture only 
C: Capture only 
C:  Effects on consumers 
P:  Effects on producers  
 
 

Figure 2 shows the total economic costs (i.e., producer + consumer surplus) of mollusk production 

loss due to ocean acidification in the ten selected regions. Estimates for other regions are found in 

the Appendix (this applies to all the results to be discussed in this section). The main estimates in the 

graph are based on the mean effect on calcification by Kroeker et al. (2010). The upper bounds of 

error bars correspond to their lower-bound estimate of calcification impact.  

 

The most noticeable feature in the graph is the dominance of Chinese losses. The combined loss of 

aquaculture and capture without income rise (B_T) is around 4 billion USD for China, which is far 

greater than the second largest figure for EU 15, which is around 500 million USD. The world total 

costs in the B_T case are around 6 billion USD. The difference between China and developed 

economies is even magnified with the assumed income rise: for the cases with income rise (V_T and 

G_T), China, whose economy is still to grow significantly, has the loss almost one order of magnitude 

greater than those in other regions (note that the columns for China are scaled by 1/10 on the 

graph). Primarily determined by Chinese losses, the total global costs of mollusk losses with income 

rise are estimated to be 96 billion USD and 124 billion USD based on van Vuuren et al’s projections 

(V_T) and Gaffin et al.’s projections (G_T), respectively. Meanwhile, a contrasting feature between 

China and USA is the balance between capture and aquaculture: dominance of aquaculture for the 

former and that of capture for the latter. This suggests that if China’s aquaculture practices find a 

technical means to mitigate the impact of acidified water in the future, the Chinese losses as well as 
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the global losses could be significantly reduced from the levels of our estimates. On the other hand, 

the capture-intensive US mollusk fisheries would be more likely to experience the losses of our 

predicted levels. 

 

Figure 3 presents the losses of consumer and producer surplus as impact of ocean acidification on 

mollusk production in the ten regions for the case of constant future demand of mollusks. The losses 

of consumer and producer surpluses show roughly even distributions for the largest producers 

including China, USA, and EU15, while the consumer surplus loss is significantly higher than the 

producer surplus loss in Japan and South Korea. This implies that the producers in the former group 

of regions have only limited capacity to pass the costs of acidification onto the consumers through a 

price increase – hence the damage for the mollusk fishery sector might be acute. An interesting 

feature is that the relative losses of the producers to the consumers become large in the case of 

stronger acidification (see the error bars). In other words, the stronger acidification is, the greater 

the relative burdens on the producers become.  

 

Figure 4 is similar to Figure 3 but is based on GDP growth according to van Vuuren et al. (2007).14 

Patterns are similar to those of Figure 3 for each individual region, but relative patterns across 

regions differ.  

 

                                                                        
14 Estimates based on Gaffin et al.’s projections show basically the same features. Estimated figures are presented in the Appendix. 
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Note 
The main estimates are based on the mean effect on calcification by Kroeker et al. (2010), and the upper bounds of error bars correspond 
to their lower-bound estimate of calcification impact. 
Developed regions (top panel) and developing regions (bottom panel). 
 
B_T: No income rise, aquaculture + capture 
B_A: No income rise, aquaculture 
B_C:  No income rise, capture 
V_T: Income rise according to van Vuuren et al. (2007), aquaculture + capture 
G_T:  Income rise according to Gaffin et al. (2004), aquaculture + capture 
V_A:  Income rise according to van Vuuren et al. (2007), aquaculture  
V_C:  Income rise according to van Vuuren et al. (2007), capture 

Figure 2. Total economic costs of mollusk production loss due to ocean acidification in 10 selected regions 
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Note 
Developed regions (top panel) and developing regions (bottom panel). 
 
B_T_C:   No income rise, aquaculture + capture, consumer surplus loss 
B_T_P:   No income rise, aquaculture + capture, producer surplus loss 
B_A_C:  No income rise, aquaculture, consumer surplus loss 
B_A_P:   No income rise, aquaculture, producer surplus loss 
B_C_C:   No income rise, capture, consumer surplus loss 
B_C_P:   No income rise, capture, producer surplus loss 

Figure 3. Losses of consumer and producer surpluses as impact of ocean acidification on mollusk production in 10 regions, 
the case of constant future demand 
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Note 
Developed regions (top panel) and developing regions (bottom panel). 
 

V_T_C: Income rise according to van Vuuren et al. (2007), aquaculture + capture, consumer surplus loss 
V_T_P:    Income rise according to van Vuuren et al. (2007), aquaculture + capture, producer surplus loss 
V_A_C:   Income rise according to van Vuuren et al. (2007), aquaculture, consumer surplus loss 
V_A_P:    Income rise according to van Vuuren et al. (2007), aquaculture, producer surplus loss 
V_C_C:    Income rise according to van Vuuren et al. (2007), capture, consumer surplus loss 
V_C_P:    Income rise according to van Vuuren et al. (2007), capture, producer surplus loss 

Figure 4. Losses of consumer and producer surpluses as impact of ocean acidification on mollusk production in 10 regions, 
the case of increased future demand based on GDP projections by van Vuuren et al. (2007) 
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6. Discussion and Concluding Remarks 

Our results show that the global economic costs of mollusk loss from ocean acidification are around 

6 billion USD under the assumption of a constant demand of mollusks and could in fact be well over 

100 billion USD if the demand for mollusks increases with future income rise. These estimates are 

primarily determined by the effects on the globally dominant Chinese mollusk production and a 

presumed rise of demand for mollusks in today’s low-income countries in accordance with their 

income growth. At a regional level, our estimates for the USA, which are around 400 million USD 

without income rise, are significantly higher than the figures suggested by Cooley and Doney (2009) 

in the US context, who consider 75-187 million USD of loss in the annual revenue flow in that 

country. One reason for this difference is the difference in the base data. They use different data 

sources for production (FAO or NMFS statistics) and apply a lower estimate of harvest loss (Gazeau 

et al., 2007). The other reason is more conceptual: our assessment takes into account the welfare 

losses due to price increases, which are not captured by Cooley and Doney.  

 
Meanwhile, the estimated economic costs amount only to a very small fraction of world GDP or the 

total expected economic damage of climate change. The share of the mollusk loss to the world GDP 

in 2100 is 0.018% based on van Vuuren et al.’s GDP projections and 0.027% based on Gaffin et al.’s 

GDP projections. These figures correspond to 1.0% and 1.5% of the total expected damage of 

climate change (which corresponds to 1.8% of world GDP excluding the impacts of ocean 

acidification) based on the equation
15

 from Tol’s (2009) meta-study on the economic impact of 

climate change impact combined with by the estimated increase of global surface temperature by 

the end of the 21st century under A1B scenario (2.8°C). Estimates of the social cost of carbon would 

increase more that 1.8% if the effect on mollusks is included, because the ocean acidifies faster than 

the atmosphere warms. Nonetheless, it would be fair to argue that the recognition of negative 

effects of ocean acidification on mollusks would not have significant bearings on the discussions of 

global CO2 emission policy. However, it is of course the case that the mollusk fisheries constitute 

only a small fraction of total fisheries, and that the total impact of ocean acidification on fisheries 

could be much greater than our estimates, which exclusively examine mollusks. It should be also 

noted that the impacts show regional differences, and that the relative regional impacts could be 

greater than the global figures suggest.   

 
This analysis is a first attempt of a global assessment, and its scope is constrained by the availability 

of empirical base data, especially that of scientific assessment on biological impact of ocean 

acidification. Provided that the scientific basis becomes more solid in the coming years, however, it 

is possible to extend the research in the following directions. First, the analysis could be fed into a 

general-equilibrium model, and the impacts on trade, sectoral productions and employment could 

be investigated – in fact, the traded (exported) volume of marine mollusks constitutes a fraction of 

the world marine mollusk production (23% by volume in 2006 according to FAO, 2008), but our 

analysis does not take this factor into account. Second, this study could be combined with an 

ecosystem model, and broad impacts of ocean acidification on fisheries could be examined.  

                                                                        
15 D (%) = 2.46*(ΔT) – 1.11*(ΔT)2. See Figure 1 of Tol (2009). 
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Appendix. Estimated economic costs of reduced mollusk production due to ocean acidification (losses in consumer 
surplus and producer surplus and the total net loss) 
 

(a) Estimates based on the mean effect size on calcification 

(unit: million USD) 

  
No income rise Van Vuuren GDP 2100 Gaffin GDP 2100 

Region -Δ*Cons. 
Surplus] 
 (A+B) 
B_T_C 

-Δ*Prod. 
Surplus] 
 (C-A) 
B_T_P 

Total 
net loss 
(A+B) 
B_T 

-Δ*Cons. 
Surplus] 
 (A+B) 
V_T_C 

-Δ*Prod. 
Surplus]  
(C-A) 
V_T_P 

Total net 
loss (A+B) 
V_T 

-Δ*Cons. 
Surplus] 
 (A+B) 
G_T_C 

-Δ*Prod. 
Surplus] 
 (C-A) 
G_T_P 

Total net 
loss 
(A+B) 
G_T 

World 3,658 2,698 6,356 64,100 46,830 110,930 81,536 59,354 140,890 

USA 214 194 408 640 579 1,219 624 564 1,188 

EU 15 288 250 538 727 630 1,357 735 637 1,372 

Japan 271 165 437 362 221 583 386 236 622 

Australia 23 20 43 53 46 99 45 39 85 

Other Dev'd 
Countries 

127 110 237 414 358 772 1,044 904 1,948 

East. Europe 3 2 5 32 19 52 45 27 73 

Central Asia NA NA NA NA NA NA NA NA NA 

Rest Former USSR 16 12 28 315 231 546 304 223 527 

Mexico 29 17 46 318 193 511 350 212 562 

Brazil 5 3 8 46 28 74 60 36 96 

Argentina 34 21 55 254 154 408 415 251 665 

Colombia 0 0 0 3 2 5 2 1 3 

Other Latin Am. 116 70 186 2,066 1,250 3,317 1,311 793 2,103 

Nigeria NA NA NA NA NA NA NA NA NA 

Northern Sub-
Saharan Africa 

1 1 1 151 130 281 35 30 65 

Central & 
Western SS Afr. 

3 2 5 215 185 400 198 170 368 

Southern SS Africa 0 0 0 4 4 8 2 2 4 

Eastern SS Africa NA NA NA NA NA NA NA NA NA 

Egypt 0 0 0 11 7 18 4 3 7 

Turkey 6 3 9 74 45 118 17 10 28 

Other W. Asia N. 
Africa 

1 1 3 62 54 116 40 34 74 

India 1 0 1 30 22 51 19 14 33 

Pakistan NA NA NA NA NA NA NA NA NA 

Bangladesh NA NA NA NA NA NA NA NA NA 

Other S. Asia 0 0 0 1 1 2 0 0 0 

Indonesia 11 8 18 311 228 539 358 262 620 

Thailand 15 11 25 185 136 321 495 363 858 

Malaysia 10 7 17 152 111 263 331 242 573 

Philippines 1 1 3 57 42 99 50 36 86 

Viet Nam 22 16 39 1,545 1,132 2,677 667 489 1,156 

Myanmar 1 0 1 28 20 48 22 16 38 

Other SE Asia 1 1 1 9 7 16 24 17 41 

China 2,367 1,735 4,102 55,219 40,470 95,689 71,806 52,626 124,432 

South Korea 82 39 120 273 130 403 1,794 855 2,649 

Other E. Asia 11 8 19 548 401 949 326 239 564 

ROW 1 1 2 17 12 29 31 23 54 

Other Small Island 
States 

1 0 1 5 4 9 20 15 35 
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(b) Estimates based on the mean effect size on calcification, aquaculture only 

(unit: million USD) 

  
No income rise Van Vuuren GDP 2100 Gaffin GDP 2100 

Region -Δ*Cons. 
Surplus] 
 (A+B) 
B_A_C 

-Δ*Prod. 
Surplus] 
 (C-A) 
B_A_P 

Total net 
loss 
(A+B) 
B_A 

-Δ*Cons. 
Surplus] 
 (A+B) 
V_A_C 

-Δ*Prod. 
Surplus]  
(C-A) 
V_A_P 

Total net 
loss 
(A+B) 
V_A 

-Δ*Cons. 
Surplus] 
 (A+B) 
G_A_C 

-Δ*Prod. 
Surplus] 
 (C-A) 
G_A_P 

Total net 
loss 
(A+B) 
G_A 

World 3,109 2,266 5,375 59,678 43,602 103,280 76,614 55,756 132,369 

USA 27 24 51 81 73 153 79 71 150 

EU 15 241 209 450 608 526 1,134 615 532 1,147 

Japan 247 151 398 330 201 531 352 215 567 

Australia 13 12 25 31 27 58 27 23 50 

Other Dev'd 
Countries 

40 35 75 132 114 245 332 287 619 

East. Europe 1 0 1 8 5 13 12 7 19 

Central Asia NA NA NA NA NA NA NA NA NA 

Rest Former USSR 0 0 0 4 3 7 4 3 7 

Mexico 1 1 1 10 6 16 11 7 17 

Brazil 3 2 4 26 16 41 33 20 53 

Argentina 0 0 0 0 0 0 0 0 1 

Colombia NA NA NA NA NA NA NA NA NA 

Other Latin Am. 65 39 104 1,153 698 1,851 731 442 1,174 

Nigeria NA NA NA NA NA NA NA NA NA 

Northern Sub-
Saharan Africa 

NA NA NA NA NA NA NA NA NA 

Central & Western 
SS Afr. 

0 0 0 2 1 3 2 1 3 

Southern SS Africa 0 0 0 3 3 5 1 1 3 

Eastern SS Africa NA NA NA NA NA NA NA NA NA 

Egypt NA NA NA NA NA NA NA NA NA 

Turkey 1 0 1 7 4 11 2 1 3 

Other W. Asia N. 
Africa 

0 0 0 8 7 15 5 4 10 

India 0 0 1 22 16 39 14 11 25 

Pakistan NA NA NA NA NA NA NA NA NA 

Bangladesh NA NA NA NA NA NA NA NA NA 

Other S. Asia NA NA NA NA NA NA NA NA NA 

Indonesia 0 0 0 1 1 2 1 1 2 

Thailand 12 9 21 158 116 273 422 309 730 

Malaysia 5 4 9 80 59 139 175 128 304 

Philippines 1 1 2 44 32 76 38 28 66 

Viet Nam 20 15 34 1,373 1,006 2,379 593 434 1,027 

Myanmar NA NA NA NA NA NA NA NA NA 

Other SE Asia 0 0 1 5 4 9 13 9 22 

China 2,350 1,722 4,072 54,822 40,179 95,001 71,289 52,248 123,537 

South Korea 70 33 103 234 112 346 1,540 734 2,275 

Other E. Asia 11 8 18 535 392 927 318 233 551 

ROW 0 0 0 1 0 1 1 1 2 

Other Small Island 
States 

0 0 0 1 1 2 4 3 7 
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No income rise Van Vuuren GDP 2100 Gaffin GDP 2100 

Region -Δ*Cons. 
Surplus] 
 (A+B) 
B_C_C 

-Δ*Prod. 
Surplus] 
 (C-A) 
B_C_P 

Total net 
loss (A+B) 
B_C 

-Δ*Cons. 
Surplus] 
 (A+B) 
V_C_C 

-Δ*Prod. 
Surplus]  
(C-A) 
V_C_P 

Total net 
loss (A+B) 
V_C 

-Δ*Cons. 
Surplus] 
 (A+B) 
G_C_C 

-Δ*Prod. 
Surplus] 
 (C-A) 
G_C_P 

Total net 
loss (A+B) 
G_C 

World 549 432 981 4,418 3,226 7,645 4,921 3,598 8,518 

USA 187 170 357 559 506 1,065 545 493 1,039 

EU 15 47 41 88 119 103 223 121 105 225 

Japan 24 15 39 32 19 51 34 21 55 

Australia 9 8 18 22 19 41 19 16 35 

Other Dev'd 
Countries 

87 75 161 282 245 527 712 617 1,329 

East. Europe 2 1 4 24 15 38 34 20 54 

Central Asia NA NA NA NA NA NA NA NA NA 

Rest Former USSR 16 12 28 311 228 539 300 220 520 

Mexico 28 17 45 308 187 495 339 205 545 

Brazil 2 1 3 20 12 33 26 16 42 

Argentina 34 21 55 254 154 408 414 250 665 

Colombia NA NA NA NA NA NA NA NA NA 

Other Latin Am. 51 31 82 913 553 1,466 579 350 930 

Nigeria 0 0 0 0 0 0 0 0 0 

Northern Sub-
Saharan Africa 

1 1 1 151 130 281 35 30 65 

Central & 
Western SS Afr. 

3 2 5 214 184 397 196 169 366 

Southern SS Africa 0 0 0 1 1 2 1 1 1 

Eastern SS Africa NA NA NA NA NA NA NA NA NA 

Egypt 0 0 0 11 7 18 4 3 7 

Turkey 5 3 8 67 40 107 16 9 25 

Other W. Asia N. 
Africa 

1 1 2 54 47 101 34 30 64 

India 0 0 0 7 5 13 5 3 8 

Pakistan NA NA NA NA NA NA NA NA NA 

Bangladesh NA NA NA NA NA NA NA NA NA 

Other S. Asia 0 0 0 1 1 2 0 0 0 

Indonesia 10 8 18 310 227 537 356 261 617 

Thailand 2 2 4 28 20 48 74 54 128 

Malaysia 5 3 8 71 52 124 155 114 269 

Philippines 0 0 1 13 10 23 12 9 20 

Viet Nam 2 2 4 172 126 298 74 54 128 

Myanmar 1 0 1 28 20 48 22 16 38 

Other SE Asia 0 0 1 4 3 7 11 8 19 

China 17 12 29 397 291 688 516 378 894 

South Korea 12 5 17 39 18 57 254 121 374 

Other E. Asia 0 0 0 12 9 21 7 5 13 

ROW 1 1 1 16 12 28 30 22 52 

Other Small Island 
States 

0 0 1 4 3 7 16 12 28 

 

 (c) Estimates based on the mean effect size on calcification, capture only 

 (unit: million USD) 
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No income rise Van Vuuren GDP 2100 Gaffin GDP 2100 

Region -Δ*Cons. 
Surplus] 
 (A+B) 

-Δ*Prod. 
Surplus] 
 (C-A) 

Total 
net loss 
(A+B) 

-Δ*Cons. 
Surplus] 
 (A+B) 

-Δ*Prod. 
Surplus]  
(C-A) 

Total net 
loss (A+B) 

-Δ*Cons. 
Surplus] 
 (A+B) 

-Δ*Prod. 
Surplus] 
 (C-A) 

Total 
net loss 
(A+B) 

World 4,946 5,195 10,140 86,195 93,841 180,036 109,650 119,024 228,674 

USA 294 317 611 878 946 1,824 856 922 1,778 

EU 15 396 411 807 999 1,035 2,034 1,010 1,047 2,057 

Japan 375 287 662 501 383 884 535 409 944 

Australia 31 32 64 73 76 148 62 65 127 

Other Dev'd 
countries 

174 181 355 568 589 1,158 1,434 1,486 2,920 

East. Europe 4 4 8 43 41 85 61 58 119 

Central Asia NA NA NA NA NA NA NA NA NA 

Rest Former USSR 22 24 46 424 465 889 408 449 857 

Mexico 39 37 75 429 407 836 472 448 920 

Brazil 7 6 13 62 59 121 80 76 156 

Argentina 46 43 89 343 325 668 558 530 1,088 

Colombia 0 0 0 4 4 7 2 2 4 

Other Latin Am. 156 148 304 2,784 2,642 5,426 1,765 1,676 3,441 

Nigeria NA NA NA NA NA NA NA NA NA 

Northern Sub-
Saharan Africa 

1 1 2 202 252 455 47 59 106 

Central & Western 
SS Afr. 

3 4 8 288 360 649 265 331 597 

Southern SS Africa 0 0 0 6 7 12 3 4 6 

Eastern SS Africa NA NA NA NA NA NA NA NA NA 

Egypt 0 0 1 15 14 29 6 6 12 

Turkey 8 7 15 99 94 193 23 22 45 

Other W. Asia N. 
Africa 

2 2 4 84 104 188 53 66 120 

India 1 1 2 40 44 84 26 28 54 

Pakistan NA NA NA NA NA NA NA NA NA 

Bangladesh NA NA NA NA NA NA NA NA NA 

Other S. Asia 0 0 0 1 1 3 0 0 1 

Indonesia 14 16 30 418 459 877 480 528 1,008 

Thailand 20 22 41 249 274 523 665 731 1,397 

Malaysia 13 14 27 204 224 428 444 488 932 

Philippines 2 2 4 77 85 162 67 73 140 

Viet Nam 30 33 63 2,075 2,281 4,356 896 985 1,880 

Myanmar 1 1 2 37 41 78 30 32 62 

Other SE Asia 1 0 0 12 14 26 32 35 67 

China 3,180 3,494 6,674 74,184 81,520 155,705 96,468 106,007 202,474 

South Korea 110 88 198 369 294 663 2,424 1,937 4,361 

Other E. Asia 15 16 31 736 808 1,544 437 481 918 

ROW 1 1 2 22 25 47 42 46 87 

Other Small Island 
States 

1 1 2 7 8 15 27 29 56 

 

(d) Estimates based on the lower-bound estimate on calcification (low end of 95% interval) 

(unit: million USD) 
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No income rise Van Vuuren GDP 2100 Gaffin GDP 2100 

Region -Δ*Cons. 
Surplus] 
 (A+B) 

-Δ*Prod. 
Surplus] 
 (C-A) 

Total 
net loss 
(A+B) 

-Δ*Cons. 
Surplus] 
 (A+B) 

-Δ*Prod. 
Surplus]  
(C-A) 

Total net 
loss (A+B) 

-Δ*Cons. 
Surplus] 
 (A+B) 

-Δ*Prod. 
Surplus] 
 (C-A) 

Total 
net loss 
(A+B) 

World 3,096 1,945 5,041 54,347 33,599 87,946 69,128 42,566 111,694 

USA 181 144 325 539 430 969 526 419 945 

EU 15 243 185 428 612 466 1,079 619 472 1,091 

Japan 228 118 346 304 158 462 325 168 493 

Australia 19 15 34 45 34 79 38 29 67 

Other Dev'd 
countries 

107 81 188 349 265 614 879 670 1,549 

East. Europe 3 1 4 27 14 41 38 19 58 

Central Asia NA NA NA NA NA NA NA NA NA 

Rest Former USSR 14 9 23 267 166 433 258 160 418 

Mexico 24 12 36 270 134 404 297 148 445 

Brazil 4 2 6 39 19 58 50 25 76 

Argentina 29 14 43 216 107 323 351 175 526 

Colombia 0 0 0 2 1 4 1 1 2 

Other Latin Am. 98 49 147 1,751 873 2,624 1,111 553 1,664 

Nigeria NA NA NA NA NA NA NA NA NA 

Northern Sub-
Saharan Africa 

1 0 1 128 95 223 30 22 52 

Central & Western 
SS Afr. 

2 2 4 183 135 318 168 125 293 

Southern SS Africa 0 0 0 3 3 6 2 1 3 

Eastern SS Africa NA NA NA NA NA NA NA NA NA 

Egypt 0 0 0 9 5 14 4 2 6 

Turkey 5 2 7 62 31 93 15 7 22 

Other W. Asia N. 
Africa 

1 1 2 53 39 92 34 25 59 

India 0 0 1 25 16 41 16 10 26 

Pakistan NA NA NA NA NA NA NA NA NA 

Bangladesh NA NA NA NA NA NA NA NA NA 

Other S. Asia 0 0 0 1 1 1 0 0 0 

Indonesia 9 6 14 264 164 427 303 188 491 

Thailand 12 8 20 157 98 255 420 260 680 

Malaysia 8 5 13 129 80 208 280 174 454 

Philippines 1 1 2 49 30 79 42 26 68 

Viet Nam 19 12 31 1,310 812 2,122 566 351 916 

Myanmar 1 0 1 24 15 38 19 12 30 

Other SE Asia 1 0 1 8 5 13 20 13 33 

China 2,007 1,244 3,252 46,831 29,032 75,863 60,897 37,753 98,650 

South Korea 69 26 95 231 87 318 1,518 572 2,090 

Other E. Asia 9 6 15 464 288 752 276 171 447 

ROW 1 0 1 14 9 23 26 16 43 

Other Small Island 
States 

0 0 1 4 3 7 17 10 27 

 (e) Estimates based on the mean effect size on survival 

(unit: million USD) 
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Year Number 
Title/Author(s) 
ESRI Authors/Co-authors Italicised 

2011   

 390 Schelling’s Conjecture on Climate and Development: A 
Test 

  David Anthoff; Richard S.J. Tol 
   
 389 The Role of Decision-Making Biases in Ireland’s Banking 

Crisis 
2011  Pete Lunn 
   
 388 Greener Homes: An Ex-Post Estimate of the Cost of 

Carbon Dioxide Emission Reduction using 
Administrative Micro-Data from the Republic of Ireland 

  Eimear Leahy, Richard S.J. Tol 
   
 387 Credit Where Credit’s Due: Accounting for Co-

Authorship in Citation Counts 
  Richard S.J. Tol 
   
 386 Does the housing market reflect cultural heritage? A 

case study of Greater Dublin  
  Mirko Moro, Karen Mayor, Seán Lyons and Richard S.J. 

Tol 
   
 385 What Can I Get For It? A Theoretical and Empirical Re-

Analysis of the Endowment Effect 
  Pete Lunn, and Mary Lunn 
   
 384 The Irish Economy Today: Albatross or Phoenix? 
  John Fitz Gerald 
   
 383 Merger Control in Ireland: Too Many Unnecessary 

Merger Notifications? 
  Paul K Gorecki 
   

 382 The Uncertainty About the Total Economic Impact of 
Climate Change 

  Richard S.J. Tol 
   
 381 Trade Liberalisation and Climate Change: A CGE 

Analysis of the Impacts on Global Agriculture 
  Alvaro Calzadilla, Katrin Rehdanz and Richard S.J. Tol 
   
 380 The Marginal Damage Costs of Different Greenhouse 

Gases: An Application of FUND 
  David Anthoff, Steven Rose, Richard S.J. Tol and 

Stephanie Waldhoff 
For earlier Working Papers see 
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