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Factor Fiction - A Monte Carlo Approach to Factor Analysis

1. Introduction

Factor analysis is a complex technique. The deriva-

tion of even its most basic results requires an understanding of matrix

aUgebra, and the mathematics involved in establishing the more complex

rotational methods is beyond the algebraic competence of the vast majority

of researchers. Indeed in some cases factor analytic techniques are used

whose distributional properties are not yet known, or are known only for

impracticably large samples. Asymptotic results are of tittle value unless

one can be sure that they will not be seriously in error for samples of the

size usually encountered in practice.

This complexity gives rise to several problems. In

the first place, it is difficult to teach factor analysis, especially to those

with a limited mathematical background. I,speak from bitter experience

on this subject since all my attempts to teach factor analysis seem to end

up as either incomprehensible algebra, or vague and unsatisfactory verbal

descriptions. Secondly, users of the technique are forced to rely on hunch and

rule-of-thumb in the absence of clear-cut distributional results for "small"

(non-asymptotic) samples. This difficulty is further aggravated by the

very wide variety of modifications and refinements which have developed in the

literature and whose strengths and weaknesses are not well known.

The present paper suggests a partial solution to these

problems. The basic idea is to generate, by computer, a sample from

a population with a known factor structure. * Various factor analytic techniques can~

be applied to this sample and the estimates so derived may then be compared

with the known factor structure. This short paper cannot pretend to be an

exhaustive treatment of the applicati:on of Monte Carlo methods to f~/ctor

An appropriate program is presented in the Appendix.
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analysis. The best I can hope to do is to indicate the broad areas to

which this technique may be applied, and to present some initial, illus-

trative results.

Many applications can be envisaged for the Monte

Carlo approach. First of all, students with little knowledge of mathema-

tics often find a carefully constructed and well explained example more

palatable than reams of algebra. Stuart ~962) shows how an arithmetic

example may be most effectively used to teach the basic principles of

sampling theory. The first part of the present paper attempts to explain

factor analysis in a similar way. By setting up a population where the

relationships between the factors and the variables are known, it is hoped

to make students conscious of the hypothetical model underlying all applica-

tions of factor analysis and to show how this model may be estimated by

means of the various factor analytic techniques. Interested students could

generate samples from different factor structures by means of the program

presented in the Appendix, and could then apply the various programs to

estimating these structures.

A second possible application of the Monte Carlo approach

to factor analysis is the testing of the accuracy and efficiency of various

programs. The results of such tests on three currently available programs

are presented in the second part of this paper.

Thirdly, Monte Carlo methods may be used to shed some

light on the distributional properties of factors. Lawley and Maxwell (1963)

have made considerable progress from an algebraic point of view on these

topics, but many important results have not yet been derived. Large scale

Monte Carlo experiments could be the answer to these difficulties. However,

such experiments would have needed more time (both computer time and

researcher time’) than I had at my disposal and I do not deal any further

with distributional properties in this paper.
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The fourth area where Monte Carlo methods could be of

use (and here we come to the title of the paper) is in investigating the

effects of various practical limitations which are met in almost all applica-

tions. For example one is never sure how many factors to extract. Rules

of thumb abound but their validity is rarely checked, and the costs (errors)

involved in extracting the wrong number of factors are unknown. Another

limitation which traditional theory does not take account of is the fact that

researchers frequently wish to include discontinuous variables in a factor

analysis. The implications of using such variables as opposed to contin-

uous, normally distributed variables are not well known: Monte Carlo

methods could help clarify this issue.

The third part of this paper is therefore devoted to a consi-

deration of some of these issues for one particular factor structure. I

hope to illustrate the extent to which commonly used factor analytic pro-

cedures can unearth the "true" underlying dimensions of a set of variables -

in short the extent to which factor analysis produces fact or fiction.

2. Factor Analysis explained by example

Let us assume that we are conducting an attitudinal study and

have administered a questionnaire containing 16 variables (items or sets of

items) to 200 subjects. The scores for the first 10 subjects are shown in

Table 1. Let us further assume that these 16 variables reflect only four

underlying independent* factors. If, say, we were investigating the general

area of intelligence, the original items might be individual intelligence tests

of various sorts (either individual items or averages over sets of items) and

the underlying factors might be, say, verbal ability, quantitative ability,

three dimensional visualization and creativity. Saying ~that the original items

reflect only these four factors means that if one could know an individual’s
* For the sake of simplicity, I deal only with uncorrelated factors in this

paper. In practice, the factors may be correlated (oblique) and certain
techniques (PROMAX, OBLIMIN) can be used to estimate them.
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score on each of the four factors, one could calculate his score on any of the 16

variables in the questionnaire. In other words, all the information we

have about an individual is contained in his scores on the factors. The

problem in practice is that we cannot observe factor scores; all we can

observe are test scores. Yet it would be great interest to try to estimate

these factor scores since they provide a much simpler and more parsimon-

ious description of the data. This is what factor analysis tries to do.

Just for the purposes of illustration let us assume that an

.omniscient being (OB) has revealed the relationships between factor scores

and test scores to us for a certain set of data.

known if we know the co-efficients a    a
jl’ j2’

equation for variable j (which we call zj)

z. = F1 + F2
+ + F4j ajl aj2 aj3F3 aj4

These relationships are

aj3, a.j4, in the following

There will be 16 such equations, one for each variable, all with different

co-efficients. Table 2 shows the full set of such co-efficients, as revealed

by the OB, for our example. Thus, to calculate an individual’s score on

variable one from his factor scores we would multiply his score on Factor 1

by -0.083, his score on Factor 2 by 0.714, his score on Factor 3 by 0.621

and his score on Factor 4 by -0. 313 and add the results, i.e.

(-0.083). (F1) + (0.714) . (F2) + (0.621) . (F3) + (-0.313). (F4)

If our obliging OB can tell us an individual’s factor scores, then we can use

Table 2 to predict (with certainty) what that individual’s score on any of the

16 variables will be.

Apart from their use in predicting the variables from the factors,

the co-efficients or ’loadings’ in Table 2 give the correlations between the

variables and the factors. Thus, the correlation between z and F1 is 0. 083
1
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and that between zI and F4 is -0. 313. Squaring the co-efficient aij gives

the proportion of the variance in variable i attributable to changes in factor

j. For instance, factor 2 accounts for 50.9 per cent (= 0. 7132) of the

variance in variable 1.

It should also be noted that we have assumed the factors to be

independent (uncorrelated). This implies that any significant correlation

which we observe between two variables is due to the fact that they are both

related to the same factors. A fundamental factor theorem states that the

correlation between variables 1 and 2 (rl~ may be decomposed as follows

-b r -b -~ ....
r12 = rlF1 r2Fl rlF2 2F2 rlF3 r2F3

where rkF is the correlation of variable k with factor m i.e. the loading

m
of factor m on variable k. In terms of our example, the correlation between

variable 1 and variable 2 should, from the theorem, be equal to

r12 = 0.002

= 0.463

+ 0.660 - 0. 089 - 0.ii0

The observed correlation from the correlation matrix given

below (Table 5) is 0.405

Table 2 allows us to calculate the variables from the factors.

Sometimes it is useful to do the opposite and calculate the factors from the

variables. To see how this might be done, consider the meaning of the

first four rows of Table 2 i.e.
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zI = 0.083 F1 +0.714F2
+0.621F3 +0.313 F4

z2 = 0.018 F1 +0.925 F2 -0.144F3 0.350 F4

z3 = 0.233 F1 +0.952F2 -0.017 F3
-0.199 F4

z4 = -0.287 F1 +0.032 F2 +0.947 F3
+0.139 F4

These are four equations representing the variables expressed as weighted

sums of the factors. By successively eliminating, say, F2, F3 and F4 from

equation 1, we can obtain Factor 1 (F1) expressed as a function of Zl, z2,

z3 and z4. F2, F3 and F4 can be similarly expressed. The result will be

the following set of equations:

F1 =
14.390 z1 +2.066z2 -12.487z3

-9.344z4

F2 = -2.020 z1
+0.112z2 +2.410z3

+1.384z4

F3 = 5.436 z1 +1.046z2 -5.012z3
-2.439z4

F4 = 6.813z1 +2.880z2 -7.770z3 -4.168z4

These equations are based on the first four rows in Table 1. Selecting any four

rows (variables) will allow any factor to be expressed in terms of these

variables.

Essentially, we have now completed a factor analysis of the data;

we can express any variable as a weighted sum of the factors, and any factor

as a weighted sum of the variables. In terms of our example, we can say

exactly how each test score is based on the factor scores, and how the factor

scores may be derived from the test scores.
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However, our example is seriously unrealistic from two points

of view. (i) It assumes that any variation in a variable is attributable

only to variations in the factor scores. That is, there is no source of

variation in the data other than the four factors.

(ii) It assumes that the variables can be measured without error.

Both these over-simplifications may be overcome if we modify the

original equation linking variables and factors to read

zi = all F1 + ai2 F2 + ai3 F3 + ai4 F4 + d. U.
l 1

where U. is a random variable which includes all sources of variation
1

unique to variable i and d. is a co-efficient. U. has a mean of zero and
1 1

2
variance of 1, so that the mean of d. U. is zero and its variance d.. The

1 1 1

variance of z. ( = 1, since z./’~N (0, 1)) may thus be partitioned in two
1 1

parts, that attributable to fluctuations in the scores on the common factors

(known a@,the communality) and that attributable to the unique component

(known as the uniqueness). The communality for variable i is given by

4 2y a    and the uniqueness is given by d2 .
ij

4 2     d
Var (zi) = 1 = ~- a +

j =i ij

4
If we know the communality h2 ~: 2

i ( = j=l aij)

d2 by I -h2
i i"

we can calculate

A knowledge of the relationship between 16 variables and four

factors will now entail knowledge of 80 co-efficients (64 loadings a.. and 16
1j

unique co-efficients di). This is illustrated in Table 3 which shows the

scores of 10"individuals" as generated from the factor pattern (set of co-

efficients) shown in Table 4. This pattern includes the full eighty co-

efficients.
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Having examined the complications which arise when the

unique term is included, let us now return to the factor pattern shown in

Table 2 and consider how we might estimate this set of co-efficients if our

OB was on a day off. The only information now at our disposal is the set

of test scores as shown in Table 1. From these, we can calculate the

correlation matrix (Table 5). We saw above that these correlations arise

because the variables are determined by the factors. Examination of the

correlation matrix can therefore shed some light on the nature of the factor

structure. *

Submitting this correlation matrix to a factor analysis

program will produce estimates of the co-efficients a.. which express the
1j

variables as functions of the factors (the factor pattern matrix). It will

also produce estimates of the proportion of the total variation in the set of

variables attributable to each of the factors. Table 6 shows the factor

pattern and proportions of variance as estimated by the SI:~SS program,

together with the ~’true" co-effieients used to generate the data. The agree-

ment between the estimates and the true values can be seen to be very good,

since the correlation between the true and estimated co-efficients ranges from

0.997 for factor 4 to 0.991 for factor 3.

However, and here we come to a vital and sometimes

misunderstood point, the co-efficients as shown in Table 6 are not the only

ones which could account for the observed correlation matrix. Indeed, there

is an infinity of such sets, and, mathematically, there is no way of choosing

between them. One alternative set is shown in Table 7. To verify that these

eo-efficients can account for the observed correlations just as well as those

in Table 6, let us re-examine the decomposition of r12 which we carried out

above (p. 4 ). The fundamental factor theorem states that -

* Cluster analysis proceeds by grouping the items in the correlation matrix
and has been shown by RavenE1971~ to produce similar results to factor
analysis. See also McQuittyL’1957J.
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+r12 = rlFi r2Fl + rlF2 r2F2 rlF2 r2F3

+ rlF4    r2F4

Using the co-effieients as estimated in Table 6, we obtain r12 = 0. 006

+ 0.560 - 0.043 - 0.118 = 0.405. Using those from Table 7 gives

r12 = -0.026 + 0.645 - 0.028 - 0.185 = 0.405

Thus, each set of co-efficients is equally effective in explaining the

observed correlations. An investigator who has no information other

than the correlation matrix must therefore devise new criteria on the basis

of which to choose between the alternative sets of co-efficients. Several

such criteria have been suggested, the most famous of which is probably

Thurstone’s concept of "simple structure" and its modifications ~’see

1947 J . Essentially, this involved selecting the set ofThurstone co-

efficients which was most easily interpretable in terms of subject matter

of the inquiry. "Interpretability" is judged on the basis of the number of

high (near 1.0) and low (near zero) loadings. Various critera can be

used depending on whether one wants to simplify the rows, the columns

or both the rows and the columns of the factor matrix. These are known

as "rotational" criteria and familiar types are QUARTIMAX and VAI~IMAX.

To sum up the discussion so far, I would like to draw

attention to three aspects of factor analysis which I believe are frequently

neglected. The first of these is the fact that we are operating with a linear

model. As Morrison (1967) points out "the (linear) model of factor analysis

is as much part of our hypothesis about the dependence structure as the

choice of exactly m common factors ..... If the covariances repro-

duced by the m-factor linear model fail to fit the sample values adequately,
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it is as proper to reject linearity as it is to advance the more usual finding

that m common factors are inadequate for explaining the sample correla-

tions." While a full non-linear treatment may be "frightfully complex"

(Harman), researchers should, I think, reflect on the substantive theory

of the topic in question to make sure that a linear model is really relevant.

Appropriate transformations of the variables before analysis, as is frequently

done in regression, might help solve this problem.

The second point is that the number of factors

extracted may determine the answers obtained. The implications of

extracting the wrong number of factors is further explored in section 4

below.

The third aspect which I would like to emphasise

is that the choice of a certain rotational method (e. g. VARIMAX) implies

certain hypotheses about the relationships between the factors and the

variables. Specifically, such a choice defines one set of co-efficients as

better than the alternative (mathematically equivalent) sets on the basis of

a certain definition of "simplicity" or "interpretability". Researchers should

be clear that, in using a particular rotational criterion, they are opting for one

of several possible definitions of interpretability, and that this definition

will affect the substantive nature of the results obtained.
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3. Accuracy and Efficiency of Three Programs

The three programs discussed in this section are:

(1) the Statistical Package for the Social Sciences

(SPSS) from the University of Chicago

(2) PCVARIM, a program belonging to E. E. Davis

and based on the Cooley - Londes tri-diagonalization

procedures

(3) the IBM scientific subroutines package (SSP).

Several sets of data generated by the program FACGEN

given in the Appendix were submitted to each of these programs. These

were all small data sets (200 observations, 16 variables,4 factors) but

they should indicate the relative merits of the programs.

Table 8 shows the Central Processing Unit (C. P. U.)

time taken by each of the programs to analyse the two data sets. In each

case this meant extraction of 6 down to 2 factors with varimax rotation of

each set of factors, the data being input from tape. It may be seen that

PCVARIM is considerably more efficient than the other programs. It should

be noted that this comparison is somewhat unfair to the SSP program,

since it is assumed that the time taken by the SSP program to extract and

rotate 6 down to 2 factors is 5 times that taken to extract and rotate 4 factors.

This is probably an over-estimate since it assumes re-computationof the

correlation matrix at each stage.

The amount of information printed out by the various programs

varies somewhat. All three can print out the means, standard deviations,

correlation matrix, the vartmax-rotated factor pattern matrix, the eigen-

values, communality estimates and estimates of the proportion of explained

variance to total variance. The SPSS program can produce, in addition,
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the inverse and determinant of the correlation matrix, the factor matrix

rotated by the QUARTIMAX, EQUIMAX or OBLIQUE criteria, the factor

score co--efficient matrix and a graphical plot of the rotated factors.

All three programs will accept the correlation matrix

as input, and, as Bent et al (1970) point out, this procedure can save the

user "enormous" amounts of machine time. Experiments inputting the

present 16 variable correlation matrix showed that the SPSS program could

carry out a factor analysis in about 20 seconds CPU time. Inputting the

correlation matrix is therefore to be recommended.

The accuracy of three programs is assessed in Table 9.

It may seem that all three programs produce practically perfect estimates

of the parameters of the structure with no uniqueness. The estimates

for the parameters of the structure with a unique component are not so

close, but the average correlation of over 0.88 for each program would

seem quite satisfactory.

The conclusion of this section is that PCVARIM is

more efficient than the other programs. However, S I:~S does have the

range of additional options outlined above, and on occasion these may be

useful.
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4. TWO Common Problems in the Use of Factor Analysis

(i) How many factors exist in the data?

In the case of a factor structure with no unique

variance, such as that shown in Table 2, this question can be unambi-

guously solved by inspection of the eigenvalues (and consequently the per-

centage explained variance). To verify this consider the eigenvalues

derived from the correlation matrix shown in Table 5 (which was based

on a factor structure with no uniqueness).

Factor Eigenvalue Percentage Variance

1 5.74 35.9
-i

2 4.65 29.0

3 3.78 23.6

4 1.83 11.4

5-16 0.0 0.0

= lOO%

Each eigenvalue after the fourth is zero.We can therefore be certain that

the structure can be completely expressed in terms of 4 factors.

Problems arise when one attempts to apply the same logic

to a correlation matrix which was generated by a structure containing

unique variance. Consider the eigenvalues of the correlation matrix generated

by the structure shown in Table 4 which does have a unique component,

Factor Eigenvalue Percentage Variance
1 3.34 2O. 9
2 3.05 19.1
3 2.42 15.1
4 1.74 10.9
5 O. 70 4.4
6 0.66 4.1
7 0.64 4.0
8 0.52 3.3
9 0.49 3.1

10 0.44 2.7
11 0.42 2.6
12 0.40 2.5
13 0.36 2.2
14 0.29 1.8
15 0.27 1.7
16 O. 26 1.6
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The first factor accounts for 20.9 per cent of the

variance, the first two for 40.9 per cent and so on. When should one

stop extracting factors, and assume that the unexplained variance is

simply due to the influence of the random errors summarized in the

unique component? At least three ways of solving this question have

been suggested¯ Firstly, one can extract as many factors as there are

eigenvalues greater than 1.0. The rationale for this rule of thumb is

that the total variance in the data set is equal to 16 (since each of the 16

variables is standardized to unit variance} and hence those factors with

an etgenvalue greater than one are explaining more than the "average"

amount of variance.

Secondly, one can use a test suggested by Bartlett

(1954). He showed that

log "~k+l ~k +2 ......
~ r       ~ k+l+ ~k+2 + ..... "~ k

P                 p-k

X2.multiplied by a certain multiplier is distributed as (p is total number

of variables and k is number of factors which we think are adequate to explain

the variation in the data. "k J is the j-th eigenvalue). A significant value of

the critertoli suggests that an insufficient number of factors has been extracted.

A third possible approach, which may be combined with

the other two, is to examine the patterns of (rotated) loadings generated by

different numbers of factors and choose the most easily interpretable solution¯

This has the great advantage of ensuring that one’s results make substantive

sense, but it may involve a certain amount of subjectivity.
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Let us now see whether these procedures give the

"correct" answer when applied to our data set which we know contains

four factors. As may be seen from the eigenvalues listed above, the

"eigenvalues greater than one" rule gives the correct answer i.e. extract

four factors. Bartlett’s test for three to seven factors is shown below

Number of Factors Number
Criterion D.F.

SignificanCe

Extracted Remaining Level

3 13 360.5 90 P < 99.5%

4 12 124.9 77 P < 99.5%

5 11 101.3 65 P < 99.5%

6 10 77.4 54 99% < P ~" 97.5%

7 9 50.5 44 90% ~ P < 75%

The test seems misleading in the present case. It suggests that there is a

less than 0.5% chance that the last twelve factors arose from a complex of

uncorrelated variables. Rigorous adherence to this test in a practical

situation would lead one to extract six and not four factors.

It is not really possible in the present case to judge

the usefulness of the third criterion, interpretability, because the loadings

which were used to generate the factor structure were arbitrary and did not

have any "simple structure" properties. * In a factor analysis involving

real data one could invoke considerations of meaningfulness and parsimony

to select the appropriate number of factors.

What happens if one extracts the "wrong" number

of factors? Table 10 shows the three, four and five factor solutions for

the data set generated by the eo-effictents in Table 4. All three solutions

show quite a marked similarity.

* Of course, there is no reason a "simple" factor structure could not be
input into the FACGEN Program and an interPretable data set generated. It
might even be possible to modify the program to create "simple" structures.
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(ii) What happens when categorial data are used?

Quite frequently in economic and social research

important variables can only be measured at a dichotomous or polychotomous

level. The inclusion of such variables violates the assumption of normally

distributed, continuous variables on which factor analysis is based. A

related, though less serious, difficulty arises when variables are measured

on a scale containing only three, five or seven points. The larger the number

of points on such scale the more closely the variables conform to the assump-

tion of continuity. Any number of points greater than four is generally assumed

to provide a sufficiently close approximation to continuity for the purposes

of factor analysis.

To investigate this problem in its most acute form,

it was decided to dtchotimize a set of data from the four factor structure

shown in Table 2. This was done by generating the data set by the FACGEN

program (see Appendix) and then transforming the resulting values of the

variables by setting each negative value equal to -½ and each positive value

equal to +~2~. The resulting data set therefore consisted entirely of -½’s and

+½’s. This data set was factor-analysed by means of the SPSS program

(principal factor method PA2) and the results, together with the T’original

co-effieients" used to generate the data, are shown in the first two sections

of Table 11.

It may be seen that the actual and estimated structures

are quite similar, the highest correlation observed between estimates and

actual being over 0: 9.It~ should, of course, be borne in mind that one would

rarely in practice run a factor analysis on a correlation matrix derived

entirely from dichotomous data. However, the fa~r pattern on which the

presentdata set was based contained no unique component and when a more

precise level of measurement was used correlations between actual and

estimated factors were always over 0.99. The .relatively small deterioration
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in the quality of the estimates obtained when dichotomized data are used

is therefore quite striking.

The last set of figures in Table 11 is an e:~ension

of the above test suggested to me by a discussion which I had with John

Raven. He had had the experience with several "real" data sets that items

with similar proportions of endorsement tended to be grouped together

by factor analysis. That is, items with which a high proportion of the

sample agreed tended to load on one factor, irrespective of their substantive

content, while items with which a low proportion agreed tended to load on

another factor.

The recurrence of this phenomenon had led John

to suspect that this was an artifact of the factor analysis algorithm. Such

"ai, tificial" factors, if they exist, are clearly a nuisance when one is trying

to make sense of one’s results.

Varying rates of endorsement were simulated in

the following way. A set of 200 observations on 16 variables, again based

on the factor pattern shown in Table 2, was generated. The observations on

variables 1-4 were dichotomized by allocating negative values to one category

and positive values to the other. (Since all the variables are, before dicho-

tomization, ,W~ N (0, 1) this corresponded to assuming a 50 per cent endorse-

ment rate). Variables 5-8 were dichotomized by allocating values below

0.68 to one category and those above it to the other (0.68 corresponds to the

75th parcentile of a unit normal variate. Therefore this corresponds to a

25 per cent endorsement rate). Variables 9-12 were similarly treated so

that they had a 10 per cent endorsement rate and variables 13-16 a 5 per cent

endorsement rate.



While the first four variables do load most heavily on the

first factor, there seems to be no distinct pattern in the ioadings of the

other three sets of variables. Thus John’s suspicion finds no confirma-

tion in these results.

However, we see that even in the case of unequal endorse-

ment rates, the estimates of the factors derived by the program are still

quite good, since all the correlation co-efficients are greater than 0.75.

Clearly, it would be of interest to see ff this result holds good when a

unique component is present.
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Table I: Scores of 10 ,,respondents"on 16
No measurement or other errors.

variables.

Respondent No.

2

3

7

9

10

1.8802843
~-0.9886680

1.5543957
0.3937969

1.87553,12 0.5634809 I. 889.5292-1.7137918 1.3~’97140 2"13128091
i .4799~ 86-0.7~18919-~. 3~m972U w. 8368 ~43- i ¯ 29528~4--~" 0890036

~-,~ ’,.2237200 0.2471080-0,6844826 O.c 14865 0.2225040-0,1348f23 0.8~12793-0"
-O°039089D-l.6451302-0.8723996-l.8873672 0.0390476-0.4576845-0.6"970932",-~-~°

-6.2877959-2.0585432-1-~83272~J 0.4343902-i.00010i1 l.OO, R~3~3’n    ~,J.83~4945~ -0¯.
-!,0719624 0,7332998 0.9118591 0.3413723 i.6361456 i.39C0070-0.91~02488 ~’"

2208400
7984824

2349048
5841455

2.3864565 1.8815784 2.5001459 0.7124277 2.3639059-0.8226079 0.2?63609    1.29C3767
C.4493510 0.5708054 0.8316155 0.8234603--2.2642870-0.2865424 0.2119897r0"I086026

-1.3853807-0.7032669-I
0o6579337-0.8962489-1

-1.5936842-0.3722053-0
-0.7742781    0.7725325 Q

¯ 4063320-0.2961699-1.1389179 0.8575528-0.7092476r~"3855715
.3418541-0.3081454 0-.7962834-0.7892872 ,J.6476588 u.1245812

.7335233-1.6276388-i 5441141-0.7991400-0.7396988 0.2915913
¯ 3437638-u~.0711684 I~1251278 0.7092866-0.0384324-I’G245447

i    0.9071494    1.1621389 I    0732479 0.1411092 1.0673103-1    I055555 0.5356496 1.1283035
I-0.3432116 0.0336391 0~5588196-0.5189485-0.9272390 0~17~8452-0. 5105533-C’~385645

0.3039175-1.5842743-1.300q424 1.7323112-0.0365569 0.3687289 2.8071871 0.3897915
-1,8449697-1.0293989 0.7206523-2.3215504 1.4618187 1.5457544-2.7033033 0.5590’~73

6.0132244-0 0096582-0.1971591 0.307a697 0.1069394 0.1963647 0.1738320-0 2435173
0.1639895-0~4953615-0.3491!62-0.3588212-0.0360738-0.2554787-0.0536493 0~0206811

-0.2014241-0 0462776-0.6914.772 0.7972777 0.1550723 Io3701925-!3.4-’~’=" 1 7b12882
-,~u,4.,~-~’6251030-!~"~’-~ =~ ’ .8943768-0.1<)32245-0.37~:3438-1.71~82:~,,’~    , o 1 ’~ 0"6607755- ............... .,~28,5770



Table 2: Co-efficients to estimate the variabl_es from the
factors (factor ~atter.n matri~m    _ ~

Factor
Variable

I 2 3 4

I

2

3
4
5

6

7
8

9

I0

11

12

13

14

15
16

0.0832195

C.0183298

0.2339566

-0.2874494    0.0319199

-0.0519799 0.8221784

-C.7611248-0.4298670

0.4660682-0.1779892

0.9083121

-0.9303820

0.6035870

0.9217330

-0.2557397

0.7136059 0.6211664-0.3130381

0.925401 i-0 .1436¢86 0.3502465

0. 9515 763-0. 0166898-0. 1987171

0.94ti081-0. 1390697

0 ¯ 565658:-)--0 ¯ 0367599

O. 321 !5278-0. 3640375

0.866%066 @. 0309699

0.417026q-0 .0i53999 0.0286597

0. 3524770-0.1006791 0.00376<30

0.1443493-0. 5643373-0. 5443974

0.1044291--0.0171!99-0.3731071

O. 3147796-0. 5481594-0.7314593

0.2535614-0.9585454-0.1222306-0~0442402

0.9109831-0.3336811 0.0331501-0.2401408

0.7496928    0.3225469-0.5665945-(~!.i135588

6.4710577-0.3052785 0.4031180-0.7227765~

L.-____



Table 3: Scores of 10 "respondents" on 16 variables, including
measurement and other errors (unique component)

Respondent ~O.

I

2

V

?

?

-D.5182450 1.7459316 0.9971364 O. B686127 2. 5799685 C.1209134 0.4857935 ,0~8862238
1 7--]I. 611.,J 525’~ ¯ 0¯ b I 12172-I., ~t_2147¯ @                                         .5511117 r,~. ~652 I83~ 2                    .21 ~ 1545- 1 ¯ 3871 ~° 80~                                       ’~. ~ 1688346

-i.4i,:,5225-0.~43121-~.           ,.’,. 1~.-’~.,.3~-!. 34     632c~.~ .~->’:,7’vta:’. ....... ~’,’.1122-990__ 3.7706858 ,0.7391207
.... " . .... hC42 ~,9-L 4523983 0 947682~ fJ 5261331-1 16~6291 0 7196613 O 84565C8-] 6414921-3.~     ’~

0. C980893 1.5829811-:7.3C]8118-3.2126385 1.2C~71381 1.2388639-C.1287838-0.4566827
@.1~I16163-I.0746746-%.7413182 C.2127893-1.6790037-0.3437845 1.0188{J65 1.2690248

0. 821045!                  _,,li~ ° [~ A ~ ~ ] ) A~ ~ ~ ’ " ~ ~ ~’ " ~I~ ~1~[]~ --I " . ]    " 6688315 ::                    .3058617 0.2071454. 0. 8710961- C. 7246733
-0.2282687-0.4287,’J85 0.40!’#896 t. 33129,52-0.6203752-1.3698492-0.d846304 ’3.52-0298

8.3234B80 2.508475B    I.I~!6900-!.7355490    I. I016035-1.59628S6-0.5106C68    1.19266!B
O. 1905652-0. 172407~ ).!~336164-,].7793048-i °2773714 0.2551693    1.77381375-2.2619291

-i .451/+360-0.3160561-0. %’~13232-9. 3285!$5 C. 1122166-0. 83282C6-0. 5107927-’0-7753966
-0.268967 7-0 ........... 2082363-1., ~%25’:~P4A ,"} 7 .’}~,24’92 6 11:;3~3234 t3. 30674q? -~....9486553                                       ~.~ C4245q7

1,5368481 1.0353651 2. ,3134 75-;3. 611796~6 0.6170583 0.355751A-2.01i0619 0.6604123
1.3521461 O. 14736’36 ?. 1551325-0.387705q-6.398962B-0.1687852 O. 5129723-C.4095405

0.9433647 1.6449528 3. 3f42216-1.67636~7 0. r742457-1.5986481 0.6966645 1.4308176
~" 7158257 1.1457891 0 143927!--1.73417~40.6583975 2.53~75"1-;1’’ r’2~52C6 [ 2261543-,~.

¯ 8332605 ;).769083)-1 .6466-.,7-q 280229c~ 1 0990648-0.7990B75 0.~j~27256 b. 5957�72
0. 3!68627-0. 78449-50 ]. 33~’~2~9-I. 1235226-i.1724205-0.2179662-~,.951526~,-’0.9126310

-@.8479825 9 3257084 i!.53617o6 1 2312593 i.]899Co,:-0 99r94S2-i, 246~0                            ,    * 6387758
-,;~,3987045-’" 28934.,;3 3,037300’-,~ 1.b113802 O 0420041 0 58 "~"" 3~:;~6-:3 5617573- 1 1257019
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Table 4: Co-efficients to
factors (factor
component

estir~a~e the variables from the
pattern matrix) including unique

War,

l

4
5

@
,?
itD

II

13

~6

C o Lnmo n_
I

0.4687439-0 ¯

C. 5C06732-C.

0.71(19904-0.

-0. 158 6296-0.

O. it271542-0.

0 ¯ 520 3688-0.

2 .... 3~- 4

~,57 io99-o .:~63355-0. 318676i
4c43355 o.1~3~723 o.28711o~
30"#4161 O. I~47142-0. L998271

269460 3-0 ¯ 6206022-0 .~] B 27186

49514qt+-O.293652L~-C .C’208455

181766D-0.2522784-~, 156916C

L

I ,

Uniqueness
Co-efficient

0.5661448

0.6825100

0.57~6116

3.t143319

0.6069218

0.77g6858

0.2181250 O.

C.7109838 C.

-0.B034697-0.

0.33B2142 O.

0.3246162 O.

1260058-0. 6466407-’3 .00 31189

274000’~-0. ~3, 8322-0.0241838

5g51245 q. 18q5387-O.055~619

3634381 q.3930904-C.4146335

1960z~ 73 :). 0834886-0.28 )~ 726

-O.L 187992-0. 1538085    C. 4033373-0. 4466411

-0.41~ ~823 0.5655873-,’.0326667-0.1635737

C.2241583 O. 56804~9-6,. P T45494-~ ¯ 22246 T4

- C. 2589619-0. ~,g92898 ~. 6263841-]. 0916038

-O .424L029-0.2287723-d’.278f1811-O. 5768183

0 ¯ 7 1 g 9931

;) . 646q440

O. 7174329

% .6560192

0.8776845

O. 7834066

0 ¯ 6957873

0. 7563266

C. 531883%

0 ¯ 5~7734 1



1.0000000 0.4051787                 ~,~.6900114 0.6349237 0.9431350-0.0059713 0.A623582    0.290054%-
O. i004654-0, 0996079 0.2080887 0.0174301-0.6948871-0.0726045-0.1786075 0.2275242

0.4D51787 1.0000000 0.82171’77-0.2323716 0 6170023-0.6049[32-0.2825743    0 4354982
0.2621879 0.0776430 0.0186103 0.0894879-0"8609477-0.3279745 0. 2973240-0~ 6349!48

0.6900114 0.8217177 1.0000000-0.1082672 C.7172195-0.5364121-0.I169489 0.5982151
0.0807216 0,4108901 0¯3927764 0.3617d81-0¯8245521-0.0310149 0.1572667-0. 3213071

0 6340237-0.2323716-0.1082672 1 CO00000 0 5782025 0 5991~ ....¯ ¯ ..... ~-v 0,6815043-0. a278183
0.1945154-0.6829589-0¯2797188-0.3652824-0.1731555-0.2272331_0. 3003673 0.6312149

0.9431350 0.6170023 0¯7172195 0.5782025 1.0000000-0.0769832 0.3429024 0.2361061
0.26(31505-0.2688802                      L,~.0046583-0.0798047-0.8470567-0.2907568-0.0484546 0.0365543

-r: 0059713-0.6049132-0,5364121 O 5991549-0 0769832 !.~3000000 0.,,082014-0.8996356
0.5590251-0.5319031-0. 6468738 5. 1623983 0.1741914-0.4892474 0,2988358 0¯9047790

0.4623582-0.2825743-0.1169489 0.6815043 0.3429024 0.0082014 I. O00COOC 0. 5645617
-0.5691082-0.3067076 0.3501682-0.7149460 0,1965327 0.4860162-0.9007165 0.1541891

0..2900544 0.4354982 0.5982i51-0.3278183 0.2361061-0.8996356 0.3045617 1.0r’~jJuooO
-0.7283376 0.5971771 0.8758367-0.1628014-0¯1348697 0.7051781-0.5455699-0.6462631

0.1004654 0.2621879 0.0807216 0.1945154 0.2601505 0.5590251-0.5691082-0,7283376
1.0000000-0¯4462651-0.8364305 0.4283253-0.5490568-0.9700485 0.8608686 0.3468934

-0.0996079 0.0"776430 0-4108901-0.6829589-¢.2688802-0.531903i-0.3967076 0.5971771
-0.4462651 1.0000000 0¯7701940 0.582914~ 0.1168852 0.6001121    0.0106149-0.2383939

0.2080887 0.0186103 0.3027764-0.2797188 0~F046583-0.6468738 0.3501682 0.87581~67
-0.8364305 0.7701940 1.0000000 0.0298213 0.1772743. 0.9034441-9.6U. 07-:)-0~0 ~    .2865623

0~0174301 0~0894879 0 ~617881-0.3652824-0.0798047 0 1623983-n.714940,~-0. 1628~14
0.4283253 0.5829149 0.0298213 1.0000000-0.2466013-0.2136489 0.7222923 0,3106148

-0-6948871-0.8609477-0.824552]-0.i731555-0.8470567 0.1741914 0.1965327-0.1348697
-0.5490568 0,1168852 0.1772743-0.7466013 1.0000000 0.55T6588-0.4206145 0.1584411

-0.0726045-0.3279745-0.0310149-0.2272331-0,2907568-0.4892474 0,4860162 0.’7051781
-0 970~485 0 6001121 0.9034441-0.2156489 0 5576588 i m CCG..... #0    00-0.7738513-0.2691888

-0.1786075 0.2973240 0¯1572667-0.3003673-0.0484546 0.2988358-0.9007165-G.5455699
0.8638686 0°0106149-0.6000730 0.7222923-0.4206145-0.7738513    1.0000000 0.1369294

0.2275242-0.6349148-0.3213071 0.6512149 ~.0365543 0.9047790 0.1541891-0.6462631
rJ.3468934-0.2383939-0.2865623 0.3106148 0.1584411-0,2091888 0.1369294 1,0000000



Table 6: Comparison between Actual and Estimated Factors for structure with 4 Factors and no
unique component.    Estimates based on SPSS Program

Factor 1 Factor 2 Factor 3 Factor 4

Variable Actual Estimated Actual Estimated Actual Estimated Actual Estimated

1 O. 083 0. O49 O. 714 -0.603 O. 621 -0.717 -0.313 -0. 347

2 O. 018 0. 128 O. 925 -0. 929 - O. 144 iO. 060 0. 350 0. 341

3 O. 234 0. 299 O. 952 -0.927 -0.017 -0.056 -0.199 -0. 220

4 -0.287 -0. 373 0.319 O. 086 O. 947 -0.912 -0. 139 - 0. 146

5 -0. 052 -0. 056 O. 822 -0. 737 O. 566 - O. 670 -0. 368 -0.060

6 -0. 761 -0.824 -0.430 0.403 O. 322 -0.230 -0. 365 - 0.325

7 O. 466 0. 380 -0.178 0.301 0.866 -0.875 0.031 0. 004

8 O. 908 0. 938 0.417 -0. 341 -0.015 -0.057 0.029 0. 008
9 -0.930 -0. 912 O. 352 -0.393 -0.101 0.119 0. 004 0. 018

10 O. 604 0.619 O. 144 - O. 154 -0.564 0. 565 -0. 544 -0.523
11 O. 922 0. 923 O. 104 -0. 034 -0.017 -0.013 -0. 373 -0. 383
12 -0.256 -0. 258 O. 315 -0. 346 - O. 548 0.583 -0. 731 -0.687
13 O. 254 0.215 -0. 959 O. 956 -0. 122 0. 198 - 0. 044 -0.036

14 0.911 0.890 -0. 334 O. 382 0.033 -0.039 -0. 240 - 0. 248

15 -0. 750 -0.693 O. 323 -0.409 -0.567 0. 588 -0. 114 -0.087

16 -0.471 -0.581 -0.305 0.337 0.403 -0.316 -0.723 -0.671

Correlation
between Actual O. 995 -0.993 -0.991 0.997
and Estimated



Table

VAROOI
VARO02
VARO03
VARO04
VARO05
V AROO6
VARO07
VARO08
V ARO09
VAR010
VAROII
VAROI2
VAROI3
VAROI4
VAROI5
V ARO 16

7: Alternative Factor

correlations shown

Pattern to

in Table 5

generate

FACTOR i

0.14714
-0.17856

0.22210
-0.19616
-0.09337
-0.51532

0.43841
0. Z8173

-0.88479
0.71469
0.97947

-0.02445
0.33962
0.95693

-0.67865
-0.15543

FACTOR 2

0.93331
0.69088
0.86130
0,39015
0. 96514

-0, 17328
0.17723
0.32661
0.26011

-0.03299
0.12390
0.14388

-0.89715
-0.24313

0.06763
-0.00191

F ACTOR 3

-0 .18453
0.15299
C ¯ 33065

-0.60678
-0.24075
-C.02401
-0.83148
-t3.00936

0.33882
0,67485
0,0720O
C.95999

-C.16918
-0.14945

O ¯ 731 03
C.078G0

the

FAg TOR

0.27075
-0.68361
-0. 31558

0.65866
0.94332
0.83 ~391
0.291~4

-0.5266b
0.18628

-0.18251
-0.14174

0,235!53
0.22()C9

-0.049’~8
-0.02572

0,98513

4



Table 8: Average CPU Time taken by three programs to analyse

a 16 variable, 200 observation data set

Program

SPSS

PCVARIM

SSP*

Average CPU

iTime (minutes)

2.06

1.52

3.75

Number of Runs on
which average is

based

3

3

2

* Estimate, based on time taken to extract and rotate four factors

Table 9: Average Correlations between actual coefficients and those estimated
by three Programs for samples of 200 observations from 2 factor
structures. (Both factor structures are orthogonal and contain 4
factors. One contains a unique component but the other does not.)

Program

SPSS

PC VA RIM

Average correlation between
actual and estimated coeffi-
cients for structure without

uniqueness

0.99

0.99

0.99

Average Correlation between
actual and estimated coeffi-
cients for structure with

uniqueness

0.89

0.88

0.88



V A RO01
V A RO02
VARC03
V AP, O04
VARO05
VARO06
VARO07
VARO08
VARO09
VAR O 1()
VAROI]
VAR012
VARC13
V AP, O i 4

. VARO]. 5
VARO:[6

Table 10: Five-, four- and three-factor solutions

estimated from 200 observations on structure

given in Table 4

FACTOR

0.71102
0 ¯ 38 439
0 ¯ 61796
C. 35674
0.69855

-O. f3775
O. 51278
0,60 ].79

-0 ¯ 19Y09
-0. 04914

0.25813
-0 ¯ 16679
-0. 52727

O, 10410
-0,50701
-0, 10641

-0. 26056 C. 03556 -0.31505 0,05437
-0.42123 -0.44927 9.37219 -0.03579
-0. 16022 -0,53588 -0.2 5263 -0.0 5006
-0. 27825 C. 46740 -0, 16515 -0. ]5668
-0 ¯ 30252 0 ¯ 13737 0.02938 -0. I i 198
-0.22 f66 0 .48328 -0.25432 -0.00 545

O, 23624. 0,4-8642 -0,09 791 O, 05083
0.48637 -L:.22978 0.05983 0.33683

-0,65465, -0                           .12061-0.22462 O. 2815L-..
0.48657 . ’ 5 ._-C.. 2904 -Q.35252 -0.06792
0.40503 -C.20925 -0.28836 -0. 13443

-0.00117 -0 .3.5144 -0.4C745 -0.0C37C
O. 48886 C ¯ 16769 -0 .i 5290 0 ,9 7255
O. 66586 0.05450 -0. 15628 -0.08873

-0.5],037 -C.44393 -0.13958 -0. I¢109
-0. 30275 0.23877 -0 ¯ 60 503 0,06479

FOUR- FACTOR SOLUTION

VARO01
VARO02
VARO03
VARO04
V ARO05
VARO06
VARC07
V A RO08
VARO09
VAROtO
VARO 1 L
VARO 12
VA RO13
VARO/4
VAROI5
VARO16

F A C I" [] R i FACTOR 2    F ACTf]P, B    FACTOR 4

O. 72798 -C. 21368 C, 03483 -0,31 511
0.40700 -0,40552 -C.44686 0.3696!5
0.6286% -0. !.2522 -0,54106 -0°25334
0.37151 --0, 24672 0,t+5982 -0 .].6236
0,7144f -0,25544 C. 13539 0.02874

-0.12332 -0.22563 (3.48987 -0.25881
0.50255 0.27663 0.48159 -0.09387
0.53931 0,48995 -0,21839 0,05956

-0.15452 -0,64200 -’0. 10284 -0.21231
-0.07866 0.48229 -0 o536z~8 -0.34 746

O. 23340 0.41977 -0.21527 -0.27919
-0. 16808 -0,01348 -C.35170 -0.40950
-0,55528 0.4-5863 0°16480 -0.t4940

O. 06663 O, 6-7739 ,,,’’ .0zl426 -0                                     ¯ ]. 4876
-0,47964 -0, 54949 -C.43432 -0. 14705
-0.0876z~ -0.3064r 0~24488 -0.61325

~EEEE- FACTOR SOLUTION

VA RO0 ].
VARO02
VAROO3
VARO04
V ARO05
V A P,O 06
VARC07
VAROO8
VARO09
VAROIO
VAR011
VARO 12
VAR013
VARCI4
VAROI5
VAROI6

FACT[)P, L FACT (JR 2 FACTOR B

O. 69389 -O. 23058 0,0].454
0,36024 -C.40589 -1,40548
0,60418 -0,15690 -0 o54805
0,37071 -0.2525:3 i3,4.5990
0,71726 -0o 28905 C, 1"3061

-0.i]957 -0.20464 0.48398
O, 52592 0,26858 0,zi6956
O. 55985 0,47196 -C.25076

-0. 17633 -0.62766 -C.08686
-0. 06579 0,4.535} -0 °52074

O. 24088 C. 39864 -0.23202
-0. 16356 -f}. C0928 -C,33113
-0.53627 0.z+8923 C.t6613

G.09256 0o67892 0,02367
-0.50599 -6,53877 -6.41459
-0.08091 -0.25 381] 0,20376



Table 11: Original Co-efficients and those estimated from (a) a

dichotomized data set with equal endorsement and (b) a
dichotomized data set with unequal endorsement

ORIGINAL C0-EFFICIENTS

,0.0832195 0.7136061 0.621!666-O.,]!3Q3S2

0.0183298 D,9254015-0.1436086 0.3502466

©.2339566 0.9515763-0.0166898-0.1987171

-0,2876496 0,0319199 0,9671081-0,1390697

-0.0519799    0.8221786 0.5656589-0.0367599

-0.7611268-0.4298670 0.32152"78-0.36403"75

0,6660683-0,1779892 0,8661069 0,0309699

0.9083121    0,4170263-0,0153999 0,0286597

-0.9303820 0-3524770-9.1006791 0,0037600

0.6035873 0,1643693-0,5643376-0,5443977

0.921"7334 0,1064291-0,0171199-0,3731073

-0,2557397 0,3147795-D,5481594-0.7314593

0-2535614-0,9585454-0,1222306-0,0442602

0,9109835-0,3336811 0,0331501-0,2601408

-0,7696928 0,3225469-0,5665945-0,I135588~ -

-0-~¥10§77~0.3052785 0.4031180-0.7227765

V/~ KO 01
VARC02
VARCO3
V A P, O04
VAR@05
VARCO6
V A ROOT
V A P,O 08
VARO09
VARO 10
VARO]_I
VAR012
VAROI3
V ARO t4
V A ROI 5

D~-effJ~.ients estimated from a dala se~ with_~

endorsement

-0.51430 0.46013 -C.48947 0.2036[
-0. 50031 () ¯ 59 148 0.0116C -0 ¯ 27387
-C.37602 n. 7561C -C,06487 0,08087
-0.39207 -0,29329 -6.59966 0,1866(
-0.6 1309 0,45499 -O .47052 0.0 6475
-C. 32736 -’].7237/_ -(3,06529 0.38679

O. 18036 -0.17608 -0~. d~,]284 -19.00579
0.33430 0.74681 -].12820 -0. 1065~

-0.81343 -0.21643 0.21235 -0.02372
(].30878 O. 52517 13.31101 0.45430
0.54<)43 0,56439 -C.13776 0.365g4

-0 ¯ 17990 O ¯ 3 lO 14 (? ,50976 0 ¯ 52229
fj, 6980g -~54671. Q.04803 0.04815
0,79610 O~ 27326 -C. 16C75 0.23731

-0.51988 0.05628 0.02807 O, OB] 88
-C. 3065[3 -0,40/~70 "-©.12_23g 0,6464’1)

~Itb .........................
.NO, ................ -

0-80           0,76         -0 9%         - o 97

Co-efficients from data set with unequal

VARO01
VAROD2
V A.ROO’3Z d. ’ :r
VARDC)4;
VA,R 00:5
VARO06~
VAROO7
VARO08
VARO09
VAROID
VAROI1
VAR012
VAR013
VARD14
VAROI5
VAROI6

FACTOR 1 FACTOR 2

0.71150 -0.11180
O. 74617 0,04122
0.79723 0,26261
0,20849 -0,56664
O, 60338 -0,25166

-0, 26020 -0, 60345
-0.00150 -0,03671
0,29152 0,51498
O, 12963 -0. 39930

-0.08301 0,59995
0.06053 0,55615
O. 14603 O, 21705

-0,39140 0. 15569
-0,2~050 0,36522

0.13207 -0,18503
-0. 08876 -0, 29641

endorsement

FACTOR 3 FACTOR 4

-0,26306 -0,19935
0,21608 0,19710
O, 12093 -0, 01079

-0.54069 -0.09482
-0.22659 -0,02107
-0,07506 -0,35344
-0.65776 O. O1792
-0.51207 -0,00076

0,16077 -0,38268
0.10087 -0.45175

-0,36564 -0,28872
0,35877 -0,49245

-0,19631 -0,04845
-0,39529 -0,20257

0,24528 -0,33730
-0,00922 -0,36044

Highest corr with
2.

Correlation O. ~/4- 0.?~ o-]S 050


