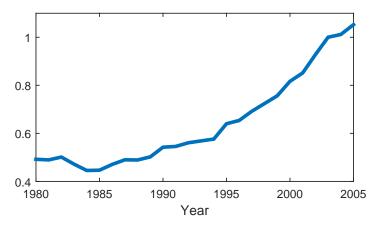
Taxation, Expenditures and the Irish Miracle

Paul Klein Stockholm University Gustavo Ventura Arizona State University


ESRI, Dublin, May 2019

This paper

The Irish Miracle: GDP per working-age adult in Ireland more than **doubled** relative to US in 25 years.

This paper

The Irish Miracle: GDP per working-age adult in Ireland more than **doubled** relative to US in 25 years.

Source: Penn World Tables 8.1

 Assess the quantitative role of fiscal policy of the Irish growth miracle.

- Assess the quantitative role of fiscal policy of the Irish growth miracle.
 - Corporate (business) tax reform

- Assess the quantitative role of fiscal policy of the Irish growth miracle.
 - Corporate (business) tax reform
 - Reductions in government consumption and transfers as shares of GDP, or austerity.

- Assess the quantitative role of fiscal policy of the Irish growth miracle.
 - Corporate (business) tax reform
 - Reductions in government consumption and transfers as shares of GDP, or austerity.
- Infer residual changes in Total Factor Productivity

- Assess the quantitative role of fiscal policy of the Irish growth miracle.
 - Corporate (business) tax reform
 - Reductions in government consumption and transfers as shares of GDP, or austerity.
- Infer residual changes in Total Factor Productivity
- Assess the importance of openness to capital inflows and labour supply changes in Ireland's rise.

- Assess the quantitative role of fiscal policy of the Irish growth miracle.
 - Corporate (business) tax reform
 - Reductions in government consumption and transfers as shares of GDP, or austerity.
- Infer residual changes in Total Factor Productivity
- Assess the importance of openness to capital inflows and labour supply changes in Ireland's rise.
- Complementarities.

• Focus on output per adult, ages 16-65.

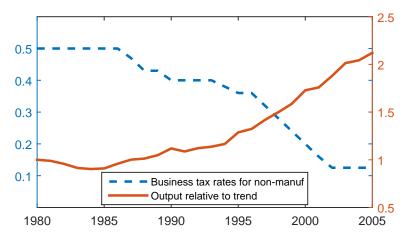
- Focus on output per adult, ages 16-65.
- GDP per adult grew on average 5.1 percent per year $1980-2005 \rightarrow a$ factor of 3.5.

- Focus on output per adult, ages 16-65.
- GDP per adult grew on average 5.1 percent per year $1980-2005 \rightarrow$ a factor of 3.5.
- Ireland's GDP per adult went up by 112 percent relative to a 2 percent annual growth trend.
 This is (obviously) enormous.

- Focus on output per adult, ages 16-65.
- GDP per adult grew on average 5.1 percent per year $1980-2005 \rightarrow a$ factor of 3.5.
- Ireland's GDP per adult went up by 112 percent relative to a 2 percent annual growth trend.
 This is (obviously) enormous.
- No similar case in Western Europe, certainly not recently

- Focus on output per adult, ages 16-65.
- GDP per adult grew on average 5.1 percent per year $1980-2005 \rightarrow$ a factor of 3.5.
- Ireland's GDP per adult went up by 112 percent relative to a 2 percent annual growth trend.
 This is (obviously) enormous.
- No similar case in Western Europe, certainly not recently By 1980, Spain was actually richer than Ireland. By 2005, output per adult was 75% higher in Ireland.

• Corporate (business) tax rates were gradually cut from about **50 percent** to **12.5 percent** in 2003 and onwards.


- Corporate (business) tax rates were gradually cut from about
 50 percent to 12.5 percent in 2003 and onwards.
- Corporate (business) tax rates were differentiated across sectors until 2003, with manufacturing taxed the least.

- Corporate (business) tax rates were gradually cut from about
 50 percent to 12.5 percent in 2003 and onwards.
- Corporate (business) tax rates were differentiated across sectors until 2003, with manufacturing taxed the least.

- Corporate (business) tax rates were gradually cut from about
 50 percent to 12.5 percent in 2003 and onwards.
- Corporate (business) tax rates were differentiated across sectors until 2003, with manufacturing taxed the least.
- Government consumption from about 20% of GDP to 14% of GDP (1980-2005).

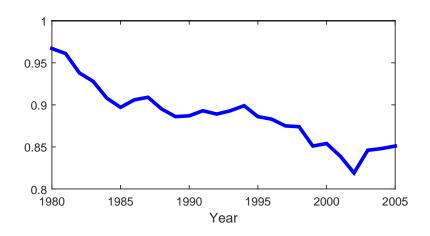
- Corporate (business) tax rates were gradually cut from about
 50 percent to 12.5 percent in 2003 and onwards.
- Corporate (business) tax rates were differentiated across sectors until 2003, with manufacturing taxed the least.
- Government consumption from about 20% of GDP to 14% of GDP (1980-2005).
- Transfers roughly constant at 9% of GDP (1980-2005).

Tax Rates

Note: statutory rates

Facts—GDP vs GNP

 Irish economy attracted large inflows of investment from abroad.


Facts—GDP vs GNP

- Irish economy attracted large inflows of investment from abroad.
- Gap opened between GDP and GNP.

Facts—GDP vs GNP

- Irish economy attracted large inflows of investment from abroad.
- Gap opened between GDP and GNP.
- Ratio of GNP to GDP declined by about 12 points in 1980-2005.

GNP to GDP Ratio

Two sectors to allow for differentiated business taxes

- Two sectors to allow for differentiated business taxes
- Small-open economy with (imperfect) capital inflows.

- Two sectors to allow for differentiated business taxes
- Small-open economy with (imperfect) capital inflows.
- A government sector to allow for changes in fiscal policy—distortionary taxes, government consumption and transfers.

- Two sectors to allow for differentiated business taxes
- Small-open economy with (imperfect) capital inflows.
- A government sector to allow for changes in fiscal policy—distortionary taxes, government consumption and transfers.
- Tangible and Intangible capital.

- Two sectors to allow for differentiated business taxes
- Small-open economy with (imperfect) capital inflows.
- A government sector to allow for changes in fiscal policy—distortionary taxes, government consumption and transfers.
- Tangible and Intangible capital.
 - In the spirit of Hall (2001), McGrattan & Prescott (2009,2010, 2016) and others.

- Two sectors to allow for differentiated business taxes
- Small-open economy with (imperfect) capital inflows.
- A government sector to allow for changes in fiscal policy—distortionary taxes, government consumption and transfers.
- Tangible and Intangible capital.
 - In the spirit of Hall (2001), McGrattan & Prescott (2009,2010, 2016) and others.
 - Arguably important in Irish case, given large foreign investment inflows.

- Two sectors to allow for differentiated business taxes
- Small-open economy with (imperfect) capital inflows.
- A government sector to allow for changes in fiscal policy—distortionary taxes, government consumption and transfers.
- Tangible and Intangible capital.
 - In the spirit of Hall (2001), McGrattan & Prescott (2009,2010, 2016) and others.
 - Arguably important in Irish case, given large foreign investment inflows.
 - Provide a simple amplification mechanism.

Model—household

A representative household maximizes

$$\sum_{t=0}^{\infty} \beta^t (\ln c_t - \frac{\psi}{1+1/\varepsilon} h_t^{1+1/\varepsilon})$$

Model—household

A representative household maximizes

$$\sum_{t=0}^{\infty} \beta^t (\ln c_t - \frac{\psi}{1 + 1/\varepsilon} h_t^{1 + 1/\varepsilon})$$

subject to

$$c_t + a_{t+1} + q_t b_{t+1} + k_{t+1} + z_{t+1} =$$

$$= \widehat{w}_t h_t + \widehat{R}_t^k k_t + \widehat{R}_t^z z_t + R^a a_t + b_t + \mathcal{T}_t$$

Model—household

A representative household maximizes

$$\sum_{t=0}^{\infty} \beta^t (\ln c_t - \frac{\psi}{1 + 1/\varepsilon} h_t^{1 + 1/\varepsilon})$$

subject to

$$c_t + a_{t+1} + q_t b_{t+1} + k_{t+1} + z_{t+1} =$$

$$= \widehat{w}_t h_t + \widehat{R}_t^k k_t + \widehat{R}_t^z z_t + R^a a_t + b_t + \mathcal{T}_t$$

and

$$\underbrace{a_{t+1} + \varphi k_{t+1} \ge 0}_{\text{collateral constraint}}.$$

Model—technology

The final good is produced according to

$$Y_t = \bar{A}_t F(Y_{s,t}, Y_{m,t}) = \bar{A}_t [\alpha_s Y_{s,t}^{\xi} + (1 - \alpha_s) Y_{m,t}^{\xi}]^{1/\xi}.$$

where $\{\bar{A}_t\}_{t=0}^{\infty}$ is an exogenous sequence of TFPs.

Model—technology

The final good is produced according to

$$Y_t = \bar{A}_t F(Y_{s,t}, Y_{m,t}) = \bar{A}_t [\alpha_s Y_{s,t}^{\xi} + (1 - \alpha_s) Y_{m,t}^{\xi}]^{1/\xi}.$$

where $\{\bar{A}_t\}_{t=0}^{\infty}$ is an exogenous sequence of TFPs.

Output in the m sector is produced according to

$$Y_{m,t} = G(Z_{m,t}, K_{m,t}, H_{m,t}) = Z_{m,t}^{\theta_z} K_{m,t}^{\theta_k} H_{m,t}^{1-\theta_z-\theta_k}.$$

Model—technology

The final good is produced according to

$$Y_t = \bar{A}_t F(Y_{s,t}, Y_{m,t}) = \bar{A}_t [\alpha_s Y_{s,t}^{\xi} + (1 - \alpha_s) Y_{m,t}^{\xi}]^{1/\xi}.$$

where $\{\bar{A}_t\}_{t=0}^{\infty}$ is an exogenous sequence of TFPs.

Output in the m sector is produced according to

$$Y_{m,t} = G(Z_{m,t}, K_{m,t}, H_{m,t}) = Z_{m,t}^{\theta_z} K_{m,t}^{\theta_k} H_{m,t}^{1-\theta_z-\theta_k}.$$

Output in the s sector is produced according to

$$Y_{s,t} = G(Z_{s,t}, K_{s,t}, H_{s,t}) = Z_{s,t}^{\theta_z} K_{s,t}^{\theta_k} H_{s,t}^{1-\theta_k-\theta_z}.$$

Model—taxation

Labour income is taxed in a proportional fashion so that:

$$\widehat{w}_t = (1 - \tau_t) w_t.$$

Model—taxation

Labour income is taxed in a proportional fashion so that:

$$\widehat{w}_t = (1 - \tau_t) w_t.$$

Capital income is taxed differentially across sectors:

$$\widehat{R}_t^{k,s} = 1 + r_t^{k,s} - \delta_k - \tau_t^s (r_t^{k,s} - \delta_k),$$

$$\widehat{R}_t^{k,m} = 1 + r_t^{k,m} - \delta_k - \frac{\mathbf{T}_t^m}{t} (r_t^{k,m} - \delta_k),$$

$$\widehat{R}_{t}^{z,s} = 1 + r_{t}^{z,s} - \delta_{z} - \frac{\tau_{t}^{s}}{r_{t}^{z,s}} - \delta_{z},$$

and

$$\widehat{R}_t^{z,m} = 1 + r_t^{z,m} - \delta_z - \frac{\tau_t^m}{t} (r_t^{z,m} - \delta_z)$$

Model—taxation

where, for instance,

$$r_t^{k,m} = \frac{\partial F}{\partial Y_{m,t}} \cdot \frac{\partial G}{\partial K_{m,t}}$$

Model—government budget

$$\underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{k,i} - \delta_k) K_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}}$$

capital income revenue

$$\underbrace{\tau_t w_t H_t}_{} + \underbrace{q_t B_{t+1}}_{} =$$

labour income revenue

new debt issue

$$G_t + T_t + B_t$$

Model—government budget

$$\underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{k,i} - \delta_k) K_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_t^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}} + \underbrace{\sum_{i \in \{m,s\}} \tau_i^i (r_t^{z,i} - \delta_z) Z_{i,t}}_{i \in \{m,s\}}$$

capital income revenue

$$\underbrace{\tau_t w_t H_t}_{\text{labour income revenue}} + \underbrace{q_t B_{t+1}}_{\text{new debt issue}} =$$

$$G_t + T_t + B_t$$

Note: labour income tax $\tau_t = \tilde{\tau}_t + \tau$ where $\tilde{\tau}_t$ is taken from the data and the surtax τ is endogenous.

Equilibrium—comments

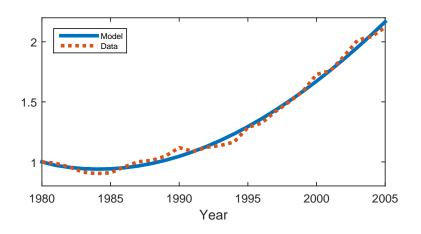
•
$$GNP_t := Y_t + (R^a - 1)A_t$$
.

Equilibrium—comments

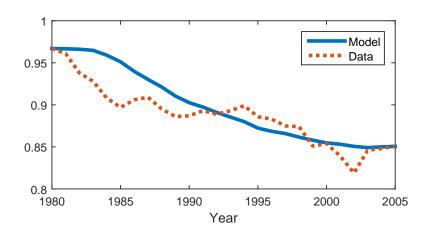
- $GNP_t := Y_t + (R^a 1)A_t$.
- The tightness parameter (φ) of the collateral constraint can be used to calibrate the GNP/GDP ratio.

Equilibrium—comments

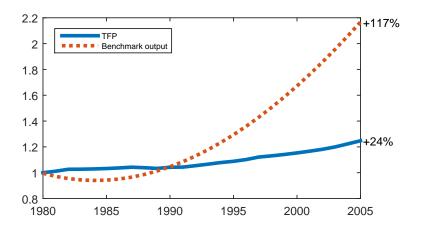
- $GNP_t := Y_t + (R^a 1)A_t$.
- The tightness parameter (φ) of the collateral constraint can be used to calibrate the GNP/GDP ratio.
- Small open economies do not behave like closed ones.
 Permanent changes in technology have long-run effects on labour supply, even with balanced-growth preferences.
 Additional effects on output as a result.

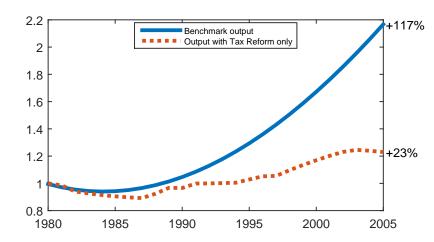

 Aim: Provide an assessment of the contribution of fiscal policy changes in Irish miracle.

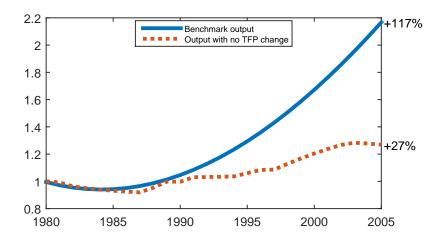
- Aim: Provide an assessment of the contribution of fiscal policy changes in Irish miracle.
- Specifically:
 - Given changes in fiscal policy, we infer TFP sequence to match the rise in GDP. Fully anticipated changes.

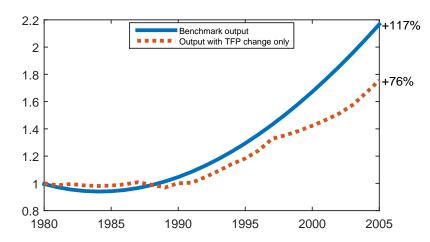

- Aim: Provide an assessment of the contribution of fiscal policy changes in Irish miracle.
- Specifically:
 - Given changes in fiscal policy, we infer TFP sequence to match the rise in GDP. Fully anticipated changes.
 - Evaluate specific contribution of driving forces—tax reform, changes in spending, TFP.

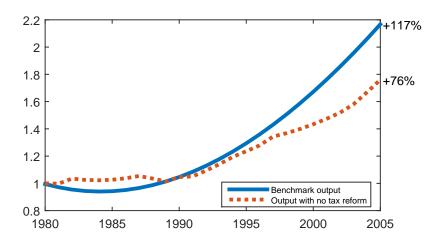
- Aim: Provide an assessment of the contribution of fiscal policy changes in Irish miracle.
- Specifically:
 - Given changes in fiscal policy, we infer TFP sequence to match the rise in GDP. Fully anticipated changes.
 - Evaluate specific contribution of driving forces—tax reform, changes in spending, TFP.
 - Evaluate importance of openness to capital inflows and other model features.


Results


Results—GNP/GDP


Results—TFP


Driving Forces: Tax Reform Only


Driving Forces: All Fiscal Policy Changes

Driving Forces: TFP changes Only

Driving Forces: No Tax Reform

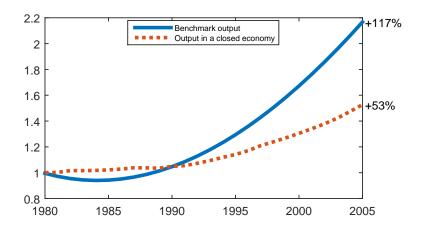
Taking Stock

 Tax reform leads to large effects over period. But quantitatively not the main culprit.

Taking Stock

- Tax reform leads to large effects over period. But quantitatively not the main culprit.
- Relative small—23%—increases in TFP look very important.
 In isolation, they account for about two thirds of output changes.

Taking Stock


- Tax reform leads to large effects over period. But quantitatively not the main culprit.
- Relative small—23%—increases in TFP look very important.
 In isolation, they account for about two thirds of output changes.
- There are important complementarities and interactions between driving forces over time:
 - Changes in isolation account for only 85% of total changes in output.

• Q: Is it important to study the Irish miracle from the standpoint of an open economy? Did openness to capital movements matter?

- Q: Is it important to study the Irish miracle from the standpoint of an open economy? Did openness to capital movements matter?
- A: YES. Big time.

- Q: Is it important to study the Irish miracle from the standpoint of an open economy? Did openness to capital movements matter?
- A: YES. Big time.
- We evaluate the quantitative importance of the same driving forces when the economy is closed to capital movements (ignoring trade in goods and services).

- Q: Is it important to study the Irish miracle from the standpoint of an open economy? Did openness to capital movements matter?
- A: YES. Big time.
- We evaluate the quantitative importance of the same driving forces when the economy is closed to capital movements (ignoring trade in goods and services).
- We find that driving forces lead to changes in output that are **less than half** of observed ones by 2005.

 Capital inflows in open economy accelerate response to driving forces.

- Capital inflows in open economy accelerate response to driving forces.
 - → Effects of driving forces appear later in closed economy.

- Capital inflows in open economy accelerate response to driving forces.
 - \rightarrow Effects of driving forces appear later in closed economy.
- Decoupling of income and substitution effects in open economy.

- Capital inflows in open economy accelerate response to driving forces.
 - \rightarrow Effects of driving forces appear later in closed economy.
- Decoupling of income and substitution effects in open economy.
 - \rightarrow Much larger effects on labour supply in open versus closed economy: 15.4% vs 1.5%.

Welfare Gains (%)

Baseline	Baseline	Tax Reform
Experiment	Experiment	Only
	(Closed)	
40.0	21.3	4.2

Note: The tax reform only case is computed keeping trend-adjusted *levels* of gov't consumption and transfers the same as in 1980.

Welfare Gains (%)

Baseline Experiment	Baseline Experiment (Closed)	Tax Reform Only
40.0	21.3	4.2

Note: The tax reform only case is computed keeping trend-adjusted *levels* of gov't consumption and transfers the same as in 1980.

• Openness is critical for welfare gains.

Welfare Gains (%)

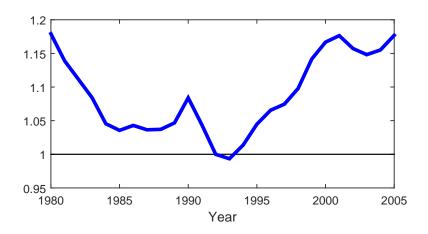
Baseline Experiment	Baseline Experiment (Closed)	Tax Reform Only
40.0	21.3	4.2

Note: The tax reform only case is computed keeping trend-adjusted *levels* of gov't consumption and transfers the same as in 1980.

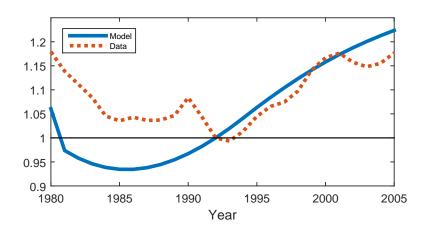
- Openness is critical for welfare gains.
- Small contribution of tax reform.
 - Harmonization most important for welfare, not reduction.

Facts—Labour supply

 Hours worked per adult went down by about 15 percent but then recovered and were about the same in 2005 as in 1980


- Hours worked per adult went down by about 15 percent but then recovered and were about the same in 2005 as in 1980
- Interesting underlying demographic and labour supply facts:

- Hours worked per adult went down by about 15 percent but then recovered and were about the same in 2005 as in 1980
- Interesting underlying demographic and labour supply facts:
 - Share of adults 16-65 went up: 58 to 68 percent


- Hours worked per adult went down by about 15 percent but then recovered and were about the same in 2005 as in 1980
- Interesting underlying demographic and labour supply facts:
 - Share of adults 16-65 went up: 58 to 68 percent
 - Employment rate went up: 59 percent to 69 percent.

- Hours worked per adult went down by about 15 percent but then recovered and were about the same in 2005 as in 1980
- Interesting underlying demographic and labour supply facts:
 - Share of adults 16-65 went up: 58 to 68 percent
 - Employment rate went up: 59 percent to 69 percent.
 - Hours per worker went down (14-15 percent).

Hours worked (per adult)

Results—Hours per adult

Importance of Labour Supply Changes

 Q: What is the quantitative importance of labour supply for our analysis and conclusions?

Importance of Labour Supply Changes

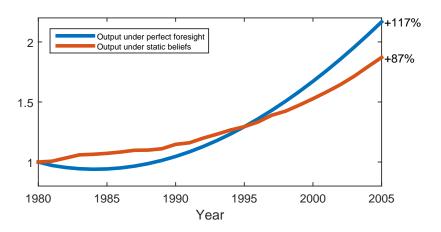
- Q: What is the quantitative importance of labour supply for our analysis and conclusions?
- A(1): With low labour supply elasticity ($\epsilon=0.25$), required TFP are larger (29.3% vs 23.0%).

Importance of Labour Supply Changes

- Q: What is the quantitative importance of labour supply for our analysis and conclusions?
- A(1): With low labour supply elasticity ($\epsilon = 0.25$), required TFP are larger (29.3% vs 23.0%).
- A(2): Accounting for changes in labour quality (via changes in years of education), required TFP changes are smaller (18.6% vs 23.0%).

Anticipation Effects

Q: What is the importance of perfect foresight for our findings?


- We recompute equilibria and infer TFP values assuming each 'surprise' is permanent.
- At each date, we calculate the labour surtax rate that balances the intertemporal budget constraint.

Anticipation Effects

Q: What is the importance of perfect foresight for our findings?

- We recompute equilibria and infer TFP values assuming each 'surprise' is permanent.
- At each date, we calculate the labour surtax rate that balances the intertemporal budget constraint.
- We refer to this case as 'static beliefs' case.

Anticipation Effects

 Tax reform mattered but not the major factor. This holds true even when the overall capital share is large and the economy is open.

- Tax reform mattered but not the major factor. This holds true even when the overall capital share is large and the economy is open.
- Openness appears of central importance. Same driving forces in closed economy lead to less than half of observed changes in output, and much lower welfare effects.

- Tax reform mattered but not the major factor. This holds true even when the overall capital share is large and the economy is open.
- Openness appears of central importance. Same driving forces in closed economy lead to less than half of observed changes in output, and much lower welfare effects.
- Perfect foresight matters

- Tax reform mattered but not the major factor. This holds true even when the overall capital share is large and the economy is open.
- Openness appears of central importance. Same driving forces in closed economy lead to less than half of observed changes in output, and much lower welfare effects.
- Perfect foresight matters
- What really happened in Ireland?
 - From the standpoint of our model, clearly we need to understand what led to changes in TFP.

- Tax reform mattered but not the major factor. This holds true even when the overall capital share is large and the economy is open.
- Openness appears of central importance. Same driving forces in closed economy lead to less than half of observed changes in output, and much lower welfare effects.
- Perfect foresight matters
- What really happened in Ireland?
 - From the standpoint of our model, clearly we need to understand what led to changes in TFP.
 - Changes in labour markets. Less industrial strife.

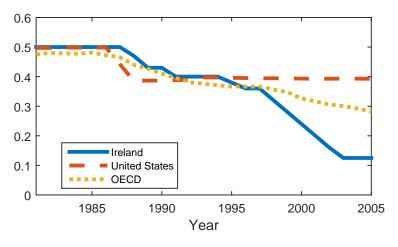
- Tax reform mattered but not the major factor. This holds true even when the overall capital share is large and the economy is open.
- Openness appears of central importance. Same driving forces in closed economy lead to less than half of observed changes in output, and much lower welfare effects.
- Perfect foresight matters
- What really happened in Ireland?
 - From the standpoint of our model, clearly we need to understand what led to changes in TFP.
 - Changes in labour markets. Less industrial strife.
 - Need deeper understanding of multinational production in dynamic settings. Interplay with EU integration.

AUXILIARY SLIDES

Model—resource constraint

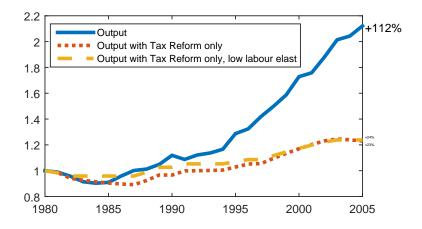
Resource constraint/national budget constraint for the final good:

$$K_{t+1} + A_{t+1} + Z_{t+1} =$$

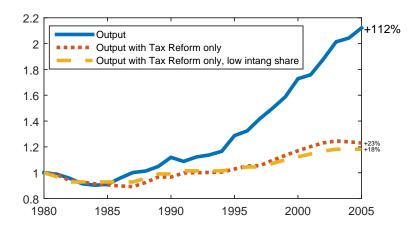

$$= (1 - \delta_k)K_t + (1 - \delta_z)Z_t + Y_t + R^a A_t - C_t - G_t$$

where A_t is the net foreign asset position (the aggregate counterpart of a_t).

Calibration Summary


0	D' (1/Da)	0.061
β	Discount Factor $(1/R^a)$	0.961
$ heta_k$	Share of Physical Capital	1/3
$ heta_z$	Share of Intangible Capital	0.198
δ_k	Tangible Depreciation Rate	0.085
δ_z	Intangible Depreciation Rate	0.085
ε	Frisch Elasticity	0.75
α_s	Non-manufacturing Share	0.79
$1/(1-\xi)$	Substitution Elasticity	1.0
	Manufacturing vs Non-manufacturing	
φ	Collateral Constraint	1.390
$\tau_{1980}^{k,m} = \tau_{1980}^{z,m}$	Manufacturing Tax Rate	0.10
$\tau_{1980}^{k,s} = \tau_{1980}^{z,s}$	Non-Manufacturing Tax Rate	0.50
$\tau_{2005}^{k,m} = \tau_{2005}^{z,m}$	Manufacturing Tax Rate	0.125
$ au_{1980}^{k,s} = au_{2005}^{z,s}$	Non-Manufacturing Tax Rate	0.125
$ au_{1980}$	Labour Tax Rate in 1980	0.438
$ au_{2005}$	Labour Tax Rate in 2005	0.425

Tax rates



Source: OECD

Tax Reform and Labour Supply Elasticities

Tax Reform and Intangible Shares

