

Vehicle weight: Emissions & Weight Based Simulation Modelling of Vehicle Registration Tax

Dr. Tomás Mac Uidhir Prof. Hannah Daly

New vehicles are 330 kg heavier since 2001

27% increase in mass in new passenger cars has been driven by **increased weight of individual car models**, a shift in car sales towards **heavier vehicle categories**, and **towards plug-in and battery EVs**

Average mass of new passenger cars in Ireland by fuel and engine type. Source: ICCT European Vehicle Market Statistics, based on EEA data. Vehicle sales data from CSO (TEA17, TEA27)

Increased weight is slowing decarbonisation

Relationship between vehicle CO2 intensity (gCO2/km) and weight (kg) for topselling car models in 2021

Greater weight: More fuel

- The CO₂ intensity of 1,500 kg cars (2022 average) is 11% higher than 1,200 kg (2001 average)
- Assuming 300k car lifetime, this burns 1,500l extra fuel, with associated cost and pollution, an additional 3.5 tonnes of CO₂

Greater weight: More dangerous

• Greater weight, size and bonnet height causes more harm to vulnerable road users in a collision

Fiscal impacts of energy transition

Assuming unchanged tax rates, meeting climate targets could see tax revenues declining by 0.9% (€2.5bn) annually by 2030

Casey & Carroll (2023), What climate change means for Ireland's public finances. Irish Fiscal Advisory Council

How is VRT calculated?

How is VRT calculated?

N	Ox mg/	km VRT Marginal Brackets
min	max	(€) per mg/km
0	40	5
41	80	15
81		25

– 0 gCO2/km 7 VAT (%) 0 VAT (€) — VRT relief applied 1805 kg

How is VRT calculated?

					NOx n	ng/km VF	RT Marginal B		
					min ma	XX	(€) per mg/	km	
					0 40)	5		
					41 80)	15		
	Bo	attery Electric Vehicles (BEV	/s)		81		25		
		OMSP & Relief							
	<€40,000	between	>€50,000						
Rate~7%	€2,800	€5,000 - <u>OMSP - €40,000</u> 2	€3500(+)				1.1		
Relief	Up to €5000	€0.5 - €4999.5	none		0-	0			
VRT	€0	€0 - €3,499	€3500(+)						
			1	0 7 0 805	gCO2/km VAT (%) VAT (€) kg	— VRT relie	ef applied		

What can this new VRT simulation do?

Simulate current CO2/NOx VRT system

Simulate marginal weight-based taxation system

Evaluate the impact on revenue/emissions under current electrification trends under different schemes

INPUTS

- All NEW vehicle registrations (2023) ~ 81% completed to date
 - Make/Model/Fuel type
- Vehicle: Weight (kg), emissions (g/km), NOx (mg/km), Value (€)
- Assumed Depreciation
- Flexible Marginal weight bands/ rates
- VRT Exemption rules (by fuel type)
- New Vehicle Registrations by fuel type (2024 2030)

Assumptions and state of play

• We can expect that if all new vehicles are Hybrid, Plug-in hybrids (PHEV) or Electric (BEV) by 2030 then emissions and revenue from VRT will fall ...

PHEV BEV Petrol Diesel Hybrid

Assumptions and state of play

• We can expect that if all new vehicles are Hybrid, Plug-in hybrids (PHEV) or Electric (BEV) by 2030 then emissions and revenue from VRT will fall ...

١	Neight bas	ed Tax bands (m	arginal €/kg)
min (kg)	max (kg)	Rate 1 (€)	Rate 2 (€)	Rate 3 (€)
0	1599	0	0	0
1600	1799	10	5	2
1800	1899	15	7.5	3
1900	1999	20	10	4
2000	2099	25	12.5	5
2100		30	15	6

Weight-based VRT by engine type

Scenarios

- All else being equal! Scenarios assume that:
 - electrification trend continues
 - vehicle choice remains the same within engine types
- Allows us to explore 3 scenarios:
 - 1. What is the expected change in revenue if there is no change to VRT?
 - 2. What would be the impact of introducing weight-based tax immediately across all fuel types?
 - 3. Is there a phased introduction of the weight-based tax that maintains VRT while electrification trend continues?

Results (scenario 1)

Description: electrification trend continues but no change in tax system

- Revenue falls by ~ €38 M each year (46% reduction by 2030 or 267 M less than 2023)
- Cumulative emissions from new vehicles rise to ~0.8 MtCO2 by 2030

Results (scenario 2)

Description: electrification trend continues but new marginal weight-based taxation system is put in place. Introduced immediately (2025) and Rate 1 applied to all engine types. French weight bands applied.

- Revenue increases each year (44% increase by 2030 or 251 M more than 2023)
- PHEVs and BEVs disproportionally effected

Results (scenario 3)

Description: electrification trend continues but new marginal weight-based taxation system is put in place. Phased introduction from 2025, Rate 1 applied to ICE & Hybrids, Rate 2 applied to PHEVs, Rate 3 applied to BEVs. French weight bands applied.

- Revenue fluctuates each year (2% increase by 2030 or 13 M more than 2023)
- Even distribution of revenue collection across engine types

In practice ... BEVs

VW ID 3

VW ID 4

Base Weight (kg)	1,805		
Price (€)	€45,791		
Current VRT (€)	€0		
WB_VRT (s 1)	€2,065		
WB_VRT (s 2)	€1,922		

2,156
€55,280
€3,637
€13,247
€4,050

2,193
€61,567
€4,052
€14,757
€6,193

In practice ... ICE/Hybrid/PHEV

TUCSON (Diesel)

TUCSON (Hybrid)

TUCSON (PHEV)

Base Weight (kg)	1,552		
Price (€)	€43,559		
Current VRT (€)	€8,389		
WB_VRT (s 1)	€8,389		
WB_VRT (s 2)	€8,389		

1,710	
€45,295	
€6,668	
€7,768	
€7,768	

1,946
€47,674
€3,312
€7,707
€5,509

Conclusions

- There is a compelling argument to include weight in the calculation of VRT for both fossil fuelled and electric vehicles
 - Fill revenue gap from energy transition
 - Incentivize lighter and more fuel efficient cars, to help fill the gap in carbon budgets
 - Reverse road safety threat as a result of "car bloat"
- For carbon budgets, speed is of the essence
 - To have an impact on carbon budgets, measures should be introduced quickly and send a strong signal
 - Meeting carbon budgets requires much more rapid vehicle electrification, but EV sales have fallen: **Major threat** to carbon budgets

- The rationale for introducing weight-based VRT component to EVs is strong
 - However, care needed to avoid unintended consequence, e.g., pushing buyers from EVs to ICEs or PHEVs
 - PHEVs are likely to emit 3x more CO2 than suggested by vehicle testing
- Car market may be undergoing significant disruption: era of low-cost EVs from China may be here
 - To maintain constant VRT intake, weight thresholds should be kept under review
- Other ways to disincentivize larger vehicles
 - Make CO2 base more progressive
 - Send forward signal to current new car market: flag to buyers that increased costs/limitations on used

Thank you

tomas.macuidhir@ucc.ie

Environmental Research Institute

