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/’,.Note on OLS 5Iultivariate Regression with Su~gcshons for Additions to

Routine Computer Programmes

(i)

o

Let the OLS regression be:-

k

Y=a+i-)=~b’X’+e’l 1

Geary h.as argued, somewhat controvertially, that the individual coefficients

b. are meaningful only in the cases of simple regression or of each pair of the
1

k indvars X. being not significantly correlated, very rare in practice. Then,
1

and ouly then, could one state "a rise of 1 in X. causes a rise of b. in Y." Other-
1 1

wise this inference is false. The argument holds that the only valid purpose of

the multiple regression is the estimation of Y, usually in the form of extrapol~ion

of time series beyond the esti,nation period. This memos that the coefficient

vector ~a, b1, b2,

c!ements.

... bk~ is objectively memlingful, but not its individual

There is not much point in extrapolation of time series ".unless the

~2 is near unity and the DW or tau are near their white noise values, i.e. near

2 and near half the number of residues respectively. On account of the usu,-d

high h~tercorrelation when the indvars are time series, most researchers prefer

to work with the deltas, ~ Y and AXi, a procedurewhich incidentally will usually

considerably reduce and in some cases eliminate intercorrelation between the

indvars, i.e. the pairs of X. may be highly correlated but not the pairs o~X..
1 1

DW owes its inception entirely to assessment of residual autocorrelation

in the case of time series, and this because of a characteristic property of time

series, namely that they are au,~ocorrelated to start with. The thoughtprocess

is as follows. Y, to be explained, is a time vector. Treating it as an OLS residual

(i.e. fitting merely a eonstml~ to it) we compute its DW as -

T

1)2    2 =    ---(2) DW= +S=’2 (Y’~- Yt- / ~g-yt’ Yt Yt- Y’

,and customarily find that this DW has .’: very low value, well below 2, iadic~lli~\q

slgnfficant autocorrela~ion. If we found a value near ’2 we could go ahead with our
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OLS regression but there would be no point in using DWor tau as indicating

completeness of re!ationship, since all the DWs and tans would be near their

white noise values, i.e. likethe original Ys the successive values of the residuals

would be random to one another. Or, given original time series data, Y, X1,X2, ...,

Xk, randomizing these would make no difference in computation to the values of

the coefficients but it would destroy the useful role of DW or tau, the values of

which depend on the ordering of the data.

Reverting then to the typical time series case of Y’s having a very

low value of DW, we imagine ourselves computing the OLS regressions successively

Y on one X (simple regressions}, on two Xs ete and computing DW or tau on the

residuals in each case. We stop when we have found a DW or tau which indicates

that the residuals are probably random to one another. There may be several

such sets because of intercorrelation between the X’s. There are computer

programmes for systematic selection of the best sequence of Xs to bring into

the GLS regression, so avoiding an immense series of such regressions.

With time series when, with one’s OLS regression, one has obtained

-2
an R near 1 and DW or tau indicating probable residual randomness (or white

noise), one may go ahead with e.xtrapolation in time, such extrapolated estimates

being subject to known probabilistic ranges of error. One may be wrong, perhaps

due to new variables {i. e., other than the Xi) affecting the relationship, but one

may at least state that as far as past experience goes the extrapolations should

be as stated.

The multiple regression computer prints-out have the silly habits

of producing DWs, even when time series are no.~.t involved. Such values are

meaningless, a remark which would apply also to the tau value. To repeat, the

essence of time series is that time automatically orders the data (Y, Xi) in a

particular way. In the non-time series case (say cross-section) the data should

also be ordered before computation o~ DW or tau. In simple regression (i.e.
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one indvar, say X1) the obvious course would be to reorder the residuals according

to the magnitude of X1 and then compute DW or tau; if Y or X1 are related this

will result in Y being ordered, generally increasing or decreasing, i.e. autoregressed

like time series. In the case of multiple regression the best course might be

to reorder the residuals according to the magnitude of the princiPal compone’nt

of the indvars. Could not the computer be programmed to do this ?

At one time I thought that this problem of indvar intercorrelation

could be bypassed so as to make the coefficients meaningful by substituting for

the matrix of indvars the matrix of components. These are linear functions of

the original variables Xi and number also k, and have the precious property that

each pair is exactly uncorrelated (i.e. for each (i, j) j ~ i r.. = 0). This procedure
Ij

might have the added beaus of reducing the number of indvars, i.e. only the

first one, two or three having statistically significant coefficients.

The trouble about using their principal components instead of

original indvars is that the latter have identity and the former have not. Thus,

if one were studying the effect of a change in social weffare payments or,

unemployment, one indvar might’be B.M. Walsh’s percentage of s.w. payments

to wages together with other indvars, the depvar the unemployment rate. Suppose

thatthe coefficient of the ratio X1 was significant, its value b1. It would be

perfectly sensible to ask "What would be the effect on Y of an increase of 1

in X1 7", even if the answer were not b1. But if the first component were, say,

t,                                                   t

XI and its significant coefficicint bl, it would simply be meaningless to ask what
t

would be the effect on the unemployment rate of an ~.crease of 1 in Xi, because,
! ,

tn general, we donTt know what X1 is; we cantt describe it. The same remark

applies to other components with even greater force since, while the principal

component ia a sense synthesizes all the !ndvars, the other components are much

more difficult to identify.
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To some minds the statistically significant individual coefficients

can be regarded as having a meaning because of the Frisch-Waugh theorem which

states that the b1 is exactly the value which would be found from a simple regression -

(3) RY =a
I+blRX1 ÷eI,

R being a symbol for residue, in fact the residues when Y and XI are each OLS -

regressed on the remaining indvars (X2X3 ... Xk). So it would be right to state

that bI is the effect of a change of 1 in the first variable on the depvar when each

of those two variables have been corrected for the effects of the other indvars.

the form -

Oeary generalized Frisch- Waugh to the following effect. Write (1) in

.!k k! + k2
(4) Y =a÷1=’~ lbl.Xl+ ~:bjXj.+e

j = k1 + 1

with k1

k1 and k2.

+ k2 = k, the variables having been divided arbitrarily into two groups Of

Then -

k,
(5) RY =a

1+.�~ bIRX. +eI,
I=l

l

the Rs indicating the residues when the variables Y, X1," X2, ... Xkl, and each

OLS - regressed on Xkl+ 1’ "’" Xk1 + k2" The bi in (4) and (5) would be identical.

This would have been an efficient way to calculate the coefficients of (1) using

a primitive calculating machine but has little practical point with the advent of

the computer, apart from algebraic interest, in providing a meaning for individual

regression coefficients.

I

The statement, based on the original regression, that a change

of 1 in X1 would result in a change of b1 in Y v;ould be valid were it not for. the

necessary condition which is that the other indvars remain unchanged. In general

the latter c ond[t[en is unacceptable because if there is a significant correlation

between X1 and any other variable, say X2, X2 Cannot be presumed to remain

unchanged when X1 changes by 1.
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The previous paragraph hints at a procedure which might yield an

answer to the question of the effect on the depvar of an increase of 1 ih a particular

lndvar, say X1. Regress all the other indvars on X1 -

(6)    Xl=al+bilXi, 1=2, 3, ..., k.

One infers that a rise of 1 in X1 would entail a rise of bil in X.. Hence the total

effect of a rise of 1 in X1 will be found by substituting the Values 1, b21, b31, ...

bkl for the k indvars in (1), ignoring e.

All praetitloners agree that it is a sound principle in multiple regression

-2
to use as few indvars as possible consistent, of course, with high values of R

and residual randomness. This may be the place to remark that the s~tistical

process of OLS regression Is anything but an exact science. Wise judgment is

¯ of the essence, such jtldgment being based on a plentiful supply of computer data

derived from ample routine computering. One must be very careful about

elimination of indvars.

One’s original set of in’dvars are presumably those which theory or

simple ratiocination indicates might be related to the depvar and whose (depvar,

lndvar) simple correlation is statistically significant. But here it might be

argued that it might be prudent to retain the variable in one’s set even if

ul,correlated with the depvar, since with otherindvars it may be correlated.

Anyway, assume that one has a large set of indvars to start with.

1~2One begins with an OLS regression on this whole set. The" F or    test

wll; Indicate Its significance. If insignificant there is no point in going ahead.

If DW or tau indicates residual autocorrelation new indvars should be sought.

If the 1~2 is close to unity on the original set of indvars the OLS regression may

be, useful for extrapolation even with "bad" DWs and tans, on the assumption

that the missing indvars will not affect the extrapolated value much. One notes
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that some of the variables have insignificant values, Leave these out and repeat

the OLS regression. If this emission does not alter the value of ~2 much the omission

is justified: the trouble here is (and where judgment enters) is that we have no

way of knowing how much is "much". If the value of ~t2 is lowered one must experiment

further as to which of the low-coefficient indvars to retain in the set. One must

not automatically reduce one’s original set of indvars because onwhole-set regression

their coefficients are insignificantly small, Leser-Geary have shown that one can

have significant OLS regression (by the F test) with all coefficients not significant

In a multiple regression; it is only in simple regression (one indvar) that the F

and t (eo~ficient) tests are absolutely consistent with one another, as regards

probabilistic inference. Multivariate regression is the OLS regression process

of the depvar on the whole set of indvars in which It Is impossible to isolate

Individual lndvars. In this sense all regression is "simple".

It is suggested that the following be added to routine computer

processes for OLS regression -

(1) In non-time OLS regression, reorder residuals according to magnitude of

principal component of indvars (or of the magnitude of the single indvar

In the case of simple regression) before calculation of DW or tau,

(Ii) for assessing the effect of an increase of 1 in each indvar on the depvar,

allow for the effect of all other indvars by according the variable in question,

say Xi, the value 1 and other variables the value bji given by the simple OLS regression

(7) Xj =aj+bjiXi+ej ~j~i.

The print-out would give the values of b.. and the actual values on the depvar of
jt

an Increase of 1 for each indvar.

)

The computer can select the "best" set of indvars from a large Initial

set when It is given the rules of selection. In this and other application the computer

may be too ¯good; on producing the near perfect answer and withholding intermediate



information, valuable aids to interpretation may be lost. In the present

application, for instance, all pairs of c.e. s in (Y, Xi) should be given, perhaps

the bji Suggested here as well¯

A weakness in the bji proposal is that (7) (and indeed all OLS regressions)

Is a cause-effect statement, in (7) X. is the cause of X.. This may not be the
l j

ease. A statement neutral to cause - effect might be better. "a rise of 1 m X.
1

tl
will be accompanied by a rise of c.. in X.. This issue of cause-effect v. functional

J,    J

was much discussed years ago and techniques evolved for dealing with the neutral

ease. These techniques are difficult, indecisive and generally unsatisfactory,

so OLS procedure may remain if as a p[s aller¯

Significance in OLS regression is nearly always assessed by reference

to a null-hypothesis table for the F test using degrees of freedom: with number

of sets of data T and number of indvars k, these are k (numerator) and (T - k -1)

(denominator). One is confronted with the problem of deciding by F which of a

set of regressions based on different sets selected from the large original set

Is the best. Now the present computer programmes of which I am aware simply

yield the value of F. It would be better that the NHP should be given¯ It is

admitted that this would be much to expect since it implies the store’s containing

al..l the null-hypothesis frequency distributions of F for tw.....~o dimensions of degrees

of frequency. The F table I use has simply the critical NH values of F for each

pair of d.f. and a number of two.ended probability levels, the lowest. 005: for

Instance, with d.f.s 7 (= k) and 24 (i.e. number of sets of observations is 32 = T),

:,:~’ = 3.99. One assesses that NHP is less than. 005 if one. obtains a value

of F greater than 3.99 but one does not know what this probability is.

Now the regression is not much use unless the actual value of F does not

greatly exceed the lowest NHP tabled value. It also happens that the tabled NHP

values vary greatly with the number of indvars k. Thus for probabilities. 005

and. 05 and T = 32~

NHP = null hypothesis probability.
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k .005

1 9.18

2 6.40

3 5.32

4 4.74

5 4.38

6 4.15

7 3.99

Critical value of F for NHP =

.05 Ratio

4.17 .45

3.33 .52

2.95 .55

2.73 .58

2.59 .59

2.49 .60

2.42 .61

It is inferred from these figures that whatever NHP one is working

to, the value of F must be the greater the fewer the number of indvars. In the

practical case we may have to choose between two regressions with different

number of indvars with F values very much larger than those of the tables and

hence with infinitesimal (but unknown) NHP. I would base my preference on the

regress!on with the lower NHP, if I knew it, with a very strong hanker for the

regression with fewer indvars as the better one may be able to rationalize.

To take a Specific example suppose that, as above, T = 32. In
°

two selections of k = 2 and 7 one finds values of F of 24 and 13 respectively.
C

Which regression is one to prefer ? One might argue this way from the foregoing

table. Corresponding to the ratios in the last columns (of critical values for

NHP. 05 to NHP . 005) we would have ratios . 27 (= 6.40/24) and . 31 (=3.99/13).
"d

Since one expects a rise in the ratio with size of k one would assess the regressions

as about equal in significance and one would prefer that with the two indvars.

All this turgid ratiocination would be tmneccessary if, as well

as F values, the computer would supply the NHPs. Also, with its vast and

increasing sophistication, should it not supply the best set of indvars from a large

original set. But give us prints - out of intermediate steps as well for our better

°

interpretation of the results.

Would ESI~I computer experts interest themselves in devising a

programme ineorporatlug the points in this note ?
/
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As a short footnote to the foregoing assessment of - the aggregate

effect of a rise of 1 in X. on y, it might be asked "Should not insignificantly valued
l

bjis be omitted (i.e. regarded a having value zero)?"I have no strong views on the

subject and would value those of my colleagues. I am inclined to favour leaving

all values in because of (i) simplicity for the computer, (Hi) the values may be

genuine (e. g. "sign right" according to theory), (iii) values will be small and with

different signs, so that effect of inclusion or exclusion on answer to "increase

of 1" will lie within the confidence limits of the latter.

18 January1980 R.C. Geary.
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