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Randomisation and the von Neumann Function: A Variance

Formula and a Problem

R.C., Geary.

" In a paper of many years ago (Geary 1952) what was termed

the contiguity ratio was introduced, to determine whether, in probability,

a statistical map has a pattern or whether the mapped statistics are distributed
at random. This rati:o is really a two~dimensional version of the von Neumann
(i 941} statistic, more familiar as that tabled for null-hypothesis normal

OLS residuals by J. Durbhin and G.S. Watson. Geary was also concerned

with the OLS residual problem. He approached it in two ways, by randomisation
and by classical OLS regression ‘55}1eory, his instrunf}ents being means and

variances of the contiguity ratio.

A difficulty with rando1msa1 ion treatment was expressed as follows:~

"The problem is to determine if there is a contiguity

effect, l.e. if ¢ ["he contiguity 1‘atio:] has a significantly
low value aft@r the elimination of ¢ independent variables
by the least square method. As far as randomization is
concerned, it would appear that the test developed in

this section can be applied formally, the z being the
remainders after the contributions of the mdependeni
variables have been removed. To a certain extent the
writer shares the misgivings of some other students about
the validity of the randomization approach in its application
to regression remainders. As each successive independent
variable is removed, should not the degree of freedom be
diminished? It does not seem so. What happens is that the

variance (or range) of the remainders diminish as the effect

~ of each independent variable is allowed for, the test becoming

indeterminate when the number of independent variables
(originally with mean zero) is one less than the number of
observations n, i.e. when all the remainders are zero.
Accordingly the formal application of the randomization
procedure, without diminution of the number of degree of
freedom, does not result in ohvious inconsistency: we can
conceive of cases where ¢ will be significantly low even
after removal of the effect of (v ~ 2) independent variables.
Since doubts remain, however, the writer consi dem—w‘i it
desirable to examine the problem from the classic

sampling aspect. In any case it will be intere shng i,o
compare the resulis of the two appreaches. In the practionl
aspect the randomization method has the advantage that it
can be applied withowt the assumption of universaln f‘mnnhiy

in the n oheservations, regarded a8 a random asamnle,
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Asfar as the writer is aware the degrees of freedom problem has never been
discussed in this application: the controversy in another context between
K. Pearson and R.A. Fisher is part .of statistical history. One of the objects

of the present communication is to invite statisticians to discuss the problem.

The contiguity ratio context is too esoteric for é suitable
discussion. The problem arises in the much simpler single dimension of the
ratio. But the writer is unaware of any randomisation treatment of the von
Neumann statistic, so he ventures tc give one here without any claim to

originality. One result is remarkable, as will be seen.

Randomisation - .

One is given a sample of n measures of any kind (hey

may be raw values, OLS residuals etc), x., x

*l, ' SERER Xn’ ordered in a particular

way. From a given function (e.g. the von Newmann ;at.i.o) one wants tc nmke
inferences about the character of the sample (is .'L_‘t probably non-normal,
autoregressed etc ?). One considers theﬂl;xl permutations of the sample values
for each of which the test function has a value. These 22 values are

regarded as forming a frequency distribution. If the single value of the
function found for the given ordered sample is near the ends of the frequency
distribution (i.e. beyond the .05, .01 etc limits) one rejects the hypothesis,

exactly as in ordinary theory. A feature of the test is that no assumption is

made about the frequency distribution from which the sample of n is drawn.

‘I theory one could calculate the moments of the function - or at least the first

four moments -~ and so estimate the frequency distribution using e.g. the
Pearson curve system. Here we deal only with the first two moments, the

mean and the variance which suffice for most practical purposes.




The test function cannot usofully be L,meetrlca,l in =, l <oy Xn)

P

because then all the n! values would be the same. The essence of the von

Neumann ra.‘clog is that it is not symmetrical for n >»2 ) as it assumes that
the sample elements are arrayed in a particular way. In fact, assuming,

without loss of generality, that ~

-1
o

@ m=o
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as will always be the case with OLS residuals, d is given by -

The numerator I/\I,,is assymetrical, the denominator ]2/ symmeti‘ical, i.e.

D hasg the same value in all permutations. We need concern ourselves only
,/'f N

with the numerator N. It is the_ fact of constant ]; that makes the calculation

I'/J

of moments of d exactly calculable. This isalso the classical case when
the sample is a normal one because then d is a homogeneous function of degree

2 2 . .
zero, with nr = 'x; in the denominator. The fact that when the sample is
Py -

normal r is independent of d (Geary, 1933) makes the exact calculation of the
- -

moinent_s of d, and hence the estimation of the frequency of d @s by Durbin-~
- -

Watson) possible.

I f is any polynomial function of (\ cves X ) ordered in a particulax

.//

way the randomisation mean M € of f is the sum of { for all the permutations

10 %

divided by n! To find the mean of /g} glven. by 2) or, in effect, N we have to
e
. .4 3 2 )
deal with terms in x, X X, , X X y it and x, x., % X, , all subscripts
P2 RS N A 2 Y S S

different. On taking means we may disregard subscripts and insert mean
values of these terms, having regard only to exponents. These mean values

may be written (in a notation which is obvious) @), (31), (22), R11), @A111).

Note that (31) = (L3) cte.




Square (1) and take means. There are n of type \:i' andn @ - 1)/2
e S S

'Y .
of typex,X.», i’ # 1. Hence -
<1 -

| @) n, @) + 2n (0,-1) (A1)=o0
. . S |

or -

@) (1) =~ @)/ @-1)

Asin @), we can express all terms ~ in two or more variables in single

variable expressions. As an example of the method of derivation, we have
G) - Lx £x°=0.
25 R

Multiplying out and taking means -

©) n@)+n @-1) @1)=0.’ .
Or -
1) GL=-(4)/@-1)

The derivation of other randomisation means we need is a little more complicated.

We shall be content to give the results -

e = e’ - w]/a-1)
) ely= [2 @) -0 @°] /0 -1) (0 - 2)
Ay =sfne’ -2 wl/a-1e-2 -3
From 2), ~
©) | D=1 @)

Expanding the numerator of 2) -

o 2 n_- 1 2 n.
L o - d e
N=(, +x)+2 £ =% -2 Z. =x;
o) R=@ rx)r2 2 % -2 = X%
-~ i=2 - =2 7
Hence taking means -
(1) M@N)=2 @2)+2 @ ~-2) @)+2 @ -1) @)/ o - 1),

using {4). Hence M(@) = Zn (2), Then ~

d2)  M@=ME)/D=2,

using (9).
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The algebra of the calculation of M(dz) or, in effect, M (N ) is
- P
onerous but the result is simpie. We 1egard N, given by the right side of

(10) as three terms (A + B+ L) with square (A + ZAB F fer C )and

-~ ,/

aggregate the terms, having regard to coefficients and numbers of terms
of each kind, xf, x? X/ etc, which, on taking means are replaced by @),
. A i i

iR - -

(31) etc. Then, gathering terms we find -

13) M (Nz) =2 @n-3) @) -8@n-3)@1)+2 (22?‘ - 4n + 3) 22)
-8 (@ -2)(n-3) @11) +4 @ - 2) @ - 3) (1111).

Using (7) and (8) and collecting terms -
2 2 2
)  M@E)=2 [@ -3 @ -@] /@-1).
Py : - - . - .

Asl\ﬁ(d) M(N)/D with D = 11(2)—

(15) var @) =M (d ) - [M (d)]
=2 [(Zn - 3) - bz] /n (-1

wﬁere b 9= 4y / (2) the familiar kurticity statistic in normal theory in which

PR

in fact its population value /Q 9 is 3

As a check on the quite elaborate, if elementary, algebra,
consider the case of n =2, There is then but a single valie of d given by
(2), for in this case Cl is symmetrical in (x » X ) ) = (A + '{;‘.g)/? == X;1 since

2 .
+x,=0and 2)=x. Henceb, = 1. ituting then n = 2 ¢ -
4}?1 \2 0 and (2) /2:1 Hence bz 1. Substituting rhen_ﬂl_w 2 and bz 1

in (15) we find var (d) = 0, as we should.

. -1 . o
Of course (15)is O @ ), which means that, with ncreasing n,
e o

d tends in probability towards 2 (see (12)). What, as announced above, is remarkable

B ,
is that the coefficient of b is D(n ). Thig implies that the vaviance is nearly
independent of the frequency distribution from which the random sample of n_

i
@rrayed in any order) is drawn, As an example take n = 20 - one would scarcely
P

be interested in e.g. residual autocorrelation for fower observations ~ and

b =1, and 6, a range probably covering most distributions., Values of standard

L




deviation (= square root variance) of var (d) given by (15) are -

Value of b, s.d. of d.
1 : | 0.4353

6 0.4039

The difference is of no importance, having regard to the uses of the statistic

“d. ,
- .

Values of s.d. of dfrom n = 20 to n = 100 by tens with/b2 =3,

it normal value, are -

Standard

b deviation of d_
10 - 0.5577
20 0.4230
30 0. 3523
40 0.3080
50 0.2770
60 0.2538
70 0.2356
80 = 0. 2207
90 ' 0.2084
100 ' 0.1980

The problem announced earlier remains. In this randomisation
proceedure, does one have to take degrees of freedom into account in the most
important application, namely in the study of OLS residual autocorrelation,

and, if so, how?

Of course more than the variance is needed for the derivation of
null hypothesis critical probably levels. TFor this at least the third and fourth

randomisation moments of d would be required. After experience with the

second moment, the writer surmises that the derivation of higher moments

[3

would be a prodigious task though perhaps approximations, say terms ton
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might not be too difficult. There does not seem to be much point in this exercise
unless and until the degrees of freedom problem is cleared up; though the problem
recedes in importance as sample size increases. Anyway, as practical
researchers know, the twice sd deviation from mean suffices for most

purposes of significgllce decision lf oné 1s notlto'o particular about the

lprobabi.lity involyed. If one is, can at least appeal to Bienaymg ~ Tchebycheff!
That the randomisation variance 1% practically distrubution - free is a powerful

argument in its favour,
20 May 1977 : o - R.C. Geary
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