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Factor Fiction - A Monte Carlo Approach to Factor Analysis

1. Introduction

Factor analysis is a complex technique. The deriva-
tion of even its most basic results requires an understanding of matrix
algebra, and the mathematics involved in establishing the more complex
rotational methods is beyond the algebraic competence of the vast majority
of researchers. Indeed in some cases factor analytic techniques are used
whose distributional propérties are not yet known, or are known only for

|
|
impracticably large samples. Asymptotic' results are of little value unless l
one can be sure that they will not be seriously in error for samples of the }

|

size usually encountered in practice.

This complexity gives rise to several problems. In

the first place, it is difficult to teach factor analysis, especially to those

with a limited mathematical background. I.speak from bitter experience

on this subject since all my attempts to teach factor analysis seem to end

up as either incomprehensible algebra, or vagué and unsatisfactory verbal
.descriptions. Secondly, users of the technique are forced to rely on hunch and
| rule-of~thumb in the absence of clear-cut distributional results for "small"
(non-asymptotic) samples. This difficulty is further aggra;/ated by the

very wide variety of modifications and refinements which have developéd in the

literature and whose strengths and weaknesses are not well known.

The presént paper suggests a partial solution to these
problems. The basic idea is to generate, by computer, a sample from
a population with a known factor structure. * _Various factor analytic techniques can
be applied to this sample and the estimates so derived may then be compared }
with the known factor structure. This short paper cannot pretend to be an

exhaustive treatment of the application of Monte Carlo methods to factor

%
An appropriate program is presented in the Appendix.




analysis. The best I can hope to do is to indicate the broad areas to
which this technique may be applied, and to present some initial, illus-

trative results.

Many applications can be envisaged for the Monte
Carlo approach. First of all, students with little knowledge of mathema-
tics often find a carefully constructed and well explained example more
palatable than reams of algebra. Stuart Q962) shows how an arithmetic
example may be most effectively used to teach the basic principles of
sampling tﬁeory. The first part of the present paper attempts tp explain
factor analysis in a similar way. By setting up a population where the
relationships between the factors and the variables are known, it is hoped
to make students conscious of the hypothetical model underlying all applica-
tions of factor analysis and to show how this model may be estimated by
means of the various factor analytic techniques. Interested studénts could
generate samples from different factor structures by means of the program
presented in the Appendix, and could then apply the various programs to

estimating these structures.

A second possible application of the Monte Carlo approach
to factor analysis is the testing of the accuracy and efficiency of various
programs. The results of such tests on three currently available programs

are presented in the second part of this paper.

Thirdly, Monte Carlo methods may be used to shed some
light on the distributional properties of factors. Lawley and Maxwell (1963)
have made considerable progress from an algebraic point of view on these
topics, but many important results have not yet been derived. Large scale
Monte Carlo experiments could be the answer to these difficulties. However,
such experiments would have needed more time (both computer time and
researcher time!) than I had at my disposal and I do not deal any further

with distributional properties in this paper.



The fourth area where Monte Carlo methods could be of
use (and here we come to the title of the paper) is in investigating the
effects of various practical limitations which are met in almost all applica-
tions. For example one is never sure how many factors to extract. Rules
of thumb abound but their validity is rarely checked, and the costs (errors)
involved in extracting the wrong number of factors are unknown. Another
limitation which traditional theory does not take account of is the fact that
researchers frequently wish to include discontinuoﬁs variables in a factor
analysis. The implications of using such variables as opposed to contin-
uous, normally distributed variables are not well known: Monte Carlo

methods could help-clarify this issue.

The third part of this paper is therefore devoted to a consi-
deration of some of these issues for one particular factor structure. I
hope to illustrate the extent to which commonly used factor analytic pro-
cedures can unearth the "true' underlying dimensions of a set of variables -

in short the extent to which factor analysis produces fact or fiction.

2. Factor Analysis explained by example

Let us assume that we are conducting an attitudinal study and
have administered a questionnaire containing 16 variables (items or sets of
items) to 200 subjects. The scores for the first 10 subjects are shown in
Table 1. Let us further assume that these 16 variables reflect only four
underlying independent* factors. If, say, we were investigating the general
area of intelligence, the original items might be individual intélligence tests
of various sorts (either individual items or averages over sets of items) and
the underlying factors might be, say, verbal ability, quantitative ability,
three dimensional visualization and creativity. Saying .that the original items

reflect only these four factors means that if one could know an individual's

* For the sake of simplicity, I deal only with uncorrelated factors in this
paper. In practice, the factors may be correlated (oblique) and certain
techniques (PROMAX, OBLIMIN) can be used to estimate them.
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score on each of the four factors, one could calculate his score on any of the 16
variables in the questionnaire. In other words, all the information we

have about an individual is contained in his scores on the factors. The
problem in practice is that we cannot observe factor scores; all we can
observe are test scores. Yet it would be great interest to try to estimate
these factor scores since they provide a much simpler and more parsimon-

ious description of the data. This is what factor analysis tries to do.

Just for the purposes of illustration let us assume that an
omniscient being (OB) has revealed the relationships between factor scores
and test scores to us for a certain set of data. These relationships are

: B a a a N . .
known if we know the co-efficients w L i3 e in the following

equation for variable j (which we call zj)

There will be 16 such equations, one for each variable, all with different
co-efficients. Table 2 shows the full set of such co-efficients, as revealed
by the OB, for our example. Thus, to calculate an individual's score on
variable one from his factor scorés we would multiply his score on Factor 1
by -0.083, his score on Factor 2 by 0.714, his score on Factor 3 by 0.621

and his score on Factor 4 by -0.313 and add the results, i.e.

(-0.083) . (F,) + (0.714) . (F,) + (0.621) . (Fy) + (-0.313). (F,)

If our obliging OB can tell us an individual's factor scores, then we can use
Table 2 to predict (with certainty) what that individual's score on any of the

16 variables will be.

Apart from their use in predicting the variables from the factors,
the co-efficients or 'loadings' in Table 2 give the correlations between the

variables and the factors. Thus, the correlation bet;weenz1 and F1 is 0.083



and that between z1 and F4 is -0.313. Squaring the co-efficient aij gives
the proportion of the variance in variable i attributable to changes in factor

j. For instance, factor 2 accounts for 50.9 per cent (= 0. 7132) of the

variance in variable 1.

It should also be noted that we have assumed the factors to be
independent (uncorrelated). This implies that any significant correlation
which we observe between two variables is due to the fact that they are both
related to the same factors. A fundamental factor theorem states that the

correlation between variables 1 and 2 (r12) may be decomposed as follows

where rkF is the correlation of variable k with factor m i.e. the loading
m

of factor m on variable k. In terms of our example, the correlation between

variable 1 and variable 2 should, from the theorem, be equal to

Tig = 0.002 + 0.660 - 0.089 - 0.110

=- 0.463

The observed correlation from the correlation matrix given

" below (Table 5) is 0.405

Table 2 allows us to calculate the variables from the factors.
Sometimes it is useful to do the opposite and calculate the factors from the
variables. To see how this might be done, consider the meaning of the

first four rows of Table 2 i.e.



Z, = 0.083 F
Zy = 0.018 F
Zg = 0.233 F
Z, = -0.287 F

+0.714 F2

+0.925 F2

+0.952 FZ

+0.032 F2

+0.621 F3
-0.144 F3

-0.017 F3

+0.947 F3

+0.313 F4

0.350 F4

-0.1
0 99F4.

+0.139 F4

These are four equations representing the variables expressed as weighted

sums of the factors. By successively eliminating, say, F F3 and ¥, from

2’ 4

equation 1, we can obtain Factor 1 (Fl) expressed as a function of Z1r Zg

Zg and Zy FZ’ F3 and F4 can be similarly expressed. The result will be

the following set of equations:

F1 = 14.390 Zy -!-2.066z2 ~-12.487 Zg —9.34424
FZ = -2.020 zZ +0.112z2 +2.4;10z3 +1.384z4
F3 = 5.436 zZy +1. 046z2 -5. 012z3 —2.439z4
F4 = 6.813z1 +.‘2..88022 —7.77023 —4:.16824

These equations are based on the first four rows in Table 1. Selecting any four
rows (variables) will allow any factor to be expressed in terms of these

variables.

Essentially, we have now completed a factor analysis of the data;

we can express any variable as a weighted sum of the factors, and any factor
as a weighted sum of the variables. In terms of our example, we can say
exactly how each test score is based on the factor scores, and how the factor

scores may be derived from the test scores.



However, our example is seriously unrealistic from two points
of view. (i) It assumes that any variation in a variable is attributable
only to variations in the factor scores. That is, there is no source of
variation in the data other than the four factors.
(ii) It assumes that the variables can be measured without error.
Both these over-simplifications may be overcome if we modify the

original equation linking variables and factors to read

= + +
z, =8, Fp +a,Fy +a,Fo+a, Fpo+4d U

where Ui is a random variable which includes all sources of variation
unique to variable i and di is a co-efficient. Ui has a mean of zero and
variance of 1, so that the mean of di Ui is zero and its variance c]i . The
variance of z, (=1, since ZiAN (0, 1)) may thus be partitioned in two
parts, that attributable to fluctuations in the scores on the common factors
(known ag the communality) and that attributable to the unique component

(known as the uniqueness). The communality for variable i is given by

42 az,‘ and the uniqueness is given by dzi .
=1 M
4 2 2
= = -+
Var (zi) 1 Z: a i di

4
If we know the communality 'hzi (= jz= a..) we can calculate

2 2
di by 1 —hi.

A knowledge of the relationship between 16 variables and four
factors will now entail knowledge of 80 co-efficients (64 loadings aij and 16
unique co-efficients di)' This is illustrated in Table 3 which shows the
scores of 10"individuals' as generated from the factor pattern (set of co-
efficients) shown in Table 4. This pattern includes the full eighty co-

efficients.




Having examined the complications which arise when the
unique term is included, let us now return to the factor pattern shown in
Table 2 and consider how we might estimate this set of co-efficients if our
OB was on a day off. The only information now at our disposal is the set
of test scores as shown in Table 1. From these, we can calculate the
correlation matrix (Table 5). We saw above that these correlations arise
because the variables are determined by the factors. Examination of the
correlation matrix can therefore shed some light on the nature of the factor

structure, *

Submitting this correlation matrix to a factor analysis
program will produce estimates of the co-efficients aii which express the
variables as functions of the factors (the factor pattern matrix). It will
also produce estimates of the proportion of the total variation in the set of
variables attributable to each of the factors. Table 6 shows the factor
pattern and proportions of variance as estimated by the SPSS program,
together with the "true' co-efficients used to generate the data. The agree-
ment between the estimates and the true values can be seen to be very good,
since the correlation between the true and estimated co-efficients ranges from

0.997 for factor 4 to 0.991 for factor 3.

However, and here we come to a vital and sometimes
misunderstood point, the co-efficients as shown in Table 6 are not the only
ones which could account for the observed correlation matrix. Indeed, there
is an infinity of éuch sets, and, mathematically, there is no way of choosing
between them. One alternative set is shown in Table 7. To verify that these
co-efficients can account for the observed correlations just as well as those
in Table 6, let us re-examine the decomposition of r__ which we carried out

12

above (p. 4 ). The fundamental factor theorem states that -

* Cluster analysis proceeds by grouping the items in the correlation matrix

and has been shown by Raven/19717 to produce similar results to factor
analysis. See also McQuitty /19577 .




r., = r r + r r + r r
12 1F 2F1 1F2 2F2 1F2 2F3
+r r
1F4 ZF4
Using the co-efficients as estimated in Table 6, we obtain o= 0.006

+ 0.560 - 0.043 - 0.118 = 0,405. Using those from Table 7 gives

Tig = -0.026 + 0.645 - 0.028 - 0.185 = 0.405

Thus, each set of co-efficients is equally effective in explaining the
observed correlations. An investigator who has no information other
than the correlation matrix must therefore devise new criteria on the basis
of which to choose between the alternative' sets of co-efficients. Several
such criteria have been suggested, the most famous of which is probably
Thurstone's concept of "simple structure" and its modifications [ see
Thurstone 1947:] . Essentially, this involved selecting the set of co-
efficients which was most easily interpretable in terms of subject matter
of the inquiry. '"Interpretability' is judged on the basis of the number of
high (near 1.0) and low (near zero) loadings. Various critera can be
used depending on whether one wants to simplify the rows, the columns
or both the rows and the columns of the factor matrix. These are known

as "rotational" criteria and familiar types are QUARTIMAX and VARIMAX.

To sum up the discussion so far, I would like to draw
attention to three aspects of factor analysis which I believe are frequently
néglected. The first of these is the fact that we are operating with a linear
model. As Morrison (1967) points out "the (linear) model of factor analysis
is as much part of our hypothesis about the dependence structure as the
choice of exactly m common factors ..... If the covariances repro-

duced by the m~factor linear model fail to fit the sample values adequately,
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it is as proper to reject linearity as it is to advance the more usual finding
that m common factors are inadequate for explaining the sample correla-
tions.' While a full non-linear freatment may be "frightfully complex"
(Harman), researchers should, I think, reflect on the substantive theory

of the topic in question to make sure that a linear model is really relevant.
Appropriate transformations of the variables before analysis, as is frequently

done in regression, might help solve this problem.

The second point is that the number of factors
extracted may determine the answers obtained. The implications of
extracting the wrong number of factors is further explored in section 4

below.

The third aspect which I would like to emphasise.
is that the choice of a certain rotational method (e.g. VARIMAX) implies
certain hypotheses about the relationships between the factors and the
variables. Specifically, such a choice defines one set of co-efficients as
better than the alternative (mathematically equivalent) sets on thé basis of
a certain definition of "simplicity' or "interpretability''. Researchers should
be clear that, in using a particular rotational criterion, they are opting for one
of several possible definitions of interpretability, and that this definition

will affect the substantive nature of the results obtained.
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3. Accuracy and Efficiency of Three Programs

The three programs discussed in this section are:
(1) the Statistical Package for the Social Sciences
(SPSS) from the University of Chicago !
(2) PCVARIM, a program belonging to E. E, Davis
and based on the Cooley - Londes tri-diagonalization
procedures

(3) the IBM scientific subroutines package (SSP).

Several sets of data generated by the program FACGEN
given in the Appendix were submitted to each of these programs. These
were all small data sets (200 observations, 16 variables,4 factors) but

they should indicate the relative merits of the programs.

Table 8 shows the Central Processing Unit (C.P.U.)
time taken by each of the programs to analyse the two data sets. In each
case this meant extraction of 6 down to 2 factors with varimax rotation of
each set of factors, the data being input from tape. It may be seen that
PCVARIM is considerably more efficient than the other programs. It should
be noted that this comparison is somewhat unfair to the SSP program,
since it is assumed that the time taken by the SSP program to extract and
rotate 6 down to 2 factors is 5 times that taken to extract and rotate 4 factors.
This is probably an over-estimate since it assumes re-computationof the

correlation matrix at each stage.

The amount of information printed out by the various programs
varies somewhat. All three can print out the means, standard deviations,
correlation matrix, the varimax-rotated factor pattern matrix, the eigen-

values, communality estimates and estimates of the proportion of explained

variance to total variance. The SPSS program can produce, in addition,



- 12 -

the inverse and determinant of the correlation matrix, the factor matrix
rotated by the QUARTIMAX, EQUIMAX or OBLIQUE criteria, the factor

score co-efficient matrix and a graphical plot of the rotated factors.

All three programs will accept the correlation matrix

as input, and, as Bent et al (1970) point out, this procedure can save the
user "enormous' amounts of machine time. Experiments inputting the
present 16 variable correlation matrix showed that the SPSS program could
carry out a factor analysis in about 20 seconds CPU time. Inputting the

correlation matrix is therefore to be recommended.

The accuracy of three programs is assessed in Table 9.
It may seem that all three programs produce practically perfect estimates
of the parameters of the structure with no uniqueness. The estimates
for the parameters of the structure with a'unique component are not so
close, but the average correlation of over 0.88 for each program would

seem quite satisfactory.

The conclusion of this section is that PCVARIM is
more efficient than the other programs. However, SPSS does have the
range of additional options outlined above, and on occasion these may be

useful.
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4, Two Common Problems in the Use of Factor Analysis

(i) How many factors exist in the data?

In the case of a factor structure with no unique
variance, such as that shown in Table 2, this question can be unambi~
guously solved by inspection of the eigenvalues (and consequently the per-
centage explained variance), To verify this consider the eigenvalues
derived from the correlation matrix shown in Table 5 (which was based

on a factor structure with no uniqueness).

Factor Eigenvalue Percentage Variance
1 5.74 35.9
2 4.65 29.0
3 3.78 23.6 = 100%
4 1.83 11.4
5-16 0.0 0.0

Each eigenvalue after the fourth is zero.We can therefore be certain that

the structure can be completely expressed in terms of 4 factors.

Problems arise when one attempts to apply the same logic
to a correlation matrix which was generated by a structure containing
unique variance. Consider the eigenvalues of the correlation matrix generated

by the structure shown in Table 4 which does have a unique component.

Factor Eigenvalue Percentage Variance
1 3.34 20.9
2 3.05 19.1
3 2.42 15.1
4 1.74 10.9
5 0.70 4.4
6 0.66 4.1
7 0.64 4.0
8 0.52 3.3
9 0.49 3.1

10 0.44 2.7
11 0.42 2.6
12 0.40 2.5
18 0.36 2.2
14 0.29 1.8
15 0.27 1.7
16 0.26 1.6
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The first factor accounts for 20.9 per cent of the
variance, the first two for 40,9 per cent and so on. When should one
stop extracting factors, and assume that the unexplained variance is
simply due to the influence of the random errors summarized in the
unique component? At least three ways of solving this question have
been suggested. Firstly, one can extract . as many factors as there are
eigenvalues greater than 1.0. The rationale for this rule of thumb is
that the total variance in the data set is equal to 16 (since each of the 16
variables is standardized to unit variance) and hence those factors with
an eigenvalue greater than one are explaining more than the "average"

amount of variance.

Secondly, one can use a test suggested by Bartlett

(1954). He showed that

‘ +
‘ k-+1 k+2 p
Log (7‘1{+1 Az e )

2
multiplied by a certain multiplier is distributed as X . (p is total number
of variables and k is number of factors which we think are adequate to explain
the variation in the data. “A § is the j-th eigenvalue). A significant value of

the criterion suggests that an insufficient number of factors has been extracted.

A third possible approach, which may be combined with
the other two, is to examine the patterns of (rotated) loadings generated by |
different numbers of factors and choose the most easily interpretable solution.
This has the great advantage of ensuring that one's results make substantive

sense, but it may involve a certain amount of subjectivity.
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Let us now see whether these procedures give the

"correct' answer when applied to our data set which we know contains

four factors. As may be seen from the eigenvalues listed above, the

"eigenvalues greater than one' rule gives the correct answer i.e. extract

four factors. Bartlett's test for three to seven factors is shown below

Number of Factors Number

Criterion D.F.
Extracted Remaining
3 13 360.5 90
4 12 124.9 77
5 11 101.3 65
6 10 77.4 54
7 ' 9 50.5 44

The test seems misleading in the present case.

Significance

Level
P < 99.5%
P < 99.5%
P < 99.5%
99% < P <€ 97.5%

90% < P < 75%

It suggests that there is a

less than 0.5% chance that the last twelve factors arose from a complex of

uncorrelated variables. Rigorous adherence to this test in a practical

situation would lead one to extract six and not four factors.

It is not really possible in the present case to judge

the usefulness of the third criterion, interpretability, because the loadings

which were used to generate the factor structure were arbitrary and did not

have any "simple structure'' properties.* In a factor analysis involving

real data one could invoke considerations of meaningfulness and parsimony

to select the appropriate number of factors.

What happens if one extracts the "wrong' number

of factors? Table 10 shows the three, four and five factor solutions for

the data set generated by the co-efficients in Table 4. All three solutions

show quite a marked similarity.

* Of course, there is no reason a "simple" factor structure could not be
input into the FACGEN Program and an interpretable data set generated. It
might even be possible to modify the program to create "simple" structures.



- 16 -

(ii) What happens when categorial data are used?

Quite frequently in economic and social research
important variables can only be measured at a dichotomous or polychotomous
level. The inclusion of such variables violates the assumption of normally
distributed, continuous variables on which factor analysis is based. A
related, though less serious, difficulty arises when variables are measured
on a scale containing only three, five or seven points. The larger the number
‘of points on such scale the more closely the variables conform to the assump-
tion of continuity. Any number of points greater than four is generally assumed
to provide a sufficientiy close approximation to continuity for the purposes

of factor analysis.

To investigate this problem in its most acute form,
it was decided to dichotimize a set of data from the four factor structure
shown in Table 2. This was done by generating the data set by the FACGEN
program (see Appendix) and then transforming the resulting values of the
variables by setting each negative value equal to -3 and each positive value
equal to +5. The resulting data set therefore consisted entirely of -4's and
+3's. This data set was factor-analysed by means of the SPSS program.
(principal factor method PA2) and the results, together with the "original
co-efficients' used to generate the data, are shown in the first two sections

of Table 11.

It may be seen that the actual and estima.ted structures
are quité similar, the highest correlation observed between estimates and
actual being over 0.9.It should, of course, be borne in mind that one would
rarely in practice run a factor analysis on a correlation matrix derived
entirely from dichotomous data. However, the factor pattern on which the
present.data set was based contained no unique component and when a more
precise level of measurement was used correlations between actual and

estimated factors were always over 0.99. The relatively small deterioration
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in the quality of the estimates obtained when dichotomized data are used

is therefore quite striking.

The last set of figures in Table 11 is an extension
of the above test suggested to me by a discussion which I had with John
Raven. He had had the experience with several '"real" data sets that items
with similaf proportions of endorsement tended to be grouped together
by factor analysis. That is, items with which a high proportion of the
sample agreed tended to load on one factor, | irrespective of their substa.ntive
content, while items with which a low proportion agreed tended to load on

another factor.

The recurrence of this phenomenon had led John
to suspect that this was an artifact of the factor analysis algorithm. Such
"artificial" factors, if they exist, are clearly a nuisance when one is trying

to make sense of one's results.

Varying rates of endorsement were simulated in
the following way. A set of 200 observations on 16 variables, again based
on the factor pattern shown in Table 2, was generated. The observations on
variables 1-4 were dichotomized by allocating negative values to one category
and positive values to the other. (Since all the variables are, before dicho-
tomization, /7 N (0, 1) this corresponded to assuming a 50 per cent endorse-
ment rate). Variables 5-8 were dichotomized by allocating values below
0.68 to one category and those above it to the other (0.68 corresponds to the
75th parcentile of a unit normal variate. Therefore this corresponds to a
25 per cent endorsement rate). Variables 9-12 were similarly treated so
that they had a 10 per cent endorsement rate and varisbles 13-16 a 5 per cent

endorsement rate.
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While the first four variables do load most heavily on the
first factor, there seems to be no distinct pattern in the loadings of the
other three sets of variables. Thus John's suspicion finds no confirma-

tion in these results.

However, we see that even in the case of unequal endorse-
ment rates, the estimates of the factors derived by the program are still
quite good, since all the correlation co-efficients are greater than 0. 75.
Clearly, it would be of interest to see if this result holds good when a

unique component is present.
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Table 2: Co-efficients to estimate the variables from the
factors (factor pattern matrix)

Factor
Variable
1 2 3 4
1 040832195 0.7136059 0.6211664-0.3130381
o T $+0183298. 0.9254G11-0.1436085 043502465
3  6.2339566 0.9515763-0.0166898-5.1987171 |
4 ~0 2874494 0,0319199 0,9471081-0.1390697
5 ~C.0519799 0.8221784 0.5656589-0.0367599
6 ~C.7611248-0.4298670 0.3215278-0.3640375"
7 0.4660682-0,1779892 0.8661066 0.0399699
8 0.9083121 0.4170263-0.0153999 0.(0286597
9 . -0.9303820 0.3524770-0.1006791 0.0037600
10 0.6035870 0.1443493-0,5643373~0,5443974
11 049217330 0.1044291-0.0171199-0.3731C71
12 ~ 02557397 0.3147796-0.5481594-0.7314593
13 0+2535614=0.9585454~0.1222306-0, 0442402
14 0.9109831-0.3336811 0,0331501~-0.2401408
15 ~0. 7496928 0.3225469-0.5665945-(:.1135588
16  ~0.4710577-0.3052785 0.4031180-0.7227765"
|




Scores of 10 "respondents™" on 16 variables, including

measurement and other errors (unigue component)

Table 3:
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Table 4: Co-efficients to estimate the variables from the

factors (factor pattern matrix)
component

including unique

[

Var.,

Common [fagtors.

1 2. -3 4

Uniqueness
Co-efficient

-

IR 2 T S

g

i
]
2
'3
1

|5
16

C.5C06732-C.4C43355 9,1938723 0.,28711006
0 T7199904-0.3074161 0,1347142-7.19598271
~0.1585296-0.2694603-2.6226222-0.0827186
Ge@2T1542-0,4951434-0.2736524~0.2238455
;0.5203688—0.1817663—0.2522784#“{1569160

; 0.2181250 0.1260058—0.6466407—Q.0031189
Co 7109838 C.2740009-2,9308322-0.0241838
~2.3034697-0,5651245 1, 1895387-0.056560619
0.3332142 0.3634381 ©.3930904-C.4146335
043246162 041960473 23.0334886-0.28738726
—U U 18T7992-0.1538085 2,4033373-0.4466411
=0 ,4100823 2.5655873-".0326667-0.1€35737
Ca241583 0.5680439=0.0745494-0422240674
-7.2589619-0.4592898 1.€26384]1-23,12916038
-0 4241029-0,2287723-5.2789811-0.5768183

0+4687439~0.4571099~0,3863355-0.3186761

1e5661448
246825100
0.5736116
247143319
D.6969218
0.7756358
G.7199931
Jebb 64440
DeT7174329
ne 6560792
08776845
0. 7834066
046357873
N.7563266
£e5318834
05977541




Table 5: Correlation Matrix for 16 Variables, based on 200 observations
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Table 6: Comparison between Actual and Estimated Factors for structure with 4 Factors and no
unique component. Estimates based on SPSS Program
Factor 1 Factor 2 Factor 3 Factor 4
Variable Actual Estimated Actual Estir;aated Actual Estimated Actual Estimated
1 0.083 0.049 0.714 -0.603 0.621 -0.717 -0.313 -0.347
2 0.018 0.128 0.925 -0.929 -0.144 10,060 0.350 0.341
3 0.234 0.299 0.952 -0.927 —6.017 -0.056 -0.199 -0.220
4 -0.287 -0.373 0.319 0.086 0.947 -0.912 -0.139 -0.146
5 -0.052 -0.056 0.822 -0.737 0.566 ~0.670 -0.368 -0.060
6 -0.761 -0.824 -0.430 0.403 0.322 -0.230 -0.365 -0.325
7 0.466 0.380 -0.178 0.301 0.866 ~-0.875 0.031 0.004
8 0.908 0.938 0.417 -0,341 -0.015 -0.057 0.029 0.008
9 -0.930 -0.912 0.352 -0.393 -0.101 0.119 0.004 0.018
10 0.604 0.619 0.144 -0.154 -0.564 0.565 -0.544 -0.523
11 0.922 0.923 0.104 -0.034 -0.017 -0.013 -0.373 -0, 383
12 -0.256 ~0.258 0.315 -0.346 -0.548 0.583 -0.731 -0.687
13 0.254 0.215 -0.959 0.956 -0.122 0.198 -0.044 -0.036
14 0.911 0.890 -0.334 0.382 0.033 -0.039 -0.240 -0.248
15 -0.750 -0.693 0.323 -0.409 -0.567 0.588 -0.114 -0.087
16 -0.471 ~-0.581 -0.305 0.337 0.403 -0.316 -0.723 -0.671
Correlation
between Actuall 0.995 -0.993 -0.991 0.997
and Estimated
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Alternative Factor Pattern to generate the

Table T:

correlations shown in Table 5
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8+9

Table 8: Average CPU Time taken by three programs to analyse
a 16 variable, 200 observation data set
Program Average CPU Number of Runs on
Time (minutes) which average is
based
SPSS 2.06 3
PCVARIM 1.52 3
SSp* 3.75 2

* Estimate, based on time taken to extract and rotate four factors

Table 9: Average Correlations between actual coefficients and those estimated
by three Programs for samples of 200 observations from 2 factor

structures.

(Both factor structures are orthogonal and contain 4

factors. One contains a unique component but the other does not.)

Average correlation between

Average Correlation between

Program actual and estimated coeffi- . .
ients f truct ithout actual and estimated coeffi-
cients tor structure withou cients for structure with
uniqueness uniqueness
SPSS 0.99 0.89
PCVARIM 0.99 0.88
SSP 0.99 0.88
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and three-factor solutions
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estimated from 200 obsgservations on structure

given in Table 4
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Table 11: Original Co-efficients and those estimated from (a) a

dichotomized data set with equal endorsement and (b) a
dichotomized data set with unequal endorsement

VARIABLE KO, ORIGINAL CO-EFFICIENTS

o g R N A S Y B ol PV S B

S HE®

0.0832195 0.7136061 U.6211666-0,3130382
0.0183298 0.9254015-0.1436086 0.3502466
02339566 049515763-0.0166898-0.1987171
~0+2874494 0.0319199 0.9471081-0.1390697
-0.0519799 0.8221784 0.5656589-0.0367599
-0.7611248-0.4298670 0.3215278-0.3640375
Ue4660683-0.1779892 08661069 0.0G309699
0.9083121 0.4170263-0.0153999 0.0286597
={.9303820 0.352%770-0.1006791 0.0037600
0+ 6035873 0.1443493-0.5643376-0.5443977
0.9217334 0.1044291-0.0171199-0.3731073
«e2557397 0.3147796-0.5481594~0.7314593
De2535614~0.9585454-0.1222306-0.0442402
U«9109833-0.3336811 0.0331501-0.,2401408
- =0+T7496928 0.32254569-0.5665945-0.1135588 ' -
- ~0.4T710577-0.3052785 0.4031180-0.7227765
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Loefficients estimated from a data set with eqiual

endorgement -

FACTOR 1
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—Correlation 0-80 016 -0-914 -~ 0-97

Co-efficients from data set with unequal endorsement

AN

FACTDOR 1 FACTDR 2 FACTOR FACTOR &
VARDOL O-17750 -0.11188 -« 24306 ~0e19935
VARGOZ. DeT4417 De4122 De21408 019710
VAROD3. . 079723 D+26241 $.12093 -0, 01079
VARDD 4 020849 -0 « 56464 -0 +54069 ~Pa09482
VAROQS 0. 60338 -D25166 - 422659 -0.02107
VARGDO -0+ 26020 ~De 60345 ~J. 07506 -0e35344
VAROD7 -0.00150 -0.03671 -0.65776 Q.01792
VAR(DOS 029152 0.51498 ~(s31207 -0.00076
VAR Q09 0.12963 -0.39936 0.14077 -0.38268
VARD1U -0.08301 059995 0.10087 045175
VARQL1 D.06053 055615 ~ 36564 -0.28872
VARQ12 Qe 14603 De21705 (1.35877 -0 %9245
VARG13 -J+39140 De15569 -0.192631 ~0. 04845
VARO1% ~0.25052 0+36522 ~(439529 -0e20257
VARO15 0.13207 ~-0.18503 024528 -0 «33730
VARD16 -0+ 38876 ~0e 294 4] ~Qe D922 -0e36044
Highest corr with . o T O T T T
; 2 1 3 It
fee QP18 FRactor. No S Sy —— e
Correlation 0-9 o84 - ©0-18 0-80




