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1 Introduction

Marine and inland waterways provide many recreational opportunities in-
cluding angling, boating, walking and wildlife viewing. In developed economies
as many as half of the adult population participate in water-based recre-
ational activities (Curtis, 2003; Environment Agency, 2009; Outdoor Foun-
dation, 2013). And it is widely recognised that the enjoyment of water-based
recreational activities is enhanced by higher water quality status, includ-
ing in swimming (Arnold et al., 2013; Wade et al., 2010), boating, canoe-
ing/kayaking, �shing and rowing (Dorevitch et al., 2015, 2011), as well as
tourism more generally (Aminu et al., 2014; Lee and Lee, 2015). Though
not all recreational users recognise poor water quality or its associated risks
(Burger et al., 1993; Westphal et al., 2008).

Establishing the link between improved water quality status and enhanced
recreational experiences is not trivial. In the �rst instance it is important to
have a meaningful water quality indicator recognisable and understood by
recreational users. Both objective and subjective measures of water quality
have been successfully used to explain water-based recreational activity (Poor
et al., 2001). Objective measures have included levels of suspended solids
(Egan et al., 2009), levels of harmful bacteria (Parsons et al., 2003) and
water clarity (Vesterinen et al., 2010). Subjective measures have also included
water clarity (Loomis and Santiago, 2013), as well as Likert scales (Hanley
et al., 2003). Water clarity may be a useful indicator of water quality for
activities such as swimming and boating but may be less useful for anglers
who are more interested in �sh stocks and catch rates. Fish catch rates are a
commonly used quality indicator within angling recreational demand models
(Chen et al., 1999). But catch rates are endogenous, depending on angler
skill and �shing pressure. In addition, while water clarity may be a useful
quality indicator for game species, such as trout and salmon that need high
quality water habitat, coarse species can thrive in more eutrophic murky
waters. A more complex indicator of water quality, such as ecological status,
may more useful in recreational angling demand models.

The European Union Water Framework Directive (WFD) requires that
water bodies be of good ecological status, a description that covers indicators
such as biological quality (i.e. �sh, benthic invertebrates, aquatic �ora),
hydromorphological quality, physical-chemical quality, and chemical status.
Vesterinen et al. (2010) suggest that ecological status, as de�ned within the
WFD, may not be a quality indicator easily observable or understood by the
public in a manner that would e�ect their recreation behaviour. Nonetheless,
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if recreational behaviour such as angling is a�ected by water quality, revealed
behaviour of anglers will re�ect the underlying ecological status of water
bodies. For example, without knowledge of WFD status, game anglers may
visit water bodies with high ecological status more than water bodies with a
poor or bad status. In the United States Egan et al. (2009) �nd that anglers
are responsive to the full set of water quality measures used by biologists.
And furthermore, that that changes in these quality measures translate into
changes in the recreational usage patterns and well-being of anglers.

There are �ve status classes within the WFD's classi�cation scheme for
water quality: high, good, moderate, poor and bad. These are nominally
easy to understand though the water assessment process for classi�cation
is multifaceted and complicated (Directive 2000/60/EC, 2000). The use of
WFD ecological status classi�cations is relatively recent, being �rst used to
assess Irish river water quality in 2010 (McGarrigle et al., 2010). At the time
our angling dataset was collected the WFD classi�cations would not have
been widely familiar to anglers or the general public. But if recreational
usage patterns of Irish anglers are responsive to the WFD ecological status
categories, similar to the Egan et al. (2009) study, the WFD classi�cations
are an ideal metric for conveying water quality information to prospective
anglers at speci�c �shing sites.

The primary research question in this paper is whether recreational an-
glers are responsive to water quality, as measured by the EU's WFD clas-
si�cation. Recreational angling demand may be a function of many things,
such as catch rates or angler facilities but may also be a function of water
quality either directly or indirectly. In fact, water quality status may not
be observable to an angler, as the WFD status is not normally posted at
�shing sites. What we wish to establish is whether water quality, as de�ned
by WFD status, and not necessarily observable to anglers is a �shery char-
acteristic that can a�ect anglers' experience and choices. The research also
is relevant for wider �sheries policy questions. The estimated models will
provide a greater insight into preferences for angling within Ireland enabling
�shery managers enhance the quality of their angling product.

There are many studies in the grey literature about recreational angling
in Ireland but there are relatively few studies that estimate demand functions
(O'Neill and Davis, 1991; Curtis, 2002; Hynes et al., 2015; McGrath, 2015).
And none assess angling demand as a function of water or �shery quality.
The recent papers by Hynes et al. (2015) and McGrath (2015) are based
on national surveys covering all types of angling, i.e. game, coarse and sea
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angling (Tourism Development International, 2013). This paper also utilises
some of the Tourism Development International (TDI) data but additionally
supplements it with WFD water quality data associated with the angling
sites surveyed (McGarrigle et al., 2010).

2 Methodology

2.1 Data

Angler data was collected by on-site survey at sites around the Republic of
Ireland. The survey was undertaken between March and November 2012 and
included the prime angling season in respect of each angling category. In total
903 anglers were interviewed. The survey collected travel cost data for the
intercepted trip, as well as information on the number of trips in the preceding
12 months. A full description of the survey design and implementation is
available in Tourism Development International (2013).

Water quality data for the period 2007�2009 from water quality moni-
toring stations proximate to the angling survey sites were downloaded from
http://gis.epa.ie/. Water quality monitoring and data is summarised in
McGarrigle et al. (2010). We used the WFD ecological status as an indica-
tor of quality and created a dummy quality variable distinguishing between
`High/Good/Moderate' or `Poor/Bad' ecological status.

2.2 Model

The travel cost method (TCM) is commonly used to estimate recreational
demand models (Martínez-Espiñeira and Amoako-Tu�our, 2008; Egan et al.,
2009; Ovaskainen et al., 2012; Hynes and Greene, 2013). The TCM relies
on the assumption that although access to recreational sites may have no
explicit price, individuals' travel costs, including transportation, accommo-
dation, and sometimes the value of lost wages and time can be used to approx-
imate an implicit price associated with their recreational activity. Anglers
respond to changes in travel costs in the same way they would respond to
changes in an entry fee, so the number of trips to a �shing site and or their
duration should decrease as travel costs increase.

yi = f (TCi, Ii, Ei, Si) (1)

where yi is individual i's demand for site trips (or days), TCi is travel cost
and Ii is income. Angler socioeconomic characteristics, Ei, or �shing site at-
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tributes, Si, may also be included in the demand function as shift parameters
(Larson and Shaikh, 2001).

Count models have become the standard in estimating recreational de-
mand models (Martínez-Espiñeira and Amoako-Tu�our, 2008; Ovaskainen
et al., 2012; Hynes and Greene, 2013) following a theoretical underpinning
provided by Hellerstein and Mendelsohn (1993). The count variable, e.g.
number of trips or days, comprises non-negative integers, often all positive,
while count data distributions are usually left-skewed and characterised with
probability mass concentrated on a few values. Usually within the literature
a series of count models including those based on the Poisson and negative
binomial distributions are estimated. Within the analysis presented here we
focus on models based on the negative binomial because it is less restrictive
than the Poisson.1 The Poisson distribution, which is a special case of the
negative binomial, assumes that the mean and variance are equal but this is
rarely found in empirical studies (Carson, 1991).

There are two features of recreation demand data collected on-site that
must be accommodated within model estimation: truncation and endoge-
nous strati�cation. When the data is collected on-site the distribution of Y
is truncated at zero. The issue of endogenous strati�cation arises because
the likelihood of being sampled is positively related to the number of trips
taken to the site.2 The issue of truncation in count models was addressed
by Carson (1991), whereas endogenous strati�cation was �rst addressed by
Shaw (1988). Englin and Shonkwiler (1995) developed an application of a
truncated, endogenously strati�ed negative binomial model, which we follow
here. Assuming a population density function to be a negative binomial with
mean λi, the likelihood function for the on-site sample is

L =
∏
i=1

yiΓ
(
yi + α−1

i

)
αyii λ

yi−1
i [1 + αiλi]

−(yi+α−1)

Γ
(
α−1
i

)
Γ (yi + 1)

(2)

with

E (yi|xi) = λi + 1 + αiλi
V ar (yi|xi) = λi (1 + αi + αiλi + α2

iλi)
(3)

where Γ (·) is the gamma function, and αi is the over-dispersion parameter.
The model is extended into a regression framework by de�ning λi as a func-

1Martínez-Espiñeira and Amoako-Tu�our (2008) and Cameron and Trivedi (2001) pro-
vide an exposition of di�erences between the Poisson and negative binomial models.

2Haab and McConnell (2002) discuss in further detail (p.175).
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tion of regressor variables, xi, as described in equation 1. The conventional
approach is to model expected latent demand, λi, as a semi-logarithmic func-
tion of price, i.e. travel cost, and other independent variables xj, such that

lnλi = β0 + βpTCi + β1X1i + · · ·+ βjXji (4)

The estimation of the over-dispersion parameter, αi, has been problem-
atic (Cameron and Trivedi, 1986). A common approach has been to re-
strict it to a common value for all observations, such that αi = α. Less
restrictive approaches are also used, for example Englin and Shonkwiler
(1995) specify αi = α0/λi, whereas Martínez-Espiñeira and Amoako-Tu�our
(2008) apply a more �exible approach specifying αi as a function of visi-
tor characteristics. We estimate both the restrictive and �exible approaches
using STATA�modules NBSTRAT and GNBSTRAT (Hilbe and Martínez-
Espiñeira, 2005; Hilbe, 2005; Martínez-Espiñeira and Hilbe, 2008). For ease
of estimation the parameter ln(αi) rather than αi is estimated and de�ned
as

ln (αi) = γ0 + γ1z1i + γ2z2i + . . . (5)

where z are variables measuring angler characteristics.

2.3 Welfare

An angler's consumer surplus is derived by integrating the demand func-
tion (4) over the relevant price range and is given by (6) (Hellerstein and
Mendelsohn, 1993).

CS =

∫
λidTC =

−λi
βp

(6)

where βp is the coe�cient on the travel cost variable. Frequently angler
CS is reported per trip (or per day), as it has more policy relevance in
that format. This is usually calculated as CS = −1/βp implying that the
mean trip denominator relates to all anglers, including those with zero trips
demanded during the survey period. However, if the policy issue relates to
sampled anglers the appropriate denominator is mean trip demand given in
equation 3 and mean consumer surplus per trip (or day) for sampled anglers
becomes CS = −λi/βp(λi + 1 + αiλi), similar to Martínez-Espiñeira and
Amoako-Tu�our (2008).
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2.4 Model speci�cation and variables

Three types of models are estimated in this paper. The �rst uses solely data
on the current or intercepted angling trip and estimates a demand function
for angling days within the trip. The dependent variable is TripDays, de�ned
as the number of days spent angling on the current trip. Total CS, as de�ned
by equation 6, represents mean trip consumer surplus. The second type of
model estimates angling demand (in days) per annum. This model employs
the same data as the previous model, as well as data on the number of
trips taken in previous 12 months, TripsY ear. The dependent variable is
DaysY ear, which is number of days spent angling in the past 12 months and
calculated as follows: DaysY eari = TripDaysi×TripsY eari.3 In estimating
this model we make the implicit assumption that all angling trips are the
same. The third type of model estimates trip demand per annum, which
also assumes that all trips are the same in terms of costs and duration.4

Descriptive statistics for these and other variables are presented in Table 1.

All the estimated models include an interaction term between an angler's
target species and water quality. We use the relative magnitude between the
coe�cient estimates on these interaction variables to show the e�ect of water
quality on angling demand. For example, the relative di�erence in magnitude
of the coe�cients on (Game×LowWaterQ) and (Game×HiWaterQ) will
show whether di�erences in water quality status a�ect game anglers' demand.
The reference category in the estimated models are anglers targeting Sea Bass
and other sea �sh. All survey sites where Sea Bass were targeted had waters
of a High/Good/Moderate ecological status, as de�ned by WFD.

There are 63 angling sites in our data and these were categorised into 9
groups based on broad spatial proximity (e.g. west, midlands, south-west,
etc.). These spatial variables jointly have explanatory power within the mod-
els estimated but are not reported due to space constraints. These variables
are potentially capturing regional characteristics that a�ect angling demand
but may not be speci�cally related to angling. For instance, some regions
are more scenic than others and have more tourist amenities to o�er, which
are factors that could in�uence angler demand at a particular site.

3Bowker et al. (1996) and Bhat (2003) have previously employed a similar approach in
generating the dependent variable.

4McGrath (2015) take a di�erent approach with the same dataset using anglers' own
estimates of annual angling trip costs whereas the approach in this paper was to assume
that an angler's estimate of trip costs on the intercepted trip was representative of all trips
taken during the year.
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Table 1: Summary descriptives of variables used in models

Variable Mean SD Min Max Description

TripDaysa 2.60 2.73 1.00 14.00 Days angling on current trip
TripsY earb 5.24 5.55 1.00 26.00 No. trips in previous 12 months
DaysY earc 10.69 12.99 1.00 182.00 Fishing days in previous 12 months
DailyCostd 0.19 0.39 0.00 7.00 Per angling day costs, e`000
DailyCostadje 0.11 0.26 0.00 4.20 Per angling day costs excl. permits & fees
TripCostb 0.29 0.45 0.00 4.20 Travel,angling,food & accommodation
AnnualFeesb,c 0.05 0.17 0.00 1.54 Annual angling fees, e.g. licences
Age65+ 0.13 0.34 0.00 1.00 =1 if aged 65+
Adults3+ 1.59 0.91 1.00 3.00 =1 if 3+ adults in angling group
Income 36.75 24.25 5.00 300.00 Annual gross income, e`000
MissInc 0.49 0.50 0.00 1.00 =1 if Income not reported
Game 0.36 0.48 0.00 1.00 Angler targets game species
Coarse 0.24 0.43 0.00 1.00 Targets coarse species
SeaBass 0.21 0.41 0.00 1.00 Targets sea �sh incl. sea bass
Combo 0.20 0.40 0.00 1.00 Targets multiple �sh types
HiWaterQ 0.89 0.31 0.00 1.00 =1 if quality High/Good/Moderate
LowWaterQ 0.11 0.31 0.00 1.00 =1 if quality Poor/Bad
Ireland 0.64 0.48 0.00 1.00 =1 if angler from Republic of Ireland
NIreland 0.10 0.31 0.00 1.00 =1 if angler from Northern Ireland
Elsewhere 0.26 0.44 0.00 1.00 =1 if angler from elsewhere
FishStock 0.85 0.35 0.00 1.00 =1 if rates �sh stocks positively
Club 0.58 0.49 0.00 1.00 =1 if a�liated to angling club
OwnTime 0.07 0.26 0.00 1.00 =1 if angler retired or self-employed
a TripDays is dependent variable for within trip days demand model. Trip costs averaged across angling
days, DailyCost, include expenses such as travel, bait, food, licences, permits and competition fees.

b TripsY ear is dependent variable for annual trip demand model. Travel costs are distinguished between
costs that occur on annual basis (AnnualFees) and other trip costs excluding annual fees (TripCost).

c DaysY ear is dependent variable for annual angling days demand model. Costs are distinguished between
daily costs (DailyCostadj) and annual fees (AnnualFees).

d DailyCost is calculated as sum of trip angling and travel expenses divided by number of angling days.
e DailyCostadj is calculated similar to DailyCost but excludes expenses for licences, permits (i.e.
AnnualFees), which may relate to the entire angling season. DailyCostadj also excludes competition
fees.
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Not all anglers provided information about their income. As a means of
preserving observations for model estimation we assigned the median sam-
ple income level to observations with missing values but included a dummy
variable MissInc in model estimation to identify those observations.

Almost two-thirds of anglers in the sample are resident in the Republic of
Ireland and are the reference category in our estimated models. About 10%
live in Northern Ireland and the majority of the balance live in Europe with
some anglers from North America.

For the models that estimate ln(αi) we model it as a function a number
of variables. The �rst is whether the angler is a�liated to an angling club
(Club), as membership will a�ect angling access opportunities independent
of travel cost. A second variable is whether an angler is either retired or self-
employed (OwnTime), as anglers of these types may have greater �exibility
in allocating their time to angling. The third variable that we use to allow
angler-speci�c variables a�ect demand within the estimated model is income,
speci�cally ln(Income). As well as a direct income e�ect, income may proxy
other visitor characteristics that a�ect the variance of trip demand.

While the original angler dataset had 903 observations, for reasons out-
lined below observations were omitted in model estimation, including 139
observations where the interviewed angler paid the expenses of multiple an-
glers. A further 21 observations were omitted where trip length exceeded
14 days on the assumption that the primary purpose of these trips may not
have been solely angling. For example, the longest trip length speci�ed was
120 days. Ten observations were excluded as they reported no travel cost
data. In the estimation of trip demand models (TripsY ear) observations
were split between anglers with 26 or less trips per year (i.e. ≤ 1 trip per
fortnight) and those with more. This split was made because the estimated
likelihood function using all observations was not concave. There are 100
observations in our dataset where anglers take more than 26 trips per year
(some �sh almost every day) and the estimated model suggests that these
anglers have preferences substantially di�erent than the majority of anglers.

3 Model Estimates

Model estimates are reported in Table 2, where three sets of results are
presented. Columns 1 & 2 are demand estimates for angling days on the trip
the anglers were surveyed. The model is estimated conditional on anglers
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paying their own costs and for trip lengths not exceeding two weeks. Columns
3 & 4 are demand estimates for angling days per year and assumes that
anglers' trips are of the same duration as the surveyed trip. These models
are estimated for anglers with not more than 26 trips per year, which excludes
100 anglers compared to models estimated in columns 1 & 2. Columns 5 &
6 report estimates of annual trip demand among the same anglers. Columns
7 & 8 report demand estimates for high frequency anglers, i.e. more than 26
trips per annum. These latter two models are miss-speci�ed, as they assume
truncation at zero whereas trip demand is truncated at 26. The estimates are
reported to consider whether high trip frequency anglers have substantially
di�erence demand than other anglers. This is discussed in further detail in
section 3.1.1.

3.1 Model selection

The models are estimated with two speci�cations for the over dispersion
parameter, either αi = α0 or as speci�ed in equation 5. Likelihood ratio
tests indicate that in all cases presented the more �exible model speci�ca-
tion provides a better �t for the data. The most signi�cant angler-speci�c
characteristics that a�ect the the variance of angling demand through αi
are membership of a �shing club and �exibility with one's time (via the
OwnTime variable).

Model estimates of mean �shing days demanded are 1.5 days for the
intercept trip and 9.4 days for the previous 12 months with both instances
evaluated at the mean of the data. This compares to actual means of 2.6
days for the intercept trip and 10.7 days annually so the estimated models
slightly underestimate angling demand.

The models estimating annual angling trip demand (models 5&6) are not
very satisfactory. In the �rst instance, the coe�cient on the travel cost vari-
able, TripCost, is not statistically signi�cant. It is not obvious why this is
so, especially as both McGrath (2015) and Hynes et al. (2015) with the same
TDI dataset but using anglers' estimates of annual travel cost expenditure
(as opposed to current trip expenditure used here) estimate an annual trip
demand model with a statistically signi�cant coe�cient on their travel cost
variable that is also stable across a number of model speci�cations. How-
ever, it is also the case that the estimated annual trip demand model is not
consistent with one of the basic assumptions of travel cost models, that the
decision unit should be trips of roughly equal length (Haab and McConnell,
2002, p.148). In our data, trip length varies up to 14 days so the good in
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Table 2: Estimation Results
(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable TripDays TripDays DaysYear DaysYear TripsYear TripsYear TripsYear TripsYear

DailyCost -1.524∗∗∗ -1.569∗∗∗

(-5.69) (-6.16)
DailyCostadj -0.742∗∗∗ -0.710∗∗∗

(-4.15) (-4.07)
TripCost -0.0815 -0.0607 0.867 0.705

(-0.58) (-0.45) (1.35) (1.27)
AnnualFees 0.876∗∗ 0.885∗∗∗ 0.275 0.339 -0.206 -0.868

(3.19) (3.37) (0.85) (1.11) (-0.09) (-0.47)
Age 65+ 0.378∗∗ 0.269∗ 0.191 0.190 0.0930 0.0379 -0.232∗ -0.167

(3.17) (2.45) (1.60) (1.62) (0.71) (0.30) (-2.02) (-1.60)
Adults 3+ 0.113 0.108 -0.202∗ -0.193∗ -0.383∗∗∗ -0.385∗∗∗ 0.0901 -0.0309

(1.25) (1.32) (-2.24) (-2.20) (-3.81) (-4.00) (0.67) (-0.25)
Income 0.00551∗∗ 0.00383∗ 0.00546∗∗ 0.00526∗ 0.00387∗ 0.00304 0.00248 0.00244

(3.13) (2.03) (3.20) (1.99) (2.06) (1.09) (1.04) (1.12)
MissInc -0.128 -0.0744 -0.155 -0.129 -0.0461 -0.0158 -0.125 -0.145

(-1.38) (-0.89) (-1.87) (-1.54) (-0.51) (-0.17) (-1.46) (-1.83)
Combo × LowWaterQ -14.18 -13.01 -0.800 -0.786 -0.374 -0.421 -1.654∗∗∗ -1.320∗

(-0.02) (-0.04) (-1.75) (-1.73) (-0.80) (-0.92) (-3.30) (-2.19)
Game × LowWaterQ -1.205∗∗ -1.478∗∗ 0.0833 0.120 0.292 0.326 -1.328∗∗ -1.097

(-2.83) (-3.25) (0.26) (0.38) (0.87) (1.00) (-3.01) (-1.90)
Coarse × LowWaterQ 0.668∗ 0.895∗∗ 0.761∗∗ 1.058∗∗∗ 0.350 0.721∗ -1.163∗∗ -1.002

(2.07) (2.94) (2.69) (3.67) (1.15) (2.41) (-2.88) (-1.85)
Combo × HiWaterQ -0.766∗∗ -0.609∗ 0.0149 0.0909 0.339 0.391 -0.677∗∗∗ -0.434

(-3.05) (-2.57) (0.07) (0.43) (1.44) (1.70) (-3.34) (-1.67)
Game × HiWaterQ -0.297 -0.206 0.0906 0.189 0.298 0.367 -0.758∗∗∗ -0.458

(-1.22) (-0.91) (0.42) (0.88) (1.26) (1.60) (-4.01) (-1.76)
Coarse × HiWaterQ 0.166 0.239 0.331 0.424 0.323 0.358 -0.898∗∗∗ -0.602∗

(0.55) (0.86) (1.26) (1.63) (1.14) (1.30) (-3.78) (-2.10)
FishStock 0.426∗∗ 0.396∗∗ 0.101 0.131 -0.0933 -0.0373 0.219 0.217

(2.90) (2.86) (0.89) (1.19) (-0.77) (-0.31) (1.74) (1.88)
NIreland 1.531∗∗∗ 1.576∗∗∗ 0.620∗∗∗ 0.661∗∗∗ 0.143 0.197 -0.294 -0.376

(9.17) (9.61) (4.48) (4.83) (1.01) (1.44) (-1.54) (-1.86)
Elsewhere 2.815∗∗∗ 2.878∗∗∗ 0.605∗∗∗ 0.733∗∗∗ -1.224∗∗∗ -1.030∗∗∗

(22.90) (23.62) (5.92) (7.00) (-8.31) (-7.20)
Constant -1.998∗∗∗ -1.820∗∗∗ 0.354 0.449∗ 0.361 0.634∗∗ 3.969∗∗∗ 3.734∗∗∗

(-8.48) (-8.28) (1.45) (2.06) (1.38) (2.92) (23.60) (21.41)
ln (α)
Club 1.051 0.494∗∗∗ 0.839∗∗∗ -1.818∗∗∗

(1.55) (3.58) (4.92) (-3.96)
OwnTime 2.327∗∗ -0.0419 -0.0592 -0.312

(3.01) (-0.17) (-0.21) (-0.32)
ln(Income) 1.099 -0.0335 -0.0408 0.641

(1.80) (-0.20) (-0.22) (1.41)
γ0 -1.367∗∗∗ -6.760∗ 1.055∗∗∗ 0.687 1.037∗∗∗ 0.265 -2.001∗∗∗ -2.830

(-3.45) (-2.44) (4.01) (1.17) (3.64) (0.40) (-11.07) (-1.78)
N 707 707 607 607 607 607 100 100
Log likelihood -827.0 -818.7 -1920.1 -1913.4 -1442.6 -1428.8 -428.1 -418.0

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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question, i.e. what TripCost is purchasing, varies substantially across an-
glers. At least in both within trip demand (in days, models 1&2) and annual
demand (in days, models 3&4) the good in question is broadly similar for all
anglers, i.e. one day's angling. Even though the trip demand models pre-
sented here are not very satisfactory, the results presented do suggest that
preferences among high frequency anglers may be substantially di�erent than
the wider angler population.

3.1.1 High trip frequency anglers

As mentioned at the start of this section, models 7 and 8 in Table 2 are
miss-speci�ed. Angling trip data for these models was truncated at 26 trips,
whereas the speci�ed models assume truncation at zero. Reprogramming the
software code to enable estimation of the model was beyond the scope of this
paper. However, the parameter estimates do suggest that anglers with high
trip frequency have substantially di�erent preferences than other anglers. We
also estimated demand functions controlling for the appropriate truncation
using STATA's TNBREG command, which generated coe�cient estimates
broadly similar to those reported in model 7. Irrespective of the model esti-
mated there are substantial di�erences in many of the estimated demand co-
e�cients for high-frequency anglers (models 7 and 8) versus those estimated
in models 5 and 6. For example, the estimated coe�cient on TripCost is an
order of magnitude higher and the opposite sign and the coe�cients on the
target species-water quality interaction variables are substantially di�erent.
In models 5 and 6 the angling group size (Adults3+) is a signi�cant determi-
nant of trip demand (larger groups demand fewer trips), whereas group size
does not impact on trip demand among high frequency anglers. The policy
implication is that the needs and preferences of high-frequency anglers are
likely to be substantially di�erent from the majority of anglers but further
research is required to substantiate this.

3.2 Travel costs

The �rst three rows of Table 2 comprise coe�cients on travel cost variables.
There is a negative coe�cient on either the DailyCost or DailyCostadj
variables in models 1 to 4. As daily costs increase, fewer angling days are
demanded. The price elasticity of within trip demand among surveyed an-
glers for angling days is -0.14, implying that for a 7% increase in DailyCost
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the number of days demanded within the trip falls by 1 day.5 The elasticity
value for angling days demanded per annum among surveyed anglers is -1.13.
For a 1% increase in DailyCostadj the number of days demanded over the
year declines by 1 day.6

3.3 Income

Across the models estimated there is mixed evidence of an income e�ect on
angling demand, which is a common feature of recreation demand model es-
timates. Where there is a statistically signi�cant income e�ect it is relatively
small within a single trip, however, a 1% increase in income would lead to
between 1�2 days additional angling per annum.

3.4 Water quality

The impact of water quality on �sh stocks can vary by species. Coarse species
are more tolerant of poor water quality than games species. To allow for this
the estimated models include interaction terms between the angler's target
species and the level of water quality. The inclusion of water quality as an
explanatory variable in angler demand leads to the estimated models being
a better �t, based on log-likelihood ratio tests.

What is of primary interest is the relative di�erence between the coe�-
cient estimates for each target species. For example, is there a signi�cant
di�erence in angling demand among anglers targeting game species in water
bodies with lower versus higher water quality status? If the coe�cient with
HiWaterQ is greater in magnitude than the coe�cient with LowWaterQ,
angling demand is higher for the given target species in waters with higher
water quality status. Table 3 reports Wald test statistics for equality of water
quality coe�cients. The a priori expectation was that demand for game an-
gling would be greater in waters with high WFD ecological status for which
we �nd empirical support in models 1 and 2. On average within the surveyed
trip game anglers �shed in waters with higher ecological status for roughly
0.3 days more than anglers �shing in lower status waters. In the case of
coarse �shing the e�ect is the opposite, �shing days demanded is higher in

5The price elasticity for surveyed anglers is calculated as
∂(λi + 1 + αiλi)

∂DailyCost
DailyCost

and evaluated at mean values.
6The equivalent elasticity estimates for all anglers are -0.12 and -0.34 and calculated

as
∂λ

∂K
K, where K is either DailyCost or DailyCostadj .
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water bodies with poor or bad water quality status. As mentioned earlier,
coarse species can thrive in more eutrophic waters and may support better
coarse �shing. On average coarse anglers �shing in lower ecological status
waters �sh roughly 0.7 days more per trip than those �shing in high status
waters, and across the year �sh approximately 9 days more. Anglers that
target a combination of species have a higher level of demand in waters with
higher water quality status. Unfortunately, the dataset does not quantify
the exact combination of target species but it is likely that this category of
anglers are targeting games species: salmon, sea trout and brown trout. On
average anglers targeting multiple species in high ecological status waters
�sh 4 days more per annum than those �shing in waters with low ecological
status.

These results are the �rst that show the impact of water quality on an-
gling demand at Irish sites and provides a further justi�cation of the merits
improving water quality to good status under the WFD.

Table 3: Wald test statistics for equality of water quality coe�cients
Model/ (1) (2) (3) (4)
Species
Combo 0.00 0.00 3.83* 4.47**
Game 6.37** 9.81*** 0.00 0.07
Coarse 5.07** 10.22*** 3.34* 7.18***

t statistics in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

3.5 Other characteristics

There is some evidence that angler's age and angling group size a�ect de-
mand. Anglers aged 65 and above demand more days within angling trips
(models 1 & 2). When angling group size is 3 or more adults, both the num-
ber of days per annum or trips per annum are lower (models 3�6). This is
not surprising as more coordination and trip planning is required once group
size increases. An implication for �shery managers is whether there is ad-
ditional latent demand among large angler groups that could be served by
better accommodating their speci�c needs.

The variable FishStock is a dummy variable indicating whether the an-
gler considered �sh stocks to be better than poor. Anglers with a strong
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rating for �sh stocks undertook angling trips of longer duration on average
than anglers that rates �sh stocks as poor; in total spending one day more
angling per year on average.

The number of angling days demanded varies by angler country of resi-
dence. From the survey data Republic of Ireland anglers �shed for 1.3 days
on the current trip, Northern Ireland anglers 2.2 days, and anglers from
overseas 6.1 days. Model estimates of mean angling days demanded in the
current trip were slightly lower in the case of Republic of Ireland (-8%) and
Northern Ireland (-13%) anglers but the underestimate for overseas anglers
was substantially greater at -30%.

3.6 Welfare

The results in Table 2 are used to calculate welfare measures in terms of
consumer surplus anglers enjoy from their recreational activity. For policy
purposes CS is often reported on a per day basis, CS divided by mean trip
demand, but there is a question whether estimated parameters from trun-
cated demand models can be extrapolated to non-visitors. Hellerstein (1991)
indicate that this is only reasonable if non-visitors have the same demand
function as visitors but we have no way of testing. It may be reasonable
to conclude that surveyed anglers have similar preferences to those not in-
terviewed, however, further research is necessary to determine whether the
preferences of occasional anglers are similar to the angling enthusiast. We
proceed making calculations for both in Table 4.

Table 4: Estimated welfare measures, e
Model 1 2 3 4
CS 249 264 2,935 3,510
CS/day (all anglers) 656 637 1348 1408
CS/day (surveyed anglers) 169 181 311 375

The �rst line of Table 4 provides an estimate of CS for the current trip
in the case of models 1 and 2, whereas for models 3 and 4 it represents
CS for the year. Model 2, which was the preferred model for within trip
demand, provides a mean CS estimate of e264 for the intercepted trip.
This estimate is sandwiched by estimates of e232 and e278 (Hynes et al.,
2015; McGrath, 2015) using the same TDI data but estimating trip demand
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models compared to angling day demand models here.7 Mean latent angling
demand is just over 0.4 days for all anglers, which gives a mean CS/day
of e637. There is some uncertainty on the reliability of this estimate on
the basis of the representativeness of the survey data for all anglers, i.e.
occasional versus enthusiast anglers. For surveyed anglers estimated mean
CS is e181/day, with mean estimated angling days demanded of 1.5 days.
The only broadly comparable CS estimate in the literature for Irish angling is
from Curtis (2002), which estimated IRL¿138/day for salmon angling within
Co. Donegal in 1992. Denominated in Euro that is a nominal value of
e175/day and equivalent to approximately e283/day when in�ated with the
consumer price index. It appears that angler consumer surplus has declined
over the 20 year interval but the two studies are not like-for-like comparable.
Speci�cally for game angling, the estimate of total willingness to pay (incl.
trip expenditure) from the two studies are within 5% of each other. Our
estimate of surveyed anglers' total willingness to pay for a day's �shing by in
high status waters is e371. For surveyed game and coarse anglers their mean
willingness to pay are similar and slightly higher at approximately e410/day.

The CS estimates in columns 3 and 4 of Table 4 relate to annual angling
demand and again the more �exible speci�cation (4) was the preferred model.
Mean annual CS is e3,510 or e1,408/day based on a latent angling demand
of 2.5 days, whereas interviewed anglers have an estimated CS of e375 per
day's angling. This estimate is more than double the CS/day estimate from
model 2. Intuitively we would have expected them to be broadly similar.
Greater weight should be placed on the lower estimate, as the data on which
it is based is the most appropriate to the model estimated. The estimate of
annual angling days demanded (models 3&4) assumed that all angling trips
are of equal length and that costs are the same as those incurred during the
intercepted trip, which may be untrue. The large divergence between the
two CS estimates throws doubt the merits of assuming all trips are similar.
It may be a reasonable assumption that day trips have similar costs but
in this dataset 35% of trips were of longer duration up to 14 angling days.
Consequently, assuming an angler's intercepted trip is representative of all
trips during a year may be unreasonable and introduce bias into welfare
estimates.

Among the surveyed anglers we can estimate the bene�t to them of higher
water quality, since consumer surplus is a function of water quality, i.e.
CS(λ(water quality)). The di�erence in CS for an angler at a LowWaterQ

7The estimate by Hynes et al. (2015) is for Republic of Ireland resident anglers only.
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site versus a HighWaterQ represents an estimate of anglers' mean value of
high versus low water quality status. For game anglers the change in CS
associated with higher status water quality is e122/day, and for `combo'
anglers e52/day.8 CS declines for coarse anglers when water quality sta-
tus improves with an estimates ranging between e16�93/day depending on
model selected.

CS estimates for the current trip by angler country of residence di�ered
substantially. Anglers resident in the Republic of Ireland have a CS of
e90/day, for Northern Ireland anglers it is e249/day, and for other anglers it
is e401/day. The wide variation in the CS estimates by country of residence
is in contrast to the estimates in Curtis (2002), where the variation is much
smaller.

3.7 Discussion and conclusion

This paper estimates a travel cost model of recreational angling demand
in Ireland. The primary research focus was to investigate the extent to
which angling demand is responsive to water quality, as measured by the
EU's WFD classi�cation. But the research also is relevant for wider �sheries
policy questions, providing greater insight into preferences for angling within
Ireland.

This is the �rst study in an Irish setting that quanti�es how angling de-
mand is a�ected by water quality. We �nd clear evidence that demand for
game angling in waters with poor or bad ecological status is less than demand
in high status waters, whereas for coarse �sh species, including pike, there
is evidence of the opposite. Anglers are not directly concerned about water
quality, instead their focus is likely to be the level of �sh stocks or catch
rates at �shing sites. Though our dataset set has no information on stocks
or catches it is likely that there would be multi-collinearity between these
variables and water quality. It is therefore reasonable to draw some policy
conclusions. For game �sheries we can say that improvements in water qual-
ity have the potential to increase angling demand and associated bene�ts,
especially if improvements in �sh stocks and catch rates are associated with
water quality improvements. For coarse �sheries the policy implications are
more subtle. The evidence is that coarse anglers currently spend on average
0.7 days less per trip �shing in high versus low ecological status waters. Does
this mean that mean that improvements in water quality will lead to a reduc-

8Estimates are reported only where signi�cant Wald tests were reported in Table 3
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tion in coarse angling demand? The answer is not clear because site speci�c
issues such as ease of access or the likelihood of specimen �sh are potentially
important issues a�ecting demand and there may be a (coincidental) corre-
lation between water quality and these site speci�c characteristics. So while
the current model indicates that coarse anglers have a preference towards
angling sites with lower status water quality, further research is necessary to
better understand how coarse angling demand would evolve with improved
water quality. Supplementing the dataset with data on site characteristics is
one potential avenue of research.

Anglers, particularly game and `combo' anglers, bene�t from higher sta-
tus water quality. The value of that bene�t is highest for game anglers at
e122 per day. With surveyed anglers �shing on average 10 days per annum
the total loss to recreational anglers associated with poor water quality is
potentially very large.9 Anglers' high valuation of waters with high ecologi-
cal status echoes the more general �nding by Stithou et al. (2013) that the
Irish public are willing to pay signi�cant amounts for improvements in the
ecological status of a speci�c river catchment.

Historically within Ireland the greatest political and policy interest within
recreational angling was on game species, possibly because game angling was
more highly prized and considered to have the greatest socio-economic bene-
�t. What is clear from the analysis in this paper is that coarse or sea anglers
value their day's angling just as much as game anglers. Travel costs, in-
cluding travel, accommodation and �shing expenses, are generally lower for
coarse and sea anglers allowing anglers to enjoy a greater consumer surplus.
Consequently, it would appear that there are opportunities for �shery man-
agers, hoteliers, and others increase their rents. However, further research is
needed to better understand what characteristics of sea or coarse �sheries are
most highly valued by anglers, which in turn would inform �shery managers'
decisions about their �sheries.

Although not conclusive, there is some evidence to suggest that the pref-
erences of high-trip frequency anglers many be substantially di�erent than
the average angler. For instance, the angling enthusiast may have di�erent
preferences compared to the occasional angler. Where this becomes especially
important is where �shery managers attempt to accommodate the needs of
these two types of anglers within one angling site.

9The mean number of angling days is likely to be substantially higher for surveyed
anglers than all anglers due to truncation and endogenous strati�cation.
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From a modelling perspective the analysis highlights that it may be un-
reasonable to assume, at least in the case of multi-day trips, that a surveyed
trip is representative of all trips during an extended period such as a year.
To do so may introduce bias into model and welfare estimates.
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