Motivation	Theoretical framework	Empirics	Conclusion
0000	0000000	000000000	

Banking crises and investments in innovation

Oana Peia

University College Dublin, School of Economics

The Economic and Social Research Institute May 31st, 2018

Table of contents

1 Motivation and contribution

- Banking crises and the real economy
- Paper outline

2 Theoretical framework

- Set-up and assumptions
- Equilibrium
- Dynamic Model

3 Empirics

- Identification
- Data
- Results

4 Conclusions

Motivation	Theoretical framework	Empirics	Conclusion
•••••			

Motivation

Real effects of banking crises

- Large output losses (Laeven & Valencia, 2012)
- Financial recessions last 2.3 years, 40% longer than other recessions (Boissay et al., 2015)
- Slow recoveries: it takes on average 8 years to reach pre-crisis levels of real GDP/capita (Reinhart & Rogoff, 2014)

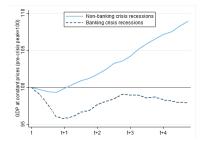


Figure: Recovery following banking crises vs non-banking crises recessions

Oana Peia

Motivation

Short- vs long-run

- Long-run impact of financial development on growth (Levine, 2005)
- Short-run amplifying effect of credit frictions over the business cycle (Bernanke et al., 1999; Comin & Gertler, 2006)

Link between short- and long-run dynamics: innovation

- Main driver of productivity growth (Aghion & Howitt, 1999)
- Highly pro-cyclical (Barlevy, 2007; Ouyang, 2011; Aghion et al., 2010; Aghion et al., 2014): balance-sheet effects?

$\begin{array}{c} \text{Motivation} \\ \bullet \bullet \circ \circ \end{array}$	Theoretical framework 00000000	Empirics 000000000	Conclusion

Motivation

Short- vs long-run

- Long-run impact of financial development on growth (Levine, 2005)
- Short-run amplifying effect of credit frictions over the business cycle (Bernanke et al., 1999; Comin & Gertler, 2006)

Link between short- and long-run dynamics: innovation

- Main driver of productivity growth (Aghion & Howitt, 1999)
- Highly pro-cyclical (Barlevy, 2007; Ouyang, 2011; Aghion et al., 2010; Aghion et al., 2014): balance-sheet effects?

New insight in this paper

• Evidence of a *supply-side channel*: worsening credit supply conditions after banking crises will disproportionally affect investments in innovation

Outline of the model and empirical results

Theoretical Framework

- Growth model with two types of investments
- Banking sector: subject to panics and crises
- $\bullet\,$ Channel to explain longer-term effect of banking crises $\rightarrow\,$ composition of investment

Outline of the model and empirical results

Theoretical Framework

- Growth model with two types of investments
- Banking sector: subject to panics and crises
- $\bullet\,$ Channel to explain longer-term effect of banking crises $\rightarrow\,$ composition of investment
- Model dynamics:
 - \blacktriangleright Pre-crisis: credit boom in high productivity technology \rightarrow high growth
 - \blacktriangleright Post-crisis: less investment in high productivity technology \rightarrow slow recovery

Outline of the model and empirical results

Theoretical Framework

- Growth model with two types of investments
- Banking sector: subject to panics and crises
- $\bullet\,$ Channel to explain longer-term effect of banking crises $\rightarrow\,$ composition of investment
- Model dynamics:
 - \blacktriangleright Pre-crisis: credit boom in high productivity technology \rightarrow high growth
 - \blacktriangleright Post-crisis: less investment in high productivity technology \rightarrow slow recovery

Empirics

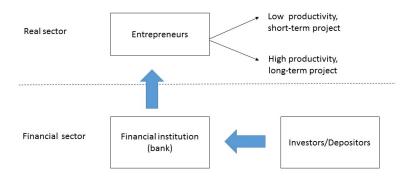
- Investments in innovation: R&D
- 13 recent banking crises episodes
- Diff-in-diff estimations: industries that depend more on bank credit reduce their share of R&D in total investment disproportionately more following episodes of banking crises.

Oana Peia

Relation to literature

Banking crises

- Real effects of banking crises (Dell'Ariccia et al., 2008; Kroszner et al., 2007; Chava and Purnanandam, 2011; Reinhart and Rogoff, 2014; Ball, 2014; Garicano and Steinwender, 2015)
- Macro models with a financial sector (Brunnermeier and Sannikov, 2014; Boissay et al. 2015)
- Global games (Carlsson and Van Damme, 1993; Morris and Shin 1998, 2004; Goldstein and Pauzner, 2005)


Research and development

- R&D and finance (Brown et al. 2009; Ouyang, 2011; Nanda and Nicholas, 2014, Artuç & Pourpourides, 2014, Hsu et al., 2014)
- R&D as a link between short and long-term dynamics (Aghion et al., 2010; Schmitz, 2015)

MOTIVATION	
0000	

Empirics 0000000000 CONCLUSION

Set-up

Figure: The economy

Motivation	Theoretical framework	Empirics	Conclusion
0000	000000	000000000	

Real sector

• Aghion et al. (2010)

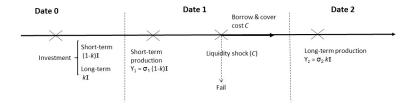


Figure: Timing of the real sector

Entrepreneurs' maximization problem

$$\pi_E(k) = (1-\alpha)\sigma_1(1-k)\mathbf{I} + e(1-\alpha)\sigma_2k\mathbf{I},$$

Motivation	Theoretical framework	Empirics	Conclusion
0000	0000000	000000000	

Financial sector

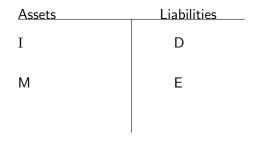


Figure: Balance Sheet of the Bank

- D volume of uninsured deposits
- ${\sf M}$ amount of cash reserves
- I volume of loans to real sector
- E bank equity (exogenous and constant)

Oana Peia

Motivation	Theoretical framework	Empirics	Conclusion
0000	0000000	000000000	

Financial sector

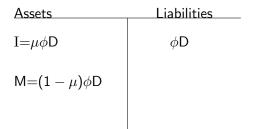


Figure: Balance Sheet of the Bank

• D + E= D + $\frac{E}{D}$ D $\equiv \phi$ D, where $\phi \equiv 1 + \frac{E}{D}$ (proxy for leverage)

- μ loans-to-assets ratio of the bank
- Investors/depositors receive rD at t = 2, but can also withdraw at t = 1 and recover their initial investment D

Oana Peia

Motivation	Theoretical framework	Empirics	Conclusion
0000	0000000	000000000	

Investors' Equilibrium

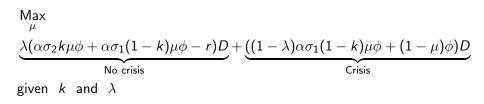
• t = 1 demand for liquidity:

• Imperfect information about C (global games):

$$x_i = C + \epsilon_i, \qquad \epsilon_i \sim U[-\epsilon, \epsilon]$$

Proposition 1 There exists a unique Bayesian Nash Equilibrium in which all depositors run on the bank when they observe a signal higher than x^* and leave their funds in the bank in t = 1 when they observe a signal lower than x^* . That is, the bank will be in a liquidity crunch, whenever the random shock *C* is higher than a threshold value, C^* , equal to:

$$C^* = M + Y_1 - \frac{D}{r}$$

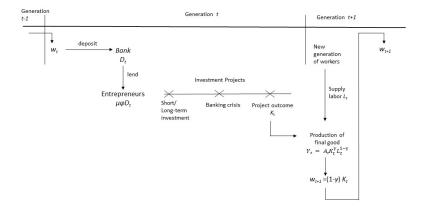


MOTIVATION 0000

Theoretical framework

Empirics 0000000000 CONCLUSION

Bank Optimization Problem



Lemma 1: The share of the high productivity investment, k, is monotonically increasing in the loans-to-assets ratio, μ , for $\phi < \overline{\phi}$.

Proposition 2: As banks become more leveraged, their loans-to-assets ratio, μ , increases monotonically, for $\phi < \overline{\phi}$.

Motivation	Theoretical framework	Empirics	Conclusion
0000	00000000	000000000	

OLG model

Figure: Timing of the real sector

Oana 1	Peia
--------	------

Motivation	Theoretical framework	Empirics	Conclusion
0000	0000000	000000000	

Model dynamics

The economy experiences the following investment and growth dynamics:

Proposition 3

- (i) As long as a bank run does not occur: increase in savings → more leveraged banking sector → higher loan-to-assets ratio (µ) → higher share of high-productivity investment (k).
- (ii) A bank run decreases the aggregate income in the next period \rightarrow lower deposits-to-equity ratio \rightarrow banks tighten credit supply by decreasing their loans-to-assets ratio (μ).
- (iii) Tighter credit conditions after the banking crisis \rightarrow lower share of investment in the high productivity technology (k), which slows down the recovery.

Simulation of the economy

MOTIVATION	
0000	

Empirics

Empirics

Testable implication

• Tightening credit supply that follows banking crises causes the share of R&D investment in total investment to drop

Empirics

Testable implication

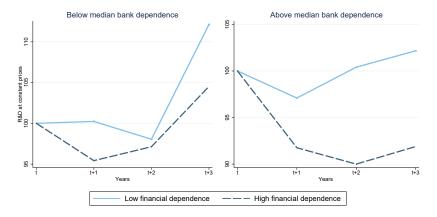
• Tightening credit supply that follows banking crises causes the share of R&D investment in total investment to drop

Supply-side or demand-side?

- Banking crises occur at the onset or are followed by recessions (Demirguc-Kunt & Detragiache, 1998)
- Shocks to supply of credit (Iyer et al., 2014; Chava & Purnanandam, 2011)
- Differential impact on financially-dependent borrowers (Dell'Ariccia, et al., 2008; Kroszner et al., 2007; Hsu et al. 2014; Nanda & Nicholas, 2014)

Identification strategy

Rajan & Zingales's (1998) "difference-in-difference" estimations: exogenous way of differentiating between industries that depend more on external finance


$$\Delta R\&D_{ic} = \alpha_i + \mu_c + \beta_1 ExtDep_i \times Bank_c + \beta_2 Size_{ic} + \epsilon_{ic},$$

•
$$\Delta R \& D_{ic} = R \& D_{crisis} - R \& D_{precrisis}$$

- *ExtDep_i*: industry-level measure of dependence on external finance
- Bank_c: country-level measure of dependence on the banking sector
- Size_{ic}: share of sector i R&D in total country c's R&D
- α_i , μ_c : industry and country fixed effects

Motivation	Theoretical framework	Empirics	Conclusion
0000	0000000	00000000	

Identification

Figure: R&D investments following banking crises

	Motivation	Theoretical	FRAMEWO
0000 0000000	0000	0000000	

Data

- Industry level data on R&D (OECD ANBERD, STAN): 29, two- and three-digits manufacturing industries
- Industry-level measure of dependence on external finance (*ExtDep*): Rajan & Zingales (1998) (Compustat- firm level data)
- Country-level measure of bank dependence: Private Credit/ Stock Market Capitalization (Levine, 2002)
- 13 systemic banking crises episodes over 1994-2012 (Laeven & Valencia, 2012)

Banking crises and investment in innovation

 $\Delta R\&D_{ic} = \alpha_i + \mu_c + \beta_1 ExtDep_i \times Bank_c + \beta_2 Size_{ic} + \epsilon_{ic}$

	$\Delta R\&D = (R\&$	D _{crisis} - R&D _{precrisis})	Panel es	timations
	(1)	(2)	(3)	(4)
ExtDep imes Bank	-0.0187***	-0.0152***		
	(0.0058)	(0.0053)		
$ExtDep{\times}Bank{\times}Crisis$			-0.0104***	-0.0115***
			(0.0028)	(0.0034)
$Size_{t-3}$	0.274	-0.346	-0.368***	-0.658***
	(0.600)	(0.389)	(0.101)	(0.230)
Observations	244	248	4,387	4,387
R-squared	0.289	0.279	0.045	0.082
Country FE	YES	YES	YES	
Industry FE	YES	YES	YES	
Year FE			YES	YES
Country-industry FE				YES

OANA PEIA BANKING CRISES AND INNOVATION 19	/ 30	
--	------	--

Banking crises and investment in innovation

 $\Delta R\&D_{ic} = \alpha_i + \mu_c + \beta_1 ExtDep_i \times Bank_c + \beta_2 Size_{ic} + \epsilon_{ic}$

	$\Delta R\&D = (R\&$	2D _{crisis} - R&D _{precrisis})	Panel est	timations
	(1)	(2)	(3)	(4)
ExtDep imes Bank	-0.0187***	-0.0152***		
	(0.0058)	(0.0053)		
$ExtDep{\times}Bank{\times}Crisis$			-0.0104***	-0.0115***
			(0.0028)	(0.0034)
$Size_{t-3}$	0.274	-0.346	-0.368***	-0.658***
	(0.600)	(0.389)	(0.101)	(0.230)
Observations	244	248	4,387	4,387
R-squared	0.289	0.279	0.045	0.082
Country FE	YES	YES	YES	
Industry FE	YES	YES	YES	
Year FE			YES	YES
Country-industry FE				YES

Oana Peia	BANKING CRISES AND INNOVATION	19 / 30

Banking crises and investment in innovation

 $R\&D_{ict} = \alpha_i + \mu_c + \lambda_t + \beta_1 ExtDep_i \times Bank_c \times Crisis_{ct} + Share_{ic} + \epsilon_{ict},$

	$\Delta R\&D = (R\&$	D _{crisis} - R&D _{precrisis})	Panel est	timations
	(1)	(2)	(3)	(4)
ExtDep imes Bank	-0.0187***	-0.0152***		
	(0.0058)	(0.0053)		
$ExtDep{\times}Bank{\times}Crisis$			-0.0104***	-0.0115***
			(0.0028)	(0.0034)
Size _{t-3}	0.274	-0.346	-0.368***	-0.658***
	(0.600)	(0.389)	(0.101)	(0.230)
Observations	244	248	4,387	4,387
R-squared	0.289	0.279	0.045	0.082
Country FE	YES	YES	YES	
Industry FE	YES	YES	YES	
Year FE			YES	YES
Country-industry FE				YES

Oana Pei	Α
----------	---

MOTIVATION	
0000	

Empirics 00000000000 CONCLUSION

Share of R&D in Total Investment

	$\Delta(R\&D/TI) = (R\&D/TI)_{post} - (R\&D/TI)_{pre}$		Panel reg	gressions
	(1)	(2)	(3)	(4)
ExtDep imes Bank	-0.0104***	-0.0278***		
	(0.0033)	(0.0082)		
$ExtDep{\times}Bank{\times}Crisis$			-0.0056**	-0.0047*
			(0.0025)	(0.0024)
Size _{t-3}	-0.0962	0.0916	0.263**	0.0243
	(0.153)	(0.510)	(0.105)	(0.0243)
Observations	234	234	4,415	4,415
R-squared	0.333	0.320	0.712	0.888
Country FE	YES	YES	YES	
Industry FE	YES	YES	YES	
Year FE			YES	YES
Country-industry FE				YES

MOTIVATION	
0000	

Empirics 00000000000 CONCLUSION

Share of R&D in Total Investment

	$\Delta(R\&D/TI) = (F$	Panel regressions		
	(1)	(2)	(3)	(4)
ExtDep imes Bank	-0.0104***	-0.0278***		
	(0.0033)	(0.0082)		
$ExtDep{\times}Bank{\times}Crisis$			-0.0056**	-0.0047*
			(0.0025)	(0.0024)
Size _{t-3}	-0.0962	0.0916	0.263**	0.0243
	(0.153)	(0.510)	(0.105)	(0.0243)
Observations	234	234	4,415	4,415
R-squared	0.333	0.320	0.712	0.888
Country FE	YES	YES	YES	
Industry FE	YES	YES	YES	
Year FE			YES	YES
Country-industry FE				YES

MOTIVATION	
0000	

Empirics 00000000000 CONCLUSION

Share of R&D in Total Investment

	Δ (R&D/TI)= (R&D/TI) _{post} - (R&D/TI) _{pre}		Panel reg	gressions
	(1)	(2)	(3)	(4)
ExtDep imes Bank	-0.0104***	-0.0278***		
	(0.0033)	(0.0082)		
$ExtDep{\times}Bank{\times}Crisis$			-0.0056**	-0.0047*
			(0.0025)	(0.0024)
Size _{t-3}	-0.0962	0.0916	0.263**	0.0243
	(0.153)	(0.510)	(0.105)	(0.0243)
Observations	234	234	4,415	4,415
R-squared	0.333	0.320	0.712	0.888
Country FE	YES	YES	YES	
Industry FE	YES	YES	YES	
Year FE			YES	YES
Country-industry FE				YES

Banking crises vs balance sheet effects

	R&D		R	&D/TI
	(1)	(2)	(3)	(4)
ExtDep imesBank imesCrisis	-0.00943***	-0.0112***	-0.00617**	-0.00441**
	(0.00264)	(0.00330)	(0.00285)	(0.00209)
ExtDep imes Bank imes Recession	-0.00246	0.00181	-0.0242***	-0.00414
	(0.00626)	(0.00737)	(0.00765)	(0.00585)
Observations	4.080	4.080	4.103	4,103
R-squared	0.049	0.089	0.730	0.881
Country FE	YES		YES	
Industry FE	YES		YES	
Year FE	YES	YES	YES	YES
Country-industry FE		YES		YES

CONCLUSION

Alternative industry characteristics

-		R&D g	growth			R&L	D/TI	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Triple interact	tion terms: li	ndustry Chara	cteristic×Ban	k×Crisis				
ExtDep	-0.014*** (0.0039)	-0.0096*** (0.0030)	-0.0088*** (0.0029)	-0.0044 (0.0034)	-0.0064** (0.0027)	-0.0096*** (0.0029)	-0.011*** (0.0032)	-0.0096** (0.0039)
Tangible	-0.0001 (0.0005)				-0.0000 (0.0002)			
Small		-0.00907** (0.00364)				0.0047 (0.003)		
Durable			-0.0103* (0.0059)				0.0002 (0.0055)	
Intensity			. ,	-0.0113* (0.0066)			. ,	0.0078 (0.0057)
Country, Indu	stry, Time Fi	ixed effects						
Observations	3082	3545	2354	2247	3103	3558	2368	2262
R-squared	0.028	0.020	0.041	0.055	0.706	0.748	0.433	0.709

Robustness tests

- Different time pre/post crisis time frames
- Split sample analysis: banking crisis vs non banking crisis periods
- Inclusion of only countries that have experienced the 2008 GFC
- Model saturated with two-way fixed effects
- Include also countries that have not experienced systemic banking crises
- Alternative measures of financial dependence:
 - Bank dependence: Carlin & Mayer (2003) (Orbis firm level data)
 - Country measure of bank dependence to include bond market funding
- Falsification strategies: random crisis date; hypothetical crisis date in 2008 all countries

Motivation	Theoretical framework	Empirics	Conclusion
0000	0000000	000000000	

Conclusions

Theoretical model:

• Identify a new channel through which banking crises can impact long-run growth

Motivation	Theoretical framework	Empirics	Conclusion
0000	0000000	000000000	

Conclusions

Theoretical model:

- Identify a new channel through which banking crises can impact long-run growth
- Build a growth model in which financial sector distress impacts the composition of investment over the financial cycle which explains the low post-crisis growth

Motivation	Theoretical framework	Empirics	Conclusion
0000	0000000	000000000	

Conclusions

Theoretical model:

- Identify a new channel through which banking crises can impact long-run growth
- Build a growth model in which financial sector distress impacts the composition of investment over the financial cycle which explains the low post-crisis growth

Empirical findings:

• Show that industries that depend more on the banking sector reduce their R&D investments, as well as the share of R&D in total investment, disproportionately more following episodes of banking crises.

Policy implications:

• Policies that encourage R&D investment during periods of tight credit supply and in more financially constrained industries

Oana Peia

Banking crises and innovation 25 / 30

MOTIVATION THEC	DRETICAL FRAMEWORK	EMPIRICS	Conclusion
0000 0000	00000	000000000	

Thank you!

Motivating evidence

- Impact of investments in R&D investment on productivity growth:
 - Standard growth accounting framework: the elasticity of output to investments in R&D between 0.05 to 0.12 (larger than regular investment) (Guellec and van Pottelsberghe de la Potterie, 2001; Hall et al., 2010)
 - Impact of R&D is not only strongly positive, but also relatively fast: two periods in cross-country studies; 1-4 years in firm-level studies.
- Volatility of R&D:

27 / 30

Proof of investors' equilibrium

2 equations determine the threshold equilibrium.

1. The number of investors who run on the bank:

$$\ell = \operatorname{Prob}(x_i > x^* | C_1) = \operatorname{Prob}(C_1 + \epsilon_i > x^* | C_1) = 1 - rac{1}{2\epsilon}(x^* - C_1 + \epsilon),$$

since x_i is uniformly distributed over $[C_1 - \epsilon, C_1 + \epsilon]$. Define C^* the threshold cost at which the bank is illiquid:

$$\ell D + C^* = M + Y_1$$

Then: $x^* = C^* - \epsilon - \frac{2\epsilon}{rD}(M + Y_1 - C^*)$

Oana Peia

1

Proof of equilibrium

2. At the threshold a depositor is indifferent between withdrawing and leaving his funds in the bank:

$$Prob(C < C^*|x^*)rD = D,$$

given that C is uniform over $[x - \epsilon, x + \epsilon]$. which is equivalent to:

$$C^* - x^* = \frac{2\epsilon}{r} - \epsilon$$

Plunging this into the first equation gives:

$$C^* = M + Y_1 - \frac{D}{r}.$$

QED

Simulation of the economy

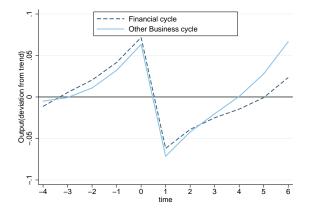


Figure: Dynamics of GDP around recessions