The Impact of Changes in Educational Attainment on Life Expectancy in Ireland

John FitzGerald, David Byrne and Nusa Znuderl

Economic and Social Research Institute

(read before the Society, 6 December 2012)

Abstract This article looks at scenarios quantifying the potential contribution of increasing educational attainment to the prospective improvement in life expectancy in Ireland over the next 50 years. This analysis uses recently published information for Ireland on life expectancy by level of education. This article also considers the implications of the new data on life expectancy for differences in death rates by level of education for different groups in the population today.

Keywords: education, life expectancy

JEL Classifications: H75, J11

1. INTRODUCTION

This article looks at scenarios quantifying the potential contribution of increasing educational attainment to the prospective improvement in life expectancy in Ireland over the next 50 years. This analysis uses recently published information for Ireland on life expectancy by level of education. This article also considers the implications of the new data on life expectancy for differences in death rates by level of education for different groups in the population today.

Barrett and Bergin (2005) discuss the impact of age-related pressures on the public finances. Increased longevity and a higher old-age dependency ratio can lead to fiscal challenges in terms of providing for healthcare and pension spending. However, much will depend on how policy on pensions and retirement develops over the coming years. In turn, the pattern of labour force participation (and hence economic dependency) will be affected by the changing educational attainment of the population aged 65 and over. Here we consider how the demographic structure may change over the coming half century and the results can be used in future work on the cost of age dependency.

The Central Statistics Office has already forecast the population assuming significant increases in life expectancy (CSO, 2008). For the period 2011 to 2041, they suggest that life expectancy could increase from 76.7 to 86.5 years for males and 81.5 to 88.2 for females. This CSO study did not differentiate life expectancy by education level.

Because the educational attainment of the older cohorts of the population today is very different from that for the cohort currently in their late twenties, the educational attainment of the population as a whole will, inevitably, change greatly over the coming fifty years. The current generation in their late twenties will gradually replace the older less well educated generations as they age. Given observed differences in life expectancy by level of education, this will be an important factor driving the expected increase in life expectancy over the coming half a century. In turn the increase in the longevity of the population will result, not only in higher population levels, but also in a rising old-age dependency ratio. This will affect demand for public services, not least pensions and healthcare.

For males in the 20 to 35 age group the “excess” deaths among those with limited education compared to the average for the population of the same age, is very significant. Thus the lower life expectancy is manifest in different experiences for those aged between 20 and 34, depending on their level of education. However, just because low educational attainment is associated with lower life expectancy does not imply a causal
relationship. As argued in this paper, it is probable that they are both affected by a wide range of other demographic and health characteristics. Thus while the new data on life expectancy can be used to forecast changes in the population (because education and life expectancy are correlated) they cannot, on their own, be used to explain the “excess” deaths in the population today.

Section 2 of this paper considers the new information on life expectancy for Ireland which is used in the article. Section 3 briefly considers evidence from other countries. Section 4 sets out the methodology used in the analysis and Section 5 presents the results. Brief conclusions are drawn in Section 6.

2. DATA

For the first time for Ireland CSO (2010) gives life expectancy by sex, cross-classified by highest level of education completed. The life expectancy estimates are given for males and females aged 20, 35, and 65. (Obviously life expectancy at birth is the same for the population as a whole as their final level of education as adults is unknown.) The data have been derived by the CSO from a joint analysis of the data in the 2006 Census of the population and data in the Vital Statistics on deaths in the year subsequent to the Census, 2006/7. Thus the estimates are applicable to the years 2006/2007.

The estimates were derived by linking the records of individual deaths for the year 2006/7 to the relevant records for the same individuals in the 2006 Census. The complex data matching exercise is described in CSO, 2010. It was done by first matching date of birth, name, sex and county of residence. Where this did not produce an exact match other more complex methods of matching were employed. This matching was accomplished for 85 per cent of deaths in the relevant year (CSO, 2010).

This matching of the data allowed the CSO to derive a wealth of demographic information about the individuals who died in the year after the Census. In particular they used these data to derive life expectancies by level of education completed and also life expectancy by social class. In this paper we concentrate on the education data as this is the basis on which the ESRI’s demographic model is constructed (Bergin et al., 2008).

Table 1: Male Life Expectancy by level of Education Completed, 2006/7

<table>
<thead>
<tr>
<th>Highest Level of Education</th>
<th>Males, 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Primary</td>
<td>n.a.</td>
</tr>
<tr>
<td>Secondary: Junior cert. and Leaving cert.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Third Level</td>
<td>n.a.</td>
</tr>
<tr>
<td>Population</td>
<td>76.8</td>
</tr>
</tbody>
</table>

Table 1 shows the life expectancies for males at different ages in 2006, derived from the matched data sets (CSO, 2010). The data are shown by three levels of education completed. Those who had a junior certificate level of education were grouped with those who had completed their leaving cert. The Table shows a big gap between the life expectancy at age 20 and 35 for those with the lowest level of educational attainment relative to the other categories. The gap is somewhat narrower at age 65.

Table 2 shows similar data for women for 2006/7. In this case there is still a significant difference at age 20 and 35 between those with the most limited education and the rest of the population. However, the gap is much smaller than in the case of males. At age 65 the gap is actually smaller for males than for females.

Table 2: Female Life Expectancy by level of Education Completed, 2006/7

<table>
<thead>
<tr>
<th>Highest Level of Education</th>
<th>Females, 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Primary</td>
<td>n.a.</td>
</tr>
<tr>
<td>Secondary: Junior cert. and Leaving cert.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Third Level</td>
<td>n.a.</td>
</tr>
<tr>
<td>Population</td>
<td>81.6</td>
</tr>
</tbody>
</table>

In this paper we combine these data on life expectancy with data from the Quarterly National Household Survey for 2010 on educational attainment for different age groups. We also use data based on the 2006 Census. For 2010 Figure 1 shows the proportion of each cohort of males by level of education completed. Looking at the 25-29 cohort (many of those in their early twenties were still in the educational system) the proportion with third level education was 37 per cent whereas those with only primary education accounted for only 5 per cent of the cohort. However, for the 60-64 year old cohort the situation is reversed: only 19 per cent had completed third level education while 41 per cent had not progressed to junior certificate level.

Figure 2 shows similar data for females. Once again there is a very big change between the average educational attainment of the oldest cohorts shown in the Figure relative to the youngest. For 25-29 year old females 53 per cent had completed third level education whereas the numbers with only primary education accounted for only 3 per cent of the cohort. By contrast only 16 per cent of 60-64 year old females had completed third level while 34 per cent had only primary education.

Source: CSO Quarterly National household Survey special tabulation.
This large disparity in educational attainment between the 60-64 cohort and the 25-29 cohort for both males and females means that, even without any further change in educational participation, there will be a dramatic change in the average educational attainment of the population in the future as the younger cohorts of well-educated males and females gradually replace the older cohorts. Because higher levels of education generally result in higher productivity (measured by earnings), higher labour force participation and lower unemployment than is the experience of those with lower levels of educational attainment, this will affect the economy and society in many different ways. In this paper we concentrate on how the rising educational attainment of the population is likely to affect life expectancy.

3. LITERATURE REVIEW

The correlation between increased educational attainment and increased life expectancy has been observed elsewhere. Here we discuss a series of studies using US data. These studies have used different methods to try and control for the fact that education is itself endogenous in modelling its relationship with life expectancy.¹

Lleras and Muney (2005) found a large causal effect on mortality rates of changes in compulsory schooling laws that took effect between 1915 and 1939 in at least 30 states in the US. These results were derived from an analysis of the data from the 1960, 1970 and 1980 US censuses and the 1992 National Health and Nutrition Examination Survey Epidemiologic Follow up Study (NHEFS). Using a GLS estimator they showed that the incremental effect of an additional year spent in education reduces the chances of death over the following decade by approximately 1.3 percent. Using instrumental variable methods they showed an even larger inverse effect of education on mortality: the effect of education was estimated to be -3.7%, and -5.1% as estimated using aggregated data at the gender/state-of-birth and cohort level. In other words, the most conservative estimate showed that an additional year of education in 1960 led to an increase in life expectancy of 1.7 years.

Crimmins and Saito (2001) studied the effect of education on life expectancy in the US in the years 1970, 1980 and 1990. The dataset consisted of the 1970, 1980 and the 1990 censuses, and the 3 year data from the National Health Interview Survey (NHIS) centred on the census years. The study showed that within every sex-race group, those with higher educational status, as measured by years of school completed, are expected to live longer. For example, at 30 years of age, Caucasian females with higher educational status were expected to live 3.8 years longer, while males were expected to live 6.7 years longer. For African Americans aged 30, the differential amounted to 10.5 and 11.8 years for women and men, respectively.

Lynch (2003) studied the age and cohort effects on the relationship between education and self-rated health (SRH), which can be used as an indicator of mortality. Two techniques were applied to two different datasets. First, the data from the National Health Interview Survey (NHIS) was used to estimate standard age – period – cohort logistic regressions that allowed for the varying effect of education across age and cohort, quadratic interaction between age and education, and the interaction between age, cohort and education. Second, data from the National Health and Nutrition Examination Survey (NHANES) and its follow-ups were used to estimate a Bayesian normal hierarchical random-effects model, which was able to differentiate between differences in mortality that were due to differences between people and the differences attributable to the life-course. The logistic model showed that there was an inverse relationship between education and the probability that an individual will report fair or poor health. This relationship was statistically significant at 5 per cent. Moreover, for each cohort, the effect of education increased up to a point and then declined. However, the peak occurred at different ages for the three birth cohorts. The random-effects model showed that as people age, education slows down the deterioration in health.

Using data from the 1989 and 1990 US census statistics and vital statistics to conduct a cross-sectional multiple regression analysis of the effects of income and education on mortality, Muller (2002) found that educational attainment, as measured by the lack of completed high school education, explained the variation in mortality better than income inequality. In particular, absence of high school education accounted for more than 50% of the variation in mortality, while the two measures of income inequality – Gini coefficient and per capita income – accounted for 27.7% of the variation.

¹ Education is endogenous in the sense that it is also “caused” by a range of demographic and social factors which also probably affect life expectancy.
4. METHODOLOGY

The approach taken in this article is first to develop education specific life tables – tables which show by single year of age the probability that a male or female will survive for at least a year. These are derived by modifying the standard life table for the population as a whole so that it reproduces the age specific life expectancies shown in CSO 2010 for the year 2006 for each of the three groups differentiated by level of education. We also derive a modified version of the life table for the aggregate population (undifferentiated by education) which reproduces the increase in life expectancy forecast by the CSO over the next 40 years (CSO, 2008). 2

On the basis of zero migration, and taking the population structure as it was in 2010, we then use the ESRI’s demographic model to forecast the population for the next 50 years using these three different sets of life tables. We assume an unchanging total fertility rate in the forecast period to estimate the number of births each year. In the demographic model it is assumed that whatever education level is possessed by an individual at age 25 is the final and highest level attained in their lifetime. For the ages 20 to 24, however, transfers between Secondary and Third Level education are assumed to take place on a gradual basis. These transfers represent those who graduate from Third level each year with a primary qualification. For example, between the ages of 21 and 22, it is assumed that 10% of males, whose highest level of education completed was previously “leaving cert.”, will obtain a third level qualification. The percentages used for calculating transfers are assumed to be constant over the period to 2061 and they are shown in Table 3.

Table 3: Percentage of cohort who have completed a Third Level qualification

<table>
<thead>
<tr>
<th>Age</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>41</td>
</tr>
<tr>
<td>23</td>
<td>38</td>
<td>51</td>
</tr>
<tr>
<td>24</td>
<td>43</td>
<td>61</td>
</tr>
</tbody>
</table>

The standard version of the model applies the life table for 2006 for the aggregate population, undifferentiated by education, to forecast future population on the basis of unchanging life expectancy. It takes as a basis the estimate of the population for 2011 3 and the model assumes that life expectancy after 2011 is fixed at the 2006 level for the aggregate population. The model estimates for each of the next 50 years how many of the population in each age cohort survive to the following year. This produces a forecast for population numbers out to 2061.

We then incorporate the education specific life tables (with unchanging education specific life expectancy over time) to calculate how much of the population in 2011 will survive each year to produce an alternative estimate of the population out to 2061. This alternative estimate takes account of the interaction between rising educational attainment and differing education specific life expectancies to produce an estimate of the effect of rising educational attainment on the future population and on future age dependency ratios.

Finally we use estimated life tables for each year, which assume a rising life expectancy as forecast by the CSO out to 2041, to estimate the population out to 2061. We assume a similar pattern of increasing life expectancy between 2041 and 2061 to that assumed in CSO, 2008.

The difference between the first and the second forecast gives an estimate of the effect of changing educational attainment on the future population. The difference between the second and the third gives an estimate of the effect of the CSO’s forecast of rising aggregate life expectancy net of the effect of the rising educational attainment of the population.

2 It is a separate life table for each of the forty years which changes so as to reproduce the gradual rise in life expectancy assumed by the CSO.

3 The data from the Census for 2011 and the related revisions to the Quarterly National Household Survey data were not available when this paper was being prepared. Because the model begins with estimates of the population for 2011 no account is taken of reduced death rates between 2006 and 2011 as a result of changes in life expectancy. All changes are calculated with respect to the estimated 2011 population.
In summary three scenarios are used to calculate the impact of educational attainment on life expectancy.

1. Life expectancy is held constant at 2006 levels and the population is not differentiated by education.
2. Life expectancy is held constant at 2006 levels and differentiated by level of education.
3. Life expectancy rises in line with CSO forecasts and the population is not differentiated by education.

For the purpose of this study, zero net migration is assumed from 2011 to 2061, and the Total Fertility Rate is assumed to be constant at 2.07 over the period. (These assumptions can be readily altered in the model to give different scenarios on migration and fertility.)

In the Irish Life Tables No.15 (CSO 2009), the methodology is provided for calculating life expectancies. The life expectancy at age x, e_x^g, is the total future life time in years which will on average be passed through by persons aged exactly x.

l_x is the number of persons surviving to exact age x out of the original 100,000 aged 0.

L_x is person years, or the number of years survived by life table cohort between the ages x and $x+1$.

\[L_x = \frac{l_x + l_{x+1}}{2} \]

T_x is cumulated person years i.e.

\[T_x = \sum_{x}^{105} L_x \]

Hence,

\[e_x^g = \frac{T_x}{l_x} \]

CSO (2010) provides life expectancies by sex by highest level of education completed for the ages 20, 35 and 65. Using these life expectancies as a benchmark, scale factors can be generated to derive education-specific life tables from the aggregate population life table, such that the education-specific life expectancies match those shown in the CSO estimate of education specific life expectancies at 20, 35 and 65.

These life tables are not unique. The scale factors are used to multiply the probability of an individual aged t surviving one year to $t+1$. Separate scale factors are calculated for each year between 20 and 105. The scale factors are chosen so that they are constant over a range of years or so that they change in a regular fashion (see Appendix for an example). Thus for a person aged t the probability of surviving to age $t+1$ is increased if $s_t > 1$ (or reduced if $s_t < 1$) and the revised probability p_{t+1} is modified to become $p_{t+1} = s_t p_{t+1}$. It is assumed that there is no deviation from the aggregate population life expectancy before the age of 20.

Using this approach, life tables are generated for males and females for three levels of educational levels; Primary, Junior Cert and Leaving Cert, and Third Level education.

Using these life tables the probability of someone aged t surviving to age $t+n$, $P_{t,t+n}$, can be calculated as the product of each of the individual probabilities of surviving a single year for each year between year t and year $t+n$.

\[P_{t,t+n} = \prod_{i=t}^{t+n} p_i \]

Then the number of deaths per 100 individuals between the age of t and $t+n$ will be equal to 100(1 - $P_{t,t+n}$).

The education-specific survivorship rates (life tables) derived in this paper are not unique - a different set of survival probabilities can give the same life expectancy result where the probabilities do not follow the smooth pattern that we have assumed. The rates in this study were generated such that they reproduce the CSO’s published education-specific life expectancies and they were assumed to show a stable pattern over time. We experimented with a different pattern of survivorship for the years between 20 and 34 but this did not greatly alter our results.
5. RESULTS

Impact of changing educational attainment on the population

Here we consider how the rising educational attainment of the population, interacting with differences in life expectancy by level of education, may affect the growth in the population over the next fifty years. We use the existing ESRI Demographic Model, which forecasts the population by four levels of educational attainment. As outlined above, we incorporate into this model the information from the CSO on the differing life expectancies by level of education. We then use this enhanced model to examine three scenarios on the future population. By comparing the results for these three scenarios we derive an estimate of how the changing educational attainment of the population may affect the rise in average life expectancy for the population and, hence, the size of the Irish population in future decades.

As outlined above, we consider three scenarios where:

1. Life expectancy is held constant at 2006 levels and the population is not differentiated by education – the base case.
2. Life expectancy is held constant at 2006 levels and differentiated by level of education.
3. Life expectancy rises in line with CSO forecasts and the population is not differentiated by education.

It should be emphasised that, while scenario 3 uses the CSO assumptions about future life expectancy, it differs from the CSO forecasts in assuming zero migration and a constant Total Fertility Rate (TFR) of 2.07 over the next 50 years. These assumptions do not represent “forecasts”. Rather they are used to simplify the analysis so that the effects of changing educational attainment can be clearly identified in the simulations.4

Under scenario 1), the population is estimated to grow by 0.5 million between 2010 and 2060, to 4.9 million.5 Under scenario 3), the population is estimated to increase by 1.3 million to around 5.7 million. The difference between these two estimates is explained purely by differences in assumptions concerning life expectancy.

Under scenario 2, life expectancy is also assumed to remain unchanged but life expectancy is allowed to differ depending on an individual’s educational attainment. When this assumption interacts in the model with the change in educational attainment of the population, it gives rise to a higher population than in the base case, scenario 1: by 2060 the population would be around 0.6 million higher than in 2010 at 5.0 million.

<table>
<thead>
<tr>
<th>Table 4: Estimated Increase in Population Under different Scenarios, Difference compared to base case of unchanging life expectancy, thousands</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
</tr>
<tr>
<td>CSO Rising Life Expectancy</td>
</tr>
<tr>
<td>Differentiated by Education</td>
</tr>
<tr>
<td>Percentage contribution of Education</td>
</tr>
</tbody>
</table>

These results are summarised in Table 4, which shows the difference in the forecast population changes relative to the base where life expectancy is constant. This Table shows that by 2060, even if education specific life expectancy remained constant over time, the change in the average educational attainment of the population would see an additional increase in the population of 134 thousand relative to the base case. The Table also shows that using the CSO’s assumptions about rising life expectancy for the population as a whole would result in an increase in the population by 2060 of around 780 thousands relative to the base case. Thus the changing educational attainment of the population would account for between 15 and 20 per cent of the population increase which would occur under the CSO’s assumptions on rising life expectancy. The rest of the increase would be accounted for by the rise in life expectancy itself.

The different assumptions on life expectancy also have major implications for the average educational attainment of the population in future years. Figure 3 shows how the average educational attainment of the male population aged 65 and over would change as a result of rising life expectancy as assumed by the CSO (undifferentiated by education). Whereas in 2011 under 15 per cent of the population over 65 had third level education and nearly 55 per cent had only primary education, in 50 years time in 2061 the average educational attainment could change dramatically under these assumptions. As shown in Figure 3 over 35 per cent of males over 65 would have third level education while only a little over 5 per cent would have only primary education.

4 We also experimented with different assumptions on TFR and migration but these did not significantly alter the results.
5 This paper is using the pre-2011 Census population estimates.
Figure 3: Educational Composition of Male Population aged 65 and over, rising life expectancy as assumed by CSO.

![Bar chart showing educational composition of male population aged 65 and over, 2011 vs. 2061.]

Source: Data for 2011 from Census of Ireland, 2011.

Figure 4 shows a similar breakdown of the educational attainment of the female population under the CSO assumptions on rising life expectancy (undifferentiated by education). In the case of females, the change in composition is even more dramatic than in the case of males. While in 2011 a little over 10 per cent of the females over 65 had third level education, by 2061 the proportion will have risen to over 50 per cent under the CSO assumptions. The proportion with only primary education would be dramatically reduced, from just under 50 per cent in 2011, to under 5 per cent in 2061.

In the Appendix we show the educational attainment of the population aged over 80 on the same basis as for the population aged over 65.

Figure 4: Educational Composition of Female Population aged 65 and over, rising life expectancy as assumed by CSO.

![Bar chart showing educational composition of female population aged 65 and over, 2011 vs. 2061.]

Source: Data for 2011 from Census of Ireland, 2011.

The results shown above in Figures 3 and 4 are arrived assuming that the life expectancy of individuals is the same irrespective of their educational attainment – as in CSO, 2008. In Figures 5 and 6 we compare the educational attainment of the population aged 65 and over, where life expectancy rises for all individuals, as assumed by the CSO, with the effects of constant education specific life expectancies. This comparison will
underestimate the impact of education on the composition of the population in the future because here we assume that there is no change over time in education specific life expectancies. Nonetheless, the comparison in Figures 5 and 6 shows that even without a rise in education specific life expectancies the educational attainment of the population aged over 65 will change dramatically over coming decades.

In the case of males, when the difference in life expectancy is taken into account, Figure 5 suggests that by 2061 close to 40 per cent of males over 65 would have a third level education whereas only 5 per cent would have only a primary education. In the case of women, whatever basis is used, by 2061 over half of the female population over 65 would have a third level education. If education specific life expectancy was to rise over time (to mirror the overall rise in life expectancy assumed by the CSO), the impact on the educational attainment of the population over 65 could be even greater than shown here.

Figure 5: Comparison of Educational Composition of population of males over 65 in 2050 under differing assumptions

This change in the educational attainment of the population aged 65 and over may affect the economy and society through a range of channels. Those with a good education are more likely to continue to participate in the paid labour force after the age of 65 and the jobs open to them are also likely to be more suitable for older people (involving less manual labour). Jobs in sectors like building and construction, which tend to be populated
by people with lower educational attainment, tend to be less suitable for people aged over 65. Already, the participation rate for those with a good education in their early sixties is significantly above that for men and women with more limited education. This effect is particularly striking in the case of women. This pattern for those with a good education to continue working well into their sixties may be encouraged by the planned increase in the retirement age from 2014 onwards.

The changing educational attainment of the population aged 65 and over may also affect the demand for health services and care needs. Because those with a good education have had much higher life time earnings (Kelly, McGuinness and O’Connell, 2009), they are likely to have accumulated higher wealth, in terms of physical and financial assets, and better pension eligibility than those with more limited education. This could allow them to fund additional care costs, reducing pressures on the state that would otherwise arise from the big increase in the older population.

If the results for Lynch (2003) were to be replicated in Ireland, the benefits of a good education may also result in better health outcomes. However, the full implications of the changing educational attainment of the older population for the health service and for care needs in the next half century requires much further research before any conclusions can be drawn.

Here we briefly set out the implications of the rising population aged 65 and over for dependency ratios. As shown in Table 5, rising life expectancy, as assumed by the CSO, will see a dramatic increase in the old age dependency ratio (the proportion of the population aged 65+ relative to the population of working age between 15 and 64). Even with unchanging education specific life expectancy, there would be a doubling in this ratio by 2060.

<table>
<thead>
<tr>
<th>Table 5: Population Old-Age Dependency Ratio at selected years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Old-Age Dependency Ratio at selected years</td>
</tr>
<tr>
<td>2010 2020 2030 2040 2050 2060</td>
</tr>
<tr>
<td>CSO Rising Life Expectancy 17 22 29 41 55 58</td>
</tr>
<tr>
<td>Differentiated by Education 17 22 27 34 42 36</td>
</tr>
</tbody>
</table>

The figures for the population dependency ratio also show a very substantial rise over the period to 2060, as shown in Table 6. (The population dependency ratio is here defined as the ratio of the population under 15 plus the population aged 65 and over relative to the population aged between 15 and 64). In both cases, the rising life expectancy begins to have a more dramatic effect on dependency ratios after 2030.

<table>
<thead>
<tr>
<th>Table 6: Population Dependency Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Dependency Ratio at selected years</td>
</tr>
<tr>
<td>2010 2020 2030 2040 2050 2060</td>
</tr>
<tr>
<td>CSO Rising Life Expectancy 48 56 58 68 88 88</td>
</tr>
<tr>
<td>Differentiated by Education 48 56 57 66 77 69</td>
</tr>
</tbody>
</table>

Excess Deaths

As discussed in Section 4, using the estimated education specific life tables for 2006 we have calculated the number of deaths per 100 persons expected between 20 and 34 and between 35 and 64 for males and females with different levels of education. Table 6 shows the expected number of deaths per 100 males for the different age ranges. For males with primary and junior certificate education aged 20-34 in 2006, 6.2 per cent would be expected to die before they reach the age of 35. However, for those with a secondary education only 1.9 per cent would be expected to die. The “excess” death rate associated with only having primary level education relative to those with secondary education thus amounts to 4.3 percentage points – a very big excess. The gap between the death rate for those with secondary education and third level education is much smaller at 0.8 percentage points.
Table 7: Deaths per 100 Males differentiated by education

<table>
<thead>
<tr>
<th>Between the ages:</th>
<th>Primary</th>
<th>Secondary</th>
<th>Third Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 34</td>
<td>6.2</td>
<td>1.9</td>
<td>1.1</td>
</tr>
<tr>
<td>35 - 64</td>
<td>17.8</td>
<td>11.3</td>
<td>8.5</td>
</tr>
</tbody>
</table>

For those aged 35-64, the gap between the death rate for those with primary education and those with a secondary education is also very large – 6.5 percentage points, with a not insignificant gap between those with a secondary education and those with a third level education. Thus those with only a primary education suffer from a very much reduced life expectancy, reflected in very much higher death rates over most of their adult lives.

Table 8: Deaths per 100 Females differentiated by education

<table>
<thead>
<tr>
<th>Between the ages:</th>
<th>Primary</th>
<th>Secondary</th>
<th>Third Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 – 34</td>
<td>2.1</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>35 – 64</td>
<td>12.4</td>
<td>7.72</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Table 8 shows the same data for females. The gap between the death rates for those with secondary education and third level education is quite small over the full age range 20-64. There is a larger gap between the death rates for those with the lowest level of education and those with secondary education. However, it is much smaller than is the case for males. The difference between males and females is particularly striking for those in the age range 20-34.

On the basis of this analysis, it is not possible to attribute any causal relationship between the higher death rate and the level of education attained. Both education and life expectancy are jointly affected by a range of demographic factors and health factors. For example, a pre-existing health problem in their childhood or teenage years could have seriously affected an individual’s education, while simultaneously affecting their life expectancy in their twenties. In addition, because the numbers in the category with the lowest educational attainment in 2006 were quite small, the presence of a significant number of individuals with pre-existing health problems could have a disproportionate effect on the death rate.

Nonetheless, as shown in Table 9, the bulk of the deaths for males aged between 20 and 34 are due to accidents, including car accidents, suicide etc. rather than to natural causes. By contrast, for women, over half of the deaths in that age group are due to natural causes. The total number of deaths due to natural causes is rather similar for men and women, which suggests that, where excess deaths occur for males, they are primarily due to an increased incidence of motor and other accidents, suicide and other causes unrelated to disease of physical illness. For males, deaths attributed to suicide accounted for almost 29 per cent of the total deaths while the figure for females was 15 per cent. The recent dramatic decline in road deaths could significantly alter this picture. Until more data become available it will not be possible to assess the implications of this important change. For life expectancy for those aged 20-34.

Table 9: Deaths by Cause, Males and Females aged 20 to 34, Total for 2007 and 2008

<table>
<thead>
<tr>
<th></th>
<th>Females</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20-24</td>
<td>25-29</td>
<td>30-34</td>
<td>20-34</td>
<td>20-24</td>
<td>25-29</td>
<td>30-34</td>
<td>20-34</td>
</tr>
<tr>
<td>Natural</td>
<td>40</td>
<td>71</td>
<td>101</td>
<td>212</td>
<td>53</td>
<td>84</td>
<td>98</td>
<td>235</td>
</tr>
<tr>
<td>Other</td>
<td>39</td>
<td>60</td>
<td>45</td>
<td>144</td>
<td>256</td>
<td>265</td>
<td>251</td>
<td>772</td>
</tr>
<tr>
<td>Of which suicide</td>
<td>17</td>
<td>25</td>
<td>12</td>
<td>54</td>
<td>98</td>
<td>109</td>
<td>82</td>
<td>289</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>131</td>
<td>146</td>
<td>356</td>
<td>309</td>
<td>349</td>
<td>349</td>
<td>1007</td>
</tr>
<tr>
<td>Natural, % of total</td>
<td>50.6</td>
<td>54.2</td>
<td>69.2</td>
<td>59.6</td>
<td>17.2</td>
<td>24.1</td>
<td>28.1</td>
<td>23.3</td>
</tr>
<tr>
<td>Other % of total</td>
<td>49.4</td>
<td>45.8</td>
<td>30.8</td>
<td>40.4</td>
<td>82.8</td>
<td>75.9</td>
<td>71.9</td>
<td>76.7</td>
</tr>
<tr>
<td>Of which suicide, % of total</td>
<td>21.5</td>
<td>19.1</td>
<td>8.2</td>
<td>15.2</td>
<td>31.7</td>
<td>31.2</td>
<td>23.5</td>
<td>28.7</td>
</tr>
</tbody>
</table>
Table 10: Deaths by Cause, Males and Females aged 35 to 64, Total for 2007 and 2008

<table>
<thead>
<tr>
<th></th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>3547</td>
<td>5307</td>
</tr>
<tr>
<td>Other</td>
<td>367</td>
<td>1037</td>
</tr>
<tr>
<td>Of which suicide</td>
<td>120</td>
<td>342</td>
</tr>
<tr>
<td>Total</td>
<td>3914</td>
<td>6344</td>
</tr>
<tr>
<td>Natural, % of total</td>
<td>90.6</td>
<td>83.7</td>
</tr>
<tr>
<td>Other % of total</td>
<td>9.4</td>
<td>16.3</td>
</tr>
<tr>
<td>Of which suicide, % of Total</td>
<td>3.1</td>
<td>5.4</td>
</tr>
</tbody>
</table>

While poor educational attainment is a good indicator that males, in particular, are subject to a higher probability of dying from accidents, suicides etc., it is not an explanation for this phenomenon. It is highly probable that both poor educational attainment and the higher probability of dying from “unnatural” causes among males is due to a range of factors that jointly affect educational performance in teenage years and subsequent life expectancy for those in their 20s and early 30s. While the gap in life expectancy for females aged 20 to 34, with limited educational attainment relative to the rest of the female population is much smaller than for males, it is, nonetheless, substantial. As with males, the explanation for this phenomenon must be found in a range of factors that go well beyond educational attainment.

For those aged 35-64 the bulk of the deaths, male and female, are due to natural causes as shown in Table 10. For this age group the size of the cohort of the population with only primary education is much larger than for the younger age group. While it is not possible to allocate the deaths by educational attainment it is still clear that the bulk of the deaths for all three educational categories are due to natural causes in this age group. In this case the explanation for “excess” deaths among this age group must lie with the wide range of social and demographic factors which affect an individual’s health.

6. CONCLUSIONS

This paper has examined the potential effect on the future population of differences in life expectancy across educational groups. It shows that the combination of a rising share of those with a third level education and higher life expectancies for this group will lead to a substantial rise in the share of the population aged over 65. It will also affect the educational composition of the older population, which may have important implications for the economy and society over the coming decades.

The fact that people with better education live longer does not necessarily suggest a causal relationship between education and life expectancy. It is highly probable that they are both affected by a range of other social and demographic factors. Nonetheless, the research cited in Section 3 for the US does suggest that, controlling for these other factors, education does have some significant effect on life expectancy.

This paper also shows that there is a very considerable number of “excess” deaths among the population with only primary education, where “excess” is defined as being substantially greater than for those with higher levels of education in the same age group. This is particularly true for males aged between 20 and 34. As only a minority of deaths in this age group are due to natural causes, this would suggest that there are other factors at work over and above education.

A major question for future research must be the reasons underlying the big difference in life expectancies by level of education, especially for the younger age groups. It is possible that different factors may explain the variation at age 20 to 34 and at older ages, given that only a minority of deaths in the younger age group is due to natural causes while the majority of deaths in older age groups are due to natural causes.

The data set on which the CSO life expectancies are based offers potential scope for researchers to analyse the effect of a much wider range of social and demographic variables on life expectancy and cause of death. Also, in years to come, the Growing up in Ireland data set, by providing consistent data in the future on individuals from an early age through to their twenties, may well allow researchers to examine how experience of children prior to adulthood may have a permanent effect on their life expectancy.

This article has simplified the analysis by only looking at the case of constant education specific life expectancies. If evidence became available for Ireland or other countries on how such life expectancies are changing over time this could be incorporated into subsequent analysis. It could improve the modelling of future population change.
The ageing of the population and the increase in the dependency ratio under different assumptions has major potential implications for future pension, health and care costs. While the dependency ratios may rise inexorably, the changing educational attainment of those aged 65 and over may modify the impact of this rise in dependency on the costs for the state. This is an additional area which merits further research.

REFERENCES

APPENDIX

Educational Composition of Male Population aged 80 and over, rising life expectancy as assumed by CSO

Educational Composition of Female Population aged 80 and over, rising life expectancy as assumed by CSO

<table>
<thead>
<tr>
<th>Age</th>
<th>Population Probability</th>
<th>Primary Probability</th>
<th>Change</th>
<th>Third Level Probability</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.99897</td>
<td>0.99617</td>
<td>-0.0028</td>
<td>0.99922</td>
<td>0.00025</td>
</tr>
<tr>
<td>21</td>
<td>0.99891</td>
<td>0.99591</td>
<td>-0.003</td>
<td>0.999165</td>
<td>0.000255</td>
</tr>
<tr>
<td>22</td>
<td>0.99887</td>
<td>0.99567</td>
<td>-0.0032</td>
<td>0.99913</td>
<td>0.00026</td>
</tr>
<tr>
<td>23</td>
<td>0.99888</td>
<td>0.99548</td>
<td>-0.0034</td>
<td>0.999145</td>
<td>0.000265</td>
</tr>
<tr>
<td>24</td>
<td>0.99893</td>
<td>0.99533</td>
<td>-0.0036</td>
<td>0.9992</td>
<td>0.00027</td>
</tr>
</tbody>
</table>

The CSO survival probability for the population is adjusted by a factor, up or down, to reproduce the education specific life expectancies in CSO, 2010. An example of the adjustments for the age group 20-24 is shown above.
VOTE OF THANKS PROPOSED BY DECLAN SMYTH, CENTRAL STATISTICS OFFICE

This is a very interesting paper and shows the importance of education as well as the strong relationship between education and life expectancy - a topic we all have a vested interest in.

The paper refers to a CSO release in 2010 which gives life expectancy by sex, cross-classified by highest level of education completed and was called 'Mortality Differentials in Ireland'. The publication was made possible by matching Census 2006 records with data on Vital Statistics on deaths in the year subsequent to the Census. A more detailed description of the methodology adopted can be found in the background notes of the publication which is available on the CSO web site.

(http://www.cso.ie/en/media/csoie/census/documents/Mortality_Differentials_in_Ireland.pdf)

Will now look at Census data and examine some of the points raised in the paper presented this evening. Figure 1 and 2 in the paper illustrate males and females by level of education completed by five year cohorts as a % of total cohort. It is interesting to look at education completed for the total population as noted in the last five censuses.

In 1991, those individuals with 'No formal or Primary' education make up 34% of everyone that completed their education and that over the next twenty years, this proportion of the population fell resulting in the equivalent proportion in 2011 being 16%.

The opposite happens for those with 'Third level' education with 14% noted in 1991, increasing to 31% in 2011. This means that while those with a 'Secondary level' education remained relatively constant at just over 50%, the proportion of those with 'No formal or Primary' declined over the 20 years but was compensated by an increase in the proportion of those with 'Third level' education.

The paper also draws attention to the large disparity in education attainment between five year cohorts and that even without any further change in education participation, there will be a dramatic change in the average education of the population in the future as the younger cohorts of well educated males and females gradually replace the older cohorts.
The next few graphs will emphasize that point. This graph indicates the age people ceased their education as per Census 2011. For both males and females age at which they leave the education system appears to be broadly about 32 years.

The percentage breakdown of the level of education completed for 32 year olds is, ‘No formal’ or ‘Primary’ education at 4%, ‘Lower Secondary’ at 10%, ‘Upper Secondary’ at 38% and ‘Third level’ at 48%. Using 32 year olds as a threshold of current level of education attained (assuming the population structure remains constant) we can see the education of the population in 70 years, as the 32 year old cohorts of well educated males and females gradually replace the older cohorts.
This shows that even if the proportion of education attainment remained constant at the current proportions held by 32 year olds, the overall total with third level education will increase (and to a lesser extend for secondary level) while the number with no formal or primary education will decrease substantially. And this is based on a constant population structure that we know is actually aging.

The paper mentioned a US study (Lynch 2003) of age and the cohort effects on the relationship between education and self-rated health and the conclusion was that education slows down deterioration in health (which in turn would effect life expectancy). I will now examine this point in the next three graphs/tables in relation to the findings from the 2011 Census, first looking at level of education completed by marital status, then marital status by general health, and then looking directly at education completed and general health.

Starting with an examination of the percentage of persons married by selected age groups and highest level of education the following graph can be produced. It shows that for both the age groups 45-54 and 55-64 that regardless of education attainment, 70-75% are married for each level of education with the exception of those with 'No formal or Primary' which are considerably less.
But interestingly, those aged 35-44 are only 70% married in the group who obtained a third level degree (and to a lesser extent for third level non degrees) but the percentage married with lower levels of education is considerably less than those in the older age groups (and in light of that the average age for getting married is 32).

Comparing the percentage of the population whose health was good or very good (a new question on general health was introduced in Census 2011) by marital status and sex for the same selected age groups we can see that regardless of sex or age group, those who are married indicate the highest proportion of good or very good health.

Cross tabulating general health by level of education completed produces this table for those aged 30-49 (age selected to remove any bias that might be generated from the young and old on the health component) which does show that for both males and females, the higher the level of education the generally better the health is.

Returning to education participation rates the following graph details student rates (where the student rate is the percentage of persons in a given age group that are students) for selected age groups in the past three censuses.
What this is telling us is that while rates have increased for both males and females in the age groups 15-19 and 20-24, males have made the most progress in the 15-19 age bracket increasing from 68% to 85% while females increased from 77% to 89% in the same age group. In fact, in 2011 15-19 year old males had a student rate of 85% compared to females of 89%. So could this be suggesting that, as we saw in the paper presented tonight that education has a strong relation with life expectancy, male life expectancy is going to get increasingly closer to that of females? Time will tell.

The paper also discusses the higher probability of deaths from unnatural causes for those aged 20-34 (particularly for males) - so what are the characteristics of all 20-34 year olds in the context of level of education attainment?

This graph indicates their principle economic status by sex. For males with no formal or primary education, 43% are unemployed and 16% are unable to work due to permanent sickness or disability. As level of education increases these percentage decrease. For females with no formal/primary education, 26% are unemployed and 14% unable to work due to permanent sick or disability but an additional 28% signal they are looking after the home or family. Similarly these percentages decline as education level increases.

Principle Economic status for all 20-34 year olds by level of education completed and sex

- **Males**
 - No formal/Primary Education: 32, 43, 16
 - Lower Secondary: 47, 44, 11
 - Upper Secondary: 70, 79, 25

- **Females**
 - No formal/Primary Education: 26, 29, 28
 - Lower Secondary: 40, 25, 27
 - Upper Secondary: 67, 67, 16
Homing in on the unemployment in this age group by age education ceased you can see that the younger age at which education ceased the higher the unemployment rate.

![Unemployment rates for 20-34 year olds by age education ceased](image)

And finally, as it happens the CSO published\(^1\) on the 22nd November a profile on education in Ireland as per the 2011 Census and this graph shows the complete skill set of the entire population by sex. Social sciences, Business and Law being largest and dominated by women while Science, Mathematics and Computing being in the middle and more evenly split among men and women.

![Complete skill set of the population, Census 2011](image)

And that brings me to the end - thank you all for listening and I propose the vote of thanks to John and his colleagues for a very interesting and relevant paper.

COMMENT

Brendan Whelan: I’d like to congratulate the authors on an excellent paper. I was particularly struck by the substantial magnitudes of the effects they found. Education clearly has a dramatic effect on health and expectation of life. It will be very important to try to understand the mechanisms involved. Possible factors include more/better healthcare, lifestyle factors such as smoking rates, diet, exercise etc. The Irish Longitudinal Study on Ageing (TILDA) can provide a very wide range of such variables and its data are now available in the Irish Social Science Data Archive hosted by UCD.