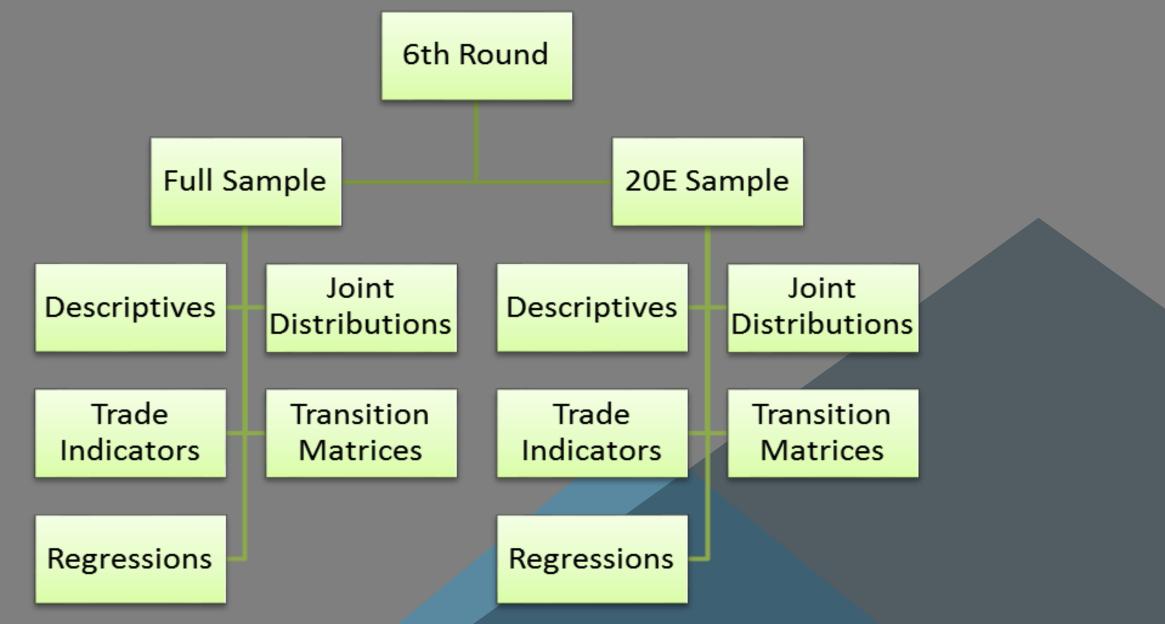
Technical Introduction to the

6th Vintage of the CompNet Dataset

Peter Haug, IWH


Outline

- What can you find in the CompNet database (6th round)?
- How to read the content?
- What can you do with it?
- How can you get access to the data?

Overview of indicators

Productivity and allocative efficiency	Financial	Trade	Competition	Labour
Labour and capital productivity	Investment ratio	% permanent exp.	Estimated and non- parametric price-	% firms that change employment between
VA and revenue TFP;	RoA	% sporadic exp.	cost margins	t and t+3 (t+1)
various estimation techniques	Cash holdings	Export intensity	Concentration of sales in top 10 firms	Share of high-growth firms
ULC	Leverage	Characteristics of top	of a sector	Job creation and job
Firm size	Financing gap	exporters		destruction rates
Firm size	Collateral	Productivity premium of	Herfindahl index	Wage premium paid by
Capital Intensity	Equity to Debt	exporters		firms
Marginal revenue productivity of inputs	Cash flow	Characteristics of		
	Implicit interest rate	firms that export AND import		
Static and dynamic allocative efficiency	Trade Credit/Debt			
	Debt burden			
	Credit constraint index			
	Share and characteristics of "zombie" firms			

6th vintage database: overall structure

File name conventions

Content_dimension_sample_countries .dta

- 1. *Content*: area of study covered by the dataset
- 2. *dimension*: level of aggregation of the database
- 3. sample: sample on which the dataset is built:
 - a. "full" : all firms with at least 1 employee
 - b. "20E" : all firms with at least 20 employees

"countries" indicates that the content is presented separately for each country, no matter what the dimension is.

Content – column variables

- variable_p1, *_p5, *_p10, *_p25, *_p50, * _p75, *_p95, *_p99: percentiles
- *variable_mean:* mean
- *variable_sd* : standard deviation
- variable_skew, variable_kurt: skewness and kurtosis
- variable_tot_mark: actual number of observations in sample with non-missing values
- variable_sum_weights: weighted number of observations base for descriptive statistics
- Format relevant for unconditional*, jd* and transition_matrix*

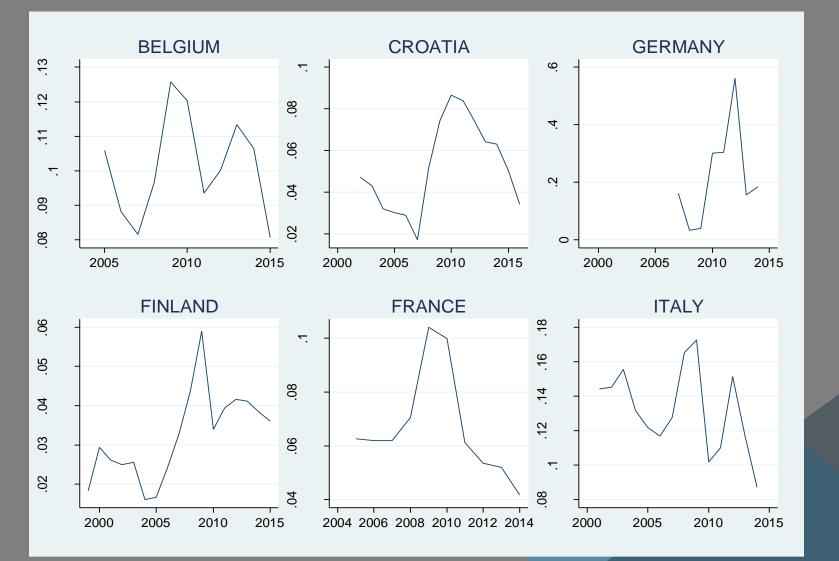
Descriptives

			Hilfe
gers values [daten] 65.460.584 k von 157.286.400 k	frei		X
• • \Data Segregation \6th Vintage_PPP Adjusted I	Databas	e\full\Descripti	ves PF 🕨 \star 🔻
★ Name	Erw.	Größe	Datum
<u></u>		<dir></dir>	04.10.2018 12:28
misallocation_mac_sector_all_full_countries	dta	366.469	14.09.2018 13:13
misallocation_sectors_all_full_countries	dta	1.886.710	14.09.2018 13:13
prod_decomp_countryfoster_full_countries	dta	205.754	14.09.2018 13:13
prod_decomp_countryop_full_countries	dta	124.970	14.09.2018 13:13
prod_decomp_mac_sectorfoster_full_countries	dta	630.841	14.09.2018 13:13
prod_decomp_mac_sectorop_full_countries	dta	348.379	14.09.2018 13:13
prod_decomp_sectorfoster_full_countries	dta	3.344.587	14.09.2018 13:13
prod_decomp_sectorop_full_countries	dta	1.643.723	14.09.2018 13:13
unconditional_country_full_countries	dta	3.354.711	14.09.2018 13:15
unconditional_mac_sector_full_countries	dta	15.533.688	14.09.2018 13:15
unconditional_macsec_szcl_full_countries	dta	70.959.726	14.09.2018 13:15
unconditional_nuts2_full_countries	dta	11.286.045	14.09.2018 13:15
unconditional_sector_full_countries	dta	91.737.917	14.09.2018 13:16
weighted_dm_imp_maccd_full_countries	dta	204.479	14.09.2018 13:16
weighted_dm_imp_mactl_full_countries	dta	218.603	14.09.2018 13:16
weighted_dm_imp_seccd_full_countries	dta	1.080.096	14.09.2018 13:16
weighted_dm_imp_sectl_full_countries	dta	1.172.930	14.09.2018 13:16

Descriptives

- *unconditional*.dta*: all productivity, financial, labour and competition indicators available in CompNet's database
- *prod_decomp_*.dta:* productivity decomposition measures á la Foster (foster) and Olley and Parkes (OP)
- *weighted_dm_imp_*.dta:* labor share weighted Dobbelaere Mairesse (2013) indicator
- *misallocation_*.dta:* contain the user dispersion measures of 46 productivity and markup variables like labour productivity, capital productivity or DeLoecker & Warzynski markups

Descriptives- example


🔚 Data Editor (Browse) - [unconditional_country_full_countries]

File Edit View Data Tools

💕 🖥 🛢 🖹 🗳 🍸 😜

	1C		CROATIA															
	country	year	D_~acCD_kurt	D_~acCD_mean	D_Zo~acCD_p1	D_Z~acCD_p10	D_Z~acCD_p25	D_Zo~acCD_p5	D_Z~acCD_p50	D_Z~acCD_p75	D_Z~acCD_p90	D_Z~acCD_p95	D_Z~acCD_p99	D_Zo~acCD_sd	D_~acCD_skew	D_Zombie_M	D_Zombie_M	D_~acTL_kurt
1	CROATIA	2002					-							-		8483	8490	
2	CROATIA	2003														9054.9998	9065	
3	CROATIA	2004					-									8990.9999	9003	15.77748
4	CROATIA	2005					-									9074.0001	9085	17.21577
5	CROATIA	2006					-									9922.0001	9934	18.03596
6	CROATIA	2007					-									10230	10245	19.341
7	CROATIA	2008				-	-									10815	10830	19.23591
8	CROATIA	2009					-									10937	10945	17.70056
9	CROATIA	2010														11668	11686	16.99108
10	CROATIA	2011					-									11799	11817	17.26839
11	CROATIA	2012														11544	11562	16.3528
12	CROATIA	2013														11964	11986	17.70478
13	CROATIA	2014														12249	12268	19.27154
14	CROATIA	2015														12361	12378	18.92116
15	CROATIA	2016														12361	13150	18.37629
16	FINLAND	1999	1.736643	.6971802	0	0	0	0	1	1	1	1	1	.4594922	8582793	25864	16134	
17	FINLAND	2000	1.665883	.688887	0	0	0	0	1	1	1	1	1	.4629631	8160164	25796	16308	
18	FINLAND	2001	1.652442	.6872407	0	0	0	0	1	1	1	1	1	.4636314	8077385	25799.999	16376	5.626716
19	FINLAND	2002	1.688902	.691652	0	0	0	0	1	1	1	1	1	.4618254	8300015	25799.001	16226	5.57304
20	FINLAND	2003	1.702433	.6932463	0	0	0	0	1	1	1	1	1	.4611607	8381126	25503.999	16000	5.731252
21	FINLAND	2004	1.697496	.6926671	0	0	0	0	1	1	1	1	1	.461403	8351621	25366	15978	5.693591
22	FINLAND	2005	1.570225	.6766137	0	0	0	0	1	1	1	1	1	.4677835	7551326	25189.999	15834	5.670615
23	FINLAND	2006	1.679322	.6905094	0	0	0	0	1	1	1	1	1	.4622984	82421	23221	15717	5.671486
24	ETMI AND	2007	1 67701	600000	0	٥	٥	0	1	1	1	1	1	4622720	_ 0000000	22710	16016	E 07747

Descriptives – Share of credit constrained firms in manufacturing (20E)

 File: unconditional_ma
 c_sector_20e_cou
 ntries.dta

Variable:
 SAFE_mean

Joint Distributions

🖵 s 🔻 [daten] 65.460.584 k von 15	7.286.400 k frei			\
✓ (\6th Vintage_PPP Adjusted Databa		ributions Pl	PP_new*.*	* 🔻
Name	+Erw.	Größe	Datum	Attr.
€ []		<dir></dir>	27.09.2018 17	:22 —c
]] [jd_d_zombie_ nothg]		<dir></dir>	14.09.2018 13	:17—c
] [jd_d_zombie_intcov]		<dir></dir>	14.09.2018 13	:17—c
) [jd_d_zombie_mu_maccd]		<dir></dir>	14.09.2018 13	: 18 —c
] [jd_d_zombie_mu_mactl]		<dir></dir>	14.09.2018 13	: 18 —c
<pre>ijd_d_zombie_mu_seccd</pre>		<dir></dir>	14.09.2018 13	: 19 —c
) [jd_d_zombie_mu_sectl]		<dir></dir>	14.09.2018 13	: 19 —c
] [jd_d_zombie_negprof]		<dir></dir>	14.09.2018 13	:2 0 —c
) [jd_d_zombie_nothg]		<dir></dir>	14.09.2018 13	:2 0 —c
]] [jd_dummy_exp]		<dir></dir>	14.09.2018 13	: 16 —c
퉬 (jd_lnsr)		<dir></dir>	27.09.2018 17	:21 —c
퉬 [jd_invest_ratio]		<dir></dir>	14.09.2018 13	:2 3 —c
🗼 [jd_l]		<dir></dir>	27.09.2018 17	:21 —c
🔰 (jd_lnlprod)		<dir></dir>	14.09.2018 13	: 28 —c
<pre>ijd_Intfp_rev_maccd]</pre>		<dir></dir>	27.09.2018 17	:21 —c
] [jd_Intfp_rev_mactl]		<dir></dir>	27.09.2018 17	:21 —c
<pre>[jd_Intfp_rev_seccd]</pre>		<dir></dir>	27.09.2018 17	:21 —c
<pre>[jd_Intfp_rev_sect]</pre>		<dir></dir>	27.09.2018 17	:22 —c
]] [jd_Intfp_va_maccd]		<dir></dir>	27.09.2018 17	:22 —c
] [jd_Intfp_va_seccd]		<dir></dir>	27.09.2018 17	:22 —c
퉬 [jd_safe]		<dir></dir>	27.09.2018 17	:22 —c
] [jd_t10_exp_country]		<dir></dir>	14.09.2018 13	: 44 —c

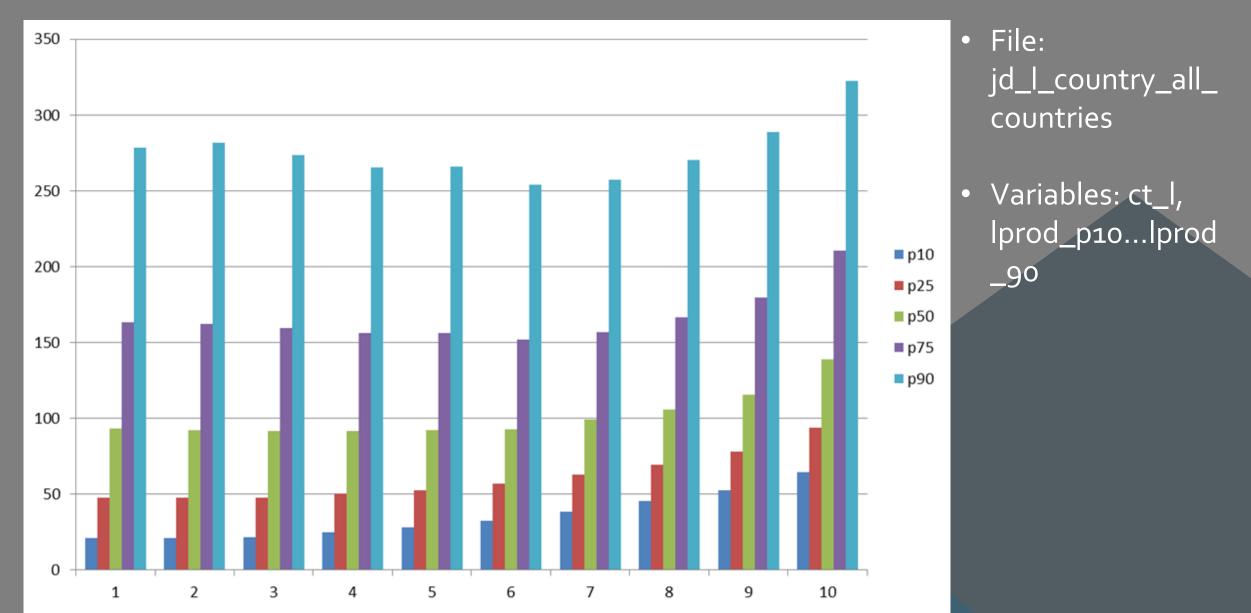
▼ ∢ \6th Vintage_PPP Adjusted Database\fu	l\Joint d	istributions PP	P_new\jd_l*.*	* 🗸
Name	∔Erw .	Größe	Datum	Attr.
▲ []		<dir></dir>	27.09.2018 17:2	1—c
jd_l_sector_full_countries	dta	754.774.937	27.09.2018 16:0	5-a-c
jd_l_nuts2_full_countries	dta	79.572.926	27.09.2018 16:0	5-a-c
jd_l_macsec_szcl_full_countries	dta	526.327.452	27.09.2018 16:00	6-a-c
jd_l_mac_sector_full_countries	dta	118.717.608	27.09.2018 16:07	7-a-c
jd_l_country_full_countries	dta	15.645.538	27.09.2018 16:07	7-a-c

Joint Distributions

- jd_conditional_variable_dimension_sample_countries.dta: actually conditional (empirical) distributions
- Each line in jd-files : Conditional on the fact that a dummy variable has a certain value (e.g. firm is exporter) or the firm belongs to a certain centile/size class of a continuous variable (e.g. centiles of the number of employees) the empirical distribution (mean, percentiles, extrema, moments, numbers of observations) of a certain column variable is as follows

Joint distribution example

Data Editor (Edit) - [jd_l_country_full_countries]


6380

File Edit View Data Tools

🗳 🖩 🗣 🖻 🛍 🛃 🗳 🍸 -

	IC.		6380															
	country	year	ct_l	D_~acCD_kurt	D_~acCD_mean	D_Zo~acCD_p1	D_Z~acCD_p10	D_Z~acCD_p25	D_Zo~acCD_p5	D_Z~acCD_p50	D_Z~acCD_p75	D_Z~acCD_p90	D_Z~acCD_p95	D_Z~acCD_p99	D_Zo~acCD_sd	D_~acCD_skew	D_Zombie_M	D_Zombie_M I
1	BELGIUM	2004	10	3.108734	.2062314	0	0	0	0	0	0	1	1	1	.4046303	1.452148	34865.389	6380
2	BELGIUM	2004	20	3.067896	.2081126	0	0	0	0	0	0	1	1	1	.4059895	1.438018	34885.568	6408
3	BELGIUM	2004	30	3.008794	.2109027	0	0	0	0	0	0	1	1	1	.4079813	1.417319	34881.81	6398
4	BELGIUM	2004	40	3.379691	.1946271	0	0	0	0	0	0	1	1	1	.3959436	1.542625	34998.399	6545
5	BELGIUM	2004	50	3.332218	.1965573	0	0	0	0	0	0	1	1	1	.3974245	1.52716	35058.117	6669
6	BELGIUM	2004	60	3.14684	.2045092	0	0	0	0	0	0	1	1	1	.4033724	1.46521	35125.849	6753
7	BELGIUM	2004	70	3.549116	.1880583	0	0	0	0	0	0	1	1	1	.3907872	1.596595	35206.871	6858
8	BELGIUM	2004	80	3.901098	.1758156	0	0	0	0	0	0	1	1	1	.3806906	1.703261	35266.857	6943
9	BELGIUM	2004	90	3.699831	.1826004	0	0	0	0	0	0	1	1	1	.3863657	1.643116	35366.267	7112
10	BELGIUM	2004	100	3.504976	.1897235	0	0	0	0	0	0	1	1	1	.3920924	1.582712	37719.629	19249
11	BELGIUM	2004		2.860119	.2182998	0	0	0	0	0	0	1	1	1	.4131185	1.363862	41116.24	7798
12	BELGIUM	2005	10	3.921694	.1751513	0	0	0	0	0	0	1	1	1	.3801246	1.709296	34892.826	6735
13	BELGIUM	2005	20	3.571143	.1872389	0	0	0	0	0	0	1	1	1	.390132	1.603479	34943.59	6782
14	BELGTIM	2005	30	3 775971	1799693	٥	0	٥	0	0	0	1	1	1	3841902	1 666124	34944 775	6767

Joint distribution example: Labour productivity distribution by size decile in Sweden 2011

Transition Matrices

				н	ilfe
🔤 s 💌 [daten] 65.460.584 k von 157.286.400 k fr	rei			1	
+ \Compnet\Data\Data Segregation\6th Vintage_F	PPP Adjusted	Database\full\Tr	ansition Matrice 🕨	*	•
Name	∔Erw .	Größe	Datum	Attr.	
[]		<dir></dir>	14.09.2018 14:19	c	
transition_matrix_sector_full_countries	dta	1.404.441.544	14.09.2018 13:15	-ac	
transition_matrix_mac_sector_full_countries	dta	247.336.215	14.09.2018 13:13	-a-c	
transition_matrix_country_full_countries	dta	30.440.458	14.09.2018 13:13	-ac	

Transition matrices

- Same structure as joint distributions
- Conditional variable TRmat_l_: the quintile of labour transition

 fromq*_to_* (*=1 to 5 or missing): observations that have changed from the * labour quintile three years ago to currently the *th labour quintile

Transition Matrices

🔢 Data Ed	itor (Browse) - [transition_m	atrix_country_ful	l_countries]															-
	View Data																		
i 🚽 🖉		🔒 🍸 👳																	
	country[1]		BELGIUM																
	country	year	TRmat_1_co~y	D_~acCD_kurt	D_~acCD_mean	D_Zo~acCD_p1	D_Z~acCD_p10	D_Z~acCD_p25	D_Zo~acCD_p5	D_Z~acCD_p50	D_Z~acCD_p75	D_Z~acCD_p90	D_Z~acCD_p95	D_Z~acCD_p99	D_Zo~acCD_sd	D_~acCD_skew	D_Zombie_M	D_Zombie_M	D_~acTL_k
1	BELGIUM	2004	from_qto	2.860119	.2182998	0	0	0	0	0	0	1	1	1	.4131185	1.363862	41116.24	7798	
2	BELGIUM	2004	from_qto_1	3.075386	.2077648	0	0	0	0	0	0	1	1	1	.4057168	1.44062	118937.14	21818	
3	BELGIUM	2004	from_qto_2	3.30991	.1974787	0	0	0	0	0	0	1	1	1	.3981128	1.519839	64515.531	12245	
4	BELGIUM	2004	from_qto_3	3.422619	.1929165	0	0	0	0	0	0	1	1	1	.3946024	1.556476	70801.906	13736	
5	BELGIUM	2004	from_qto_4	3.930755	.1748607	0	0	0	0	0	0	1	1	1	.3798592	1.711945	74877.479	16722	
6	BELGIUM	2004	from_qto_5	3.17687	.2031739	0	0	0	0	0	0	1	1	1	.4023745	1.475422	24242.699	14794	
7	BELGIUM	2005	from_qto	3.278951	.198773	0	0	0	0	0	0	1	1	1	.3991003	1.50962	42444.776	8486	
8	BELGIUM	2005	from_qto_1	3.728925	.1815854	0	0	0	0	0	0	1	1	1	.3855109	1.651946	118146.68	22887	
9	BELGIUM	2005	from_qto_2	4.09693	.1697062	0	0	0	0	0	0	1	1	1	.375389	1.75981	64413.268	12873	
10	BELGIUM	2005	from_qto_3	4.145613	.1682561	0	0	0	0	0	0	1	1	1	.3741066	1.773588	70765.081	14362	
11	BELGIUM	2005	from_qto_4	4.756645	.152037	0	0	0	0	0	0	1	1	1	.359067	1.938207	76039.598	17491	
12	BELGIUM	2005	from_qto_5	3.417174	.1931317	0	0	0	0	0	0	1	1	1	.3947683	1.554726	24720.6	15367	
13	BELGIUM	2006	from_qto	3.992322	.1729129	0	0	0	0	0	0	1	1	1	.3781936	1.729833	41618.442	8733	
14	BELGIUM	2006	from_qto_1	4.209544	.166391	0	0	0	0	0	0	1	1	1	.372439	1.79152	119194.55	24034	14.36
15	BELGIUM	2006	from_qto_2	4.691965	.1535982	0	0	0	0	0	0	1	1	1	.3605766	1.921449	64158.348	13375	11.0
16	BELGIUM	2006	from_qto_3	4.866984	.1494483	0	0	0	0	0	0	1	1	1	.3565416	1.966465	71959.662	15190	11.98
17	BELGIUM	2006	from_qto_4	5.378518	.1385486	0	0	0	0	0	0	1	1	1	.345485	2.092491	74874.478	17009	14.56
18	BELGIUM	2006	from_qto_5	3.83226	.1780753	0	0	0	0	0	0	1	1	1	.3825872	1.682932	27675.523	17281	30.12
19	BELGIUM	2007	from_qto	4.390859	.1613295	0	0	0	0	0	0	1	1	1	.3678614	1.841429	32941.377	6843	
20	BELGIUM	2007	from_qto_1	4.666029	.1542336	0	0	0	0	0	0	1	1	1	.3611888	1.914688	56035.396	11103	35.4
21	BELGIUM	2007	from_qto_2	5.037646	.1456196	0	0	0	0	0	0	1	1	1	.352772	2.009389	18255.397	3710	29.60
22	BELGIUM	2007	from_qto_3	5.164937	.1428935	0	0	0	0	0	0	1	1	1	.350021	2.040818	14946.406	3079	28.92
23	BELGIUM	2007	from_qto_4	6.092665	.1258059	0	0	0	0	0	0	1	1	1	.3317013	2.256693	10901.452	2342	37.34
24	BELGIUM	2007	from_qto_5	5.017079	.1460702	0	0	0	0	0	0	1	1	1	.3532881	2.004265	2561.2023	1585	36.81
25	BELGIUM	2007	from_q1_to	4.249624	.1652437	0	0	0	0	0	0	1	1	1	.3715242	1.802671	7532.3939	1500	
26	BELGIUM	2007	from_q1_to_1	4.696371	.1534908	0	0	0	0	0	0	1	1	1	.3604769	1.922595	53198.477	10607	10.66
27	BELGIUM	2007	from_q1_to_2	4.959532	.1473465	0	0	0	0	0	0	1	1	1	.3545048	1.989857	16056.817	3298	9.7
28	BELGIUM	2007	from_q1_to_3	4.915958	.1483284	0	0	0	0	0	0	1	1	1	.3555646	1.978878	6119.302	1276	9.675
29	BELGIUM	2007	from_q1_to_4	5.935042	.1284073	0	0	0	0	0	0	1	1	1	.334991	2.221495	1743.6878	374	15.57
30	BELGIUM	2007	from_q1_to_5	5.85232	.1298173		0	0	0	0	0	1	1		.338529	2.202798	118.86304	70	27.53
31	BELGIUM	2007	from_q2_to	5.568954	.1348978	0	0	0	0	0	0	1	1	1	.3422732	2.137511	1291.2975	260	
32	BELGIUM	2007	from_q2_to_1	4.754596	.1520859	0	0	0	0	0	0	1	1	1	.359181	1.937678	11336.67	2336	11.75

Regression

- Estimations of production functions (Cobb-Douglas, Translog)
- Macro sector and sector levels
- Exel- and .txt versions available
- Estimation method: Instrumental variable approach with lags and interaction terms (Woolridge 2009)
- Trade module: export deciles, export premiums

Regressions – CD-production function

	А	В	С	D	E	F	G	Н	I	J
1										
2		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
3	VARIABLES	Nace rev.2 mac-sector: 1	Nace rev.2 mac-sector: 2	Nace rev.2 mac-sector: 3	Nace rev.2 mac-sector: 4	Nace rev.2 mac-sector: 5	Nace rev.2 mac-sector: 6	Nace rev.2 mac-sector: 7	Nace rev.2 mac-sector: 8	Nace rev.2 mac-sector: 9
4										
	Inl	0.366***	0.482***	0.753***	0.769***	0.285***	0.676***	0.110***	0.765***	0.710***
6		(0.00600)	(0.00545)	(0.00566)	(0.0111)	(0.0119)	(0.00898)	(0.0141)	(0.00522)	(0.00909)
7	Inm	0.661***	0.521***	0.451***	0.255***	0.932***	0.359***	1.235***	0.331***	0.403***
8		(0.0135)	(0.00887)	(0.00658)	(0.00791)	(0.0299)	(0.0127)	(0.0389)	(0.00540)	(0.0116)
9	Inrk	0.0141***	0.0335***	0.0144***	0.0772***	0.0174***	0.0867***	-0.188***	0.0504***	0.0813***
10		(0.00330)	(0.00184)	(0.00191)	(0.00494)	(0.00547)	(0.00423)	(0.0161)	(0.00225)	(0.00497)
11	ln_K_l1	0.0753***	0.0244**	-0.0441***	0.00542	0.0715***	0.0984***	0.0260	-0.0164***	-0.0676***
12		(0.0159)	(0.00990)	(0.00834)	(0.0195)	(0.0202)	(0.00851)	(0.0418)	(0.00597)	(0.0120)
13	ln_M_l1	-0.251***	-0.144***	-0.115***	-0.124***	0.169***	-0.154***	-0.319***	-0.168***	-0.113***
14		(0.0258)	(0.0136)	(0.00667)	(0.0103)	(0.0425)	(0.00895)	(0.0254)	(0.00559)	(0.00877)
15	k2_l1	0.00232	0.00409**	0.00615***	0.00793*	0.0169***	0.0179***	-0.0658***	0.0633***	0.0538***
16		(0.00354)	(0.00204)	(0.00221)	(0.00464)	(0.00369)	(0.00200)	(0.00708)	(0.00248)	(0.00360)
17	m2_l1	0.0384***	0.0332***	-0.00681***	0.0165***	-0.0599***	0.0593***	-0.0102	0.000418	0.0391***
18		(0.00453)	(0.00336)	(0.00147)	(0.00192)	(0.0125)	(0.00308)	(0.00703)	(0.00135)	(0.00238)
19	k3_l1	0.00139***	0.00125***	0.00151***	0.000689	0.000863***	-0.00196***	0.00829***	-0.00629***	-0.00325***
20		(0.000484)	(0.000349)	(0.000215)	(0.000450)	(0.000275)	(0.000274)	(0.000553)	(0.000327)	(0.000375)
21	m3_l1	-0.000833	-0.00147***	0.00441***	0.00427***	0.00470***	-0.00300***	-0.00648***	0.00662***	0.00121***
22		(0.000543)	(0.000270)	(0.000150)	(0.000274)	(0.00112)	(0.000356)	(0.000842)	(0.000202)	(0.000291)
23	km_l1	-0.0188***	-0.0172***	0.0210***	0.00552	-0.0358***	-0.0361***	0.113***	0.0244***	-0.0148***
24		(0.00590)	(0.00384)	(0.00264)	(0.00459)	(0.00689)	(0.00434)	(0.00902)	(0.00252)	(0.00365)
25	k2m_l1	-0.00100	-0.00119**	-0.00219***	0.00110	-0.00241**	0.00413***	-0.0161***	0.00172***	0.000930*
26		(0.00135)	(0.000522)	(0.000329)	(0.000820)	(0.000955)	(0.000556)	(0.00117)	(0.000454)	(0.000538)
27	km2_l1	-0.000394	0.000768*	-0.00472***	-0.00734***	0.00218*	-0.00331***	0.00942***	-0.0116***	-0.00632***
28		(0.00144)	(0.000439)	(0.000288)	(0.000590)	(0.00119)	(0.000635)	(0.00117)	(0.000392)	(0.000510)
29										
30	Observations	159,951	283,153	412,690	116,338	112,355	78,140	157,553	212,394	103,758
31	R-squared	0.946	0.908	0.696	0.810	0.910	0.796	0.501	0.766	0.800
32	Hansen J statistic	0	0	0	0	0	0	0	0	0
33	Robust standard errors in	parentheses								
34	*** p<0.01, ** p<0.05, * p<	0.1								

Trade module

- Full and 20E
- Similar structure: descriptives, joint distributions, regression and transition matrices
- Main differences:
 - contains export-related variables
 - For most countries: only manufacturing business

Trade module – descriptives

- Only *unconditional*.dta* files
- Selection of trade-related variables:
 - Export dummies e.g Dummy_exp
 - Firm export ratios, e.g. exp_ratio, exp_vad, imp_intensity
 - Export shares: exp_share_sector/country, tot_exp_value_sector/_country,
 - Ranking t5/t10_exp_sec, t5/t10_exp_country

Trade module – joint destributions

- Reduced number of joint distributions
 - Focus on export-related conditional variables
 - and productivity variables

Trade module – regressions

- export_deciles: determinants of probability to export (weighted Probit regression)
- export_premium: determinants of several productivity measures including export dummy (weighted pooled linear regressions)

Trade module - regressions

1 • • • • • • • • • • • • • • • • • • •													
s:\PROJEKTE\Compnet\Data\Data Segregation\6th Vintage_TRADE_PPP corrected\20e\regressions*.*													
↑ Name	Erw.	Größe	Datum	Attr.									
1		<dir></dir>	21.09.2018 15:	09 —c									
export_deciles]		<dir></dir>	21.09.2018 15:	09 —c									
export_premium]		<dir></dir>	21.09.2018 15:	09—c									

🥐 s 💌 [daten] 21.215.372 k von 157.286.400 k frei

s:\PROJEKTE\Compnet\Data\Data Segregation\6th Vintage_TRADE_PPP corrected\20e\regressions\export_deciles\excel*.*

↑ Name	Erw.	Größe	Datum	Attr.
६ []		<dir></dir>	16.10.2018 12:39) —c
Export_deciles_Inkprod_Croatia_20e	xls	118.194	05.07.2018 12:52	2-a-c
Export_deciles_Inkprod_CZECH_REPUBLIC_20e	xls	90.141	06.07.2018 11:24	-ac
Export_deciles_Inkprod_FINLAND_20e	xls	108.596	05.07.2018 13:20)-a-c
Export_deciles_Inkprod_ITALY_20e	xls	120.482	08.06.2018 16:51	-ac
Export_deciles_Inkprod_LITHUANIA_20e	xls	116.144	14.03.2018 12:17	/-ac
Export_deciles_Inkprod_SLOVENIA_20e	xls	119.011	22.05.2018 09:18	3-a-c
Export_deciles_Inkprod_Sweden_20e	xls	94.278	04.07.2018 14:37	/-ac
Export_deciles_Inlprod_Croatia_20e	xls	109.545	05.07.2018 12:52	2-a-c
Export_deciles_Inlprod_CZECH REPUBLIC_20e	xls	93.295	06.07.2018 11:24	-a-c
Export_deciles_Inlprod_FINLAND_20e	xls	105.839	05.07.2018 13:20)-a-c

Trade module – regressions – export_deciles

	А	В	С	D	E	F	G	Н	- I	J	K	L	М	N	0	Р	Q
1																	
2		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
3	VARIABLES	Dummy_exp	Dummy_ex														
4																	
5	10.ct_Inlprod	-2.264***	-0.918***	0.812**	-2.255***	-0.703	-0.695**	-1.250***	-1.280***	-1.176***	-3.351***	-1.618***	0.142	-0.659***	-0.514***	-0.996***	-1.089***
6		(0.147)	(0.248)	(0.365)	(0.580)	(0.755)	(0.316)	(0.253)	(0.419)	(0.250)	(0.519)	(0.178)	(0.141)	(0.242)	(0.158)	(0.217)	(0.194)
7	20.ct_Inlprod	-1.939***	-0.614**	1.398***	-1.703***	-0.146	-0.471	-1.202***	-0.984***	-0.487**	-2.148***	-1.035***	-0.0796	-0.563**	-0.322**	-0.568***	-1.008***
8		(0.141)	(0.253)	(0.364)	(0.582)	(0.757)	(0.312)	(0.238)	(0.253)	(0.224)	(0.502)	(0.163)	(0.116)	(0.240)	(0.144)	(0.185)	(0.179)
9	30.ct_Inlprod	-1.285***	-0.982***	1.695***	-0.879	0.0179	-0.149	-0.612***	-0.844***	-0.795***	-1.705***	-0.816***	-0.0630	-0.637***	-0.291**	-0.496***	-0.780***
10		(0.140)	(0.233)	(0.369)	(0.597)	(0.770)	(0.313)	(0.231)	(0.233)	(0.188)	(0.459)	(0.145)	(0.114)	(0.215)	(0.140)	(0.164)	(0.177)
11	40.ct_Inlprod	-0.982***	-0.512**	1.768***	-1.085*	0.00861	-0.331	-0.676***	-0.527**	-0.760***	-1.867***	-0.511***	-0.193*	-0.372*	-0.0759	-0.254*	-0.390**
12		(0.141)	(0.234)	(0.377)	(0.611)	(0.794)	(0.314)	(0.220)	(0.240)	(0.171)	(0.443)	(0.138)	(0.115)	(0.209)	(0.140)	(0.154)	(0.179)
13	50.ct_Inlprod	-0.692***	-0.614***	2.129***	-0.951	0.516	-0.284	-0.527**	-0.556***	-0.548***	-1.551***	-0.635***	0.0230	-0.157	0.0339	-0.271*	-0.0169
14		(0.142)	(0.212)	(0.386)	(0.629)	(0.825)	(0.319)	(0.214)	(0.210)	(0.164)	(0.444)	(0.134)	(0.120)	(0.213)	(0.140)	(0.162)	(0.183)
15	60.ct_Inlprod	-0.395***	-0.613***	2.032***	-0.960	-0.0749	-0.219	-0.418*	-0.428**	-0.472***	-1.719***	-0.627***	-0.148	-0.0296	0.0998	0.0213	-0.0142
16		(0.144)	(0.222)	(0.400)	(0.672)	(0.842)	(0.326)	(0.219)	(0.202)	(0.166)	(0.434)	(0.134)	(0.121)	(0.223)	(0.141)	(0.162)	(0.184)
17	70.ct_Inlprod	-0.324**	-0.485**	2.009***		-0.908	0.254	-0.512**	-0.388*	-0.378**	-1.757***	-0.530***	0.0927	-0.0329	0.209	-0.0337	-0.0700
18		(0.145)	(0.225)	(0.422)		(0.856)	(0.346)	(0.220)	(0.201)	(0.164)	(0.448)	(0.134)	(0.126)	(0.231)	(0.143)	(0.154)	(0.185)
19	80.ct_Inlprod	-0.0106	-0.159	2.272***		-0.0574	-0.197	-0.0778	-0.0756	-0.147	-0.577	-0.369***	0.218*	-0.125	0.189	0.146	-0.0945
20		(0.151)	(0.221)	(0.470)		(0.874)	(0.356)	(0.224)	(0.211)	(0.166)	(0.459)	(0.134)	(0.123)	(0.225)	(0.147)	(0.159)	(0.192)
21	90.ct_Inlprod	0.0972	0.000984	1.032**			0.120	0.258	-0.211	0.229	-0.260	-0.175	-0.0217	-0.0117	0.225	0.126	0.225
22		(0.160)	(0.218)	(0.504)			(0.363)	(0.251)	(0.211)	(0.166)	(0.610)	(0.143)	(0.124)	(0.227)	(0.154)	(0.160)	(0.197)
	100o.ct_Inlprod	-	-	-			-	-	-	-	-	-	-	-	-	-	-
24																	
	3.szclass	-0.928***	-1.700***	-0.732***	-1.211***	-0.398*	-1.165***	-1.031***	-1.910***	-0.706***	-1.909***	-1.221***	-1.222***	-0.821***	-1.307***	-0.821***	-0.840***
26		(0.0708)	(0.260)	(0.122)	(0.215)	(0.223)	(0.152)	(0.163)	(0.184)	(0.130)	(0.351)	(0.0802)	(0.0850)	(0.104)	(0.0733)	(0.0980)	(0.0718)
	4.szclass	-0.237***	-1.171***	-0.314***	-0.417*	-0.261	-0.109	-0.283*	-0.626***	0.0588	-0.437	-0.475***	-0.269***	0.238**	-0.446***	-0.0863	-0.203***
28		(0.0668)	(0.244)	(0.119)	(0.215)	(0.226)	(0.152)	(0.157)	(0.184)	(0.132)	(0.344)	(0.0769)	(0.0806)	(0.102)	(0.0710)	(0.0979)	(0.0671)
	5o.szclass	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30		+ + + +	+ +			4 4		4 4			+ +				+ +	+ + + +	
	2005.year	-0.367***	0.460**	-0.0730	0.555***	0.508**	0.0985	0.463**	-0.00763	0.184	0.761**	0.612***	0.0145	0.307*	0.226**	0.801***	0.343***
32		(0.102)	(0.216)	(0.161)	(0.202)	(0.249)	(0.173)	(0.196)	(0.206)	(0.176)	(0.325)	(0.115)	(0.125)	(0.184)	(0.0934)	(0.161)	(0.125)
	2006.year	-0.319***	0.668***	0.00900	0.173	0.814***	0.211	0.493**	0.325	0.262	0.746**	0.618***	0.156	0.243	0.174*	0.761***	0.449***
34		(0.102)	(0.221)	(0.165)	(0.207)	(0.256)	(0.172)	(0.197)	(0.204)	(0.172)	(0.375)	(0.115)	(0.127)	(0.179)	(0.0922)	(0.157)	(0.127)
	2007.year	-0.203**	0.675***	0.0194	0.381*	0.676***	0.297*	0.469**	0.112	0.479***	1.064***	0.363***	0.187	0.402**	0.243***	0.745***	0.498***
36		(0.102)	(0.224)	(0.161)	(0.199)	(0.251)	(0.174)	(0.192)	(0.200)	(0.176)	(0.376)	(0.109)	(0.128)	(0.183)	(0.0919)	(0.153)	(0.126)
	2008.year	-0.178*	0.655***	-0.130	0.275	0.541**	0.154	0.254	0.269	0.256	1.709***	0.437***	0.144	0.483***	0.110	0.706***	0.279**
38		(0.0954)	(0.218)	(0.163)	(0.191)	(0.247)	(0.167)	(0.183)	(0.188)	(0.171)	(0.383)	(0.0993)	(0.123)	(0.179)	(0.0842)	(0.148)	(0.119)
	2009.year	-0.247***	0.644***	0.0693	0.474**	0.424	0.266	0.372**	0.150	0.0986	0.927***	0.393***	0.275**	0.283	0.312***	0.684***	0.421***
40		(0.0952)	(0.220)	(0.166)	(0.195)	(0.261)	(0.168)	(0.185)	(0.185)	(0.171)	(0.315)	(0.100)	(0.124)	(0.175)	(0.0863)	(0.145)	(0.123)
	2010.year	-0.291***	0.354	0.0196	0.397**	0.452*	0.162	0.425**	0.0919	0.135	0.776**	0.358***	0.186	0.0709	0.159*	0.487***	0.267**
42		(0.0965)	(0.220)	(0.162)	(0.194)	(0.251)	(0.169)	(0.180)	(0.186)	(0.170)	(0.377)	(0.101)	(0.126)	(0.176)	(0.0859)	(0.147)	(0.119)

Trade module – regressions – export premiums

Da	atei Start Einfügen	Seitenlayout	Formeln Daten	Überprüfen Ans	
	🖰 👗 Ausschneiden	Calibri	· 10 · A A	= =	
	La Kopieren ▼				
Eint	Format übertragen	F K U -	🖽 - 🧆 - 🗛 -		
	Zwischenablage 🕞 Schriftart 🕞 Aust				
A81 - fx 5o.szclass					
	A	В	С	D	
1		(1)			
2	MADIARIES	(1)	(2)	(3)	
3	VARIABLES	Export_premi	umi Export_premium	n2 Export_premium3	
5	1.Dummy_exp	0.0866***	F	0.00314	
6		(0.00716)		(0.0282)	
7	11.sector	0.402***	-0.0483*	0.588***	
48		(0.0212)	(0.0139)	(0.0481)	
49	33.sector	0.0313***	· -0.0174	0.0654***	
50		(0.0119)	(0.0112)	(0.0183)	
51	1.crisis	0.0729***	• -0.136***	0.0351**	
52		(0.0123)	(0.00563)	(0.0140)	
53	2.crisis	0.0828***		0.0389***	
54		(0.00784)		(0.0102)	
55	3.szclass	3.713***	0.00893	-0.180***	
56		(0.00847)		(0.0264)	
57	4.szclass	3.757***	-0.00529	-0.138***	
58	F	(0.00918)	(0.00687)	(0.0271)	
59 60	5.szclass	3.885***			
61	Ob.crisis#Ob.Dummy_exp	(0.0118)		- o	
62	ob.crisis#ob.builiny_exp	(0)		(0)	
63	Ob.crisis#10.Dummy_exp	0		0	
64	/	(0)		(0)	
65	1o.crisis#0b.Dummy_exp	0		0	
66		(0)		(0)	
67	1.crisis#1.Dummy_exp	-0.0350**		0.0648	
68		(0.0163)		(0.0563)	
69	2o.crisis#0b.Dummy_exp	0		0	
70		(0)		(0)	
71	2.crisis#1.Dummy_exp	0.0405***	•	0.00132	
72		(0.0106)		(0.0400)	
73	1.Dummy_exp_3y		0.0100**		
74	1. Dummer and		(0.00418)		
75	1.Dummy_exp_new		0.00939 (0.0128)		
77	1.Dummy_stop_exp		0.0128)		
78	2.5 diminy_stop_exp		(0.0130)		
79	1.Dummy_exp_switch		-0.00379		
80			(0.0174)		
82					
83	Constant		0.0377***	3.884***	
84			(0.00889)	(0.0276)	
85					
86		36,053	30,529	6,317	
87	R-squared	0.987	0.023	0.126	
88	Robust standard errors in par	entheses			
89	*** p<0.01, ** p<0.05, * p<0.1				
90					

😿 | 🔛 🗐 👻 🕲 🖃 🖵

- File : Export_premium_Inlprod_FINLAND_20e
- Export premium 1: log(labour productivity) all observations
- Export premium 2: Change in log(labour productivity) all obervations
- Export premium 3: log(labour productivity) of firms that have not exported for the past three years (but might have in the current period)
- crisis: o before 2008, 1: 2008-2009, 2: after
 2009

How to get access to the data set

- Please fill in the online request form https://www.comp-net.org/data/
- Provide the additional information, e.g. attach a CV
- Decision on short notice
- A word of warning: Some files are large!

Thank you for your attention!

References

- Dobbelaere, S., & Mairesse, J. (2013). "Panel data estimates of the production function and product labour market imperfections". Journal of Applied Econometrics. John Wiley & Sons, Ltd., vol 28(1), 1-46.(2013)
- Wooldridge, J. (2009): On estimating firm-level production functions using proxy variables to control for unobservable, Econonomic Letters , 104(3):112-114.

Data sources and coverage

- Original micro data based on financial enterprise statistics or business registers
- Data provided by national central banks or statistical offices of about 18 European countries
- Data privacy protection: Stata code run by the data providers to produce final output + strict confidentiality controls \Rightarrow identification of single firms in the CompNet database impossible

Data sources and coverage II

- Mostly non-financial corporations
- Time span: majority 2003-2015
- about 40% of the relevant population in employment or firm numbers, significant variation between countries and over time

Representativeness

- Reweighting procedure to ensure that number of firms in the sample of certain size class has equal weight than in the total population (EUROSTAT)
- Descriptive statistics in database are not identical with sample statistics (STATA sum command with option "aweight")

Elimination of cross-country price differences

- Deflator value added (based on Eurostat), base
 year = 2005
- Country specific price differences beyond exchange rates and inflation: Purchasing Power Parity gross value added 2005