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The Inefficiency of the Von Neumann Ratio

in Time Beries Regression

by

R. C. GEBARY

The Bconomic Research Institute, Dublin,

The Von Neumann ratio in the form

=

T
(1) Q = g (v, - Vt—l) /] Ev

is much used for assessing completeness of representation
(or goodness of fit) of the regression estimate to

equally-spaced data in time series analysis,. The Ve
t =4, 2, ... T, are the regression residuals pursuant

to fitting a X 4 1 -~ term regression to data, i.e. the

regression is
(2) yt = b 4 bkxkt 4 Vt, t = 1, 2, e 0 0y T,

the Ve being the observations, the x a given set of

kt
independent variables, all strictly functions of t., The
problem is to determine whether (2) affords an adequate
representation of a relationship of the form

h{

+ L 'kakt_ + Uy t =1, 2, ..., T,

(3) Yo = B, ol

where the u, are entirely random (or, in fact, non-
autocorrelated) residuals with mean zero and variance
constant for all t. The point is that at the start we

do not know the number of terms X to be used in the

regression (2) though we assume that we have available




for use an indefinitely large set of functions Xy g0
polynomials, Fourier series or the like, Oﬁ_course,
the number of these functions required is less- than

T - 4 ¢+ 4if equal to T - 1 the fitted curve would pass
through all the observed points, which is not helpful,
Usually one hopes that only a few terms (not more than,
say, five or six) will be reduired and that we have
sound a priori reasons for selecting these, We cannot
attach much value to, or have much confidence in, the
representational power of a formula (2) in which it is
necessary to use many terms, even if the coefficients
of these are significantly different from zero. We

may infer in such case that the series x We are using

kt

is unsuitable,

i The characteristic feature of time series is
that the successive terms are autocorrelated i.e, that
the gorrelation coefficient for the ?airs (yt_1 >yt),
‘=2, 3, ..., T, is significantly greater than =zero.
The systematic procedure on Von Neumann (VM) lines wouid
fherefore be first to establish that the original Yy, are
autocorrelated at the .05, .01 etc probability levels
using tables prepared by J, Durbin and G, 8. Wétson[_l]
and by H., Theil and A. L., Nagar [5]. If the calculated
value of {Q given by (1) with Yy substituted Eor Ve is
not significantly different from its expected value on
the nul-hypothesis, i.e..

(4) BG = 2(T - 1) o2/(T - 1) a2 =2

s

when the v {or, in this initial case, the yt) are

normally distributed, the successive Ve are presumed



to be like those which would be found on successive
drawings at random from a normal universe. In such
case the Vi would be regarded as independent of t., Its

only representation could be y, = V.

If from the tables the value of ¢ is deemed
significantlylow at some probability level one selects
the first term X4 of the predetermined series, establish

the simple regression of Yg On Xy and hence derive the

residuals Vo The value of Q according to (1) is then
calculated and the significance determined from the
probability table, now with two degrees of freedom (d.£.).
If not significant the process is ended; if sdignificant,
another function Xg¢ is added, and so on,

" What we try to discover in the present paper
is the sensitivity of the Von Neumann ratio as applied
in the manner outlined above. The method used is
deliberately to falsify the hypothesis of residual non-
autoregression and try to determine how large the
falsification has to be before we find oursclves out,

given the number of observations T and the probability

level of non~acceptance of the nul-hypothesis,

We consider a simple case, Suppose the true

relation is

' N .
(5) Vo = Bo + Pyxggp + FpXop + BXgg + Ypo
t =1, 2, ..., T, B, By, Fy#0,

where the u, are randomly distributed with mean zero

and standard deviation independent of t which, without

loss of generality, may be assumed to be unity. JThe



reason for dintroducing the extraneous term in oo

will be apparent later, Also without loss of

generality the functionaxlt, Xo4 and Xg. May be
regarded as orthogonal, i,e.,
T N
(6) tzlxktxk't = 0; Zx.,4 =0, kK, k' =1, 2, 3, k &X',
We require the following additional notation :-
? — — . | — . [ ] o= -
(8) ug = ug = w43 VE= Ve = Velgh X'pe = X 7 Xyeg
(7) (b) 2 o 2
xk = Exk.t ;Xl'( = le‘{t, t = 2’ 3, ¢ s 0y .Ta
i = ﬂ*' V{
(C) fk fk/.lk
As the set of X, ¢ i8 known so also are the Xk, Zy and
Yk'

In error we now try to approximate (5) by the

regression

(8) yt=b +b

o 11t * Ve

From (5), (6) and (8), using (7),wWe then have

b, - ﬁo = but/T
(9) 5
- Py =Py = By u /¥

Formulae (9) are quite gsneral., For the moment we

require only k = 41, The deviation v,

¢ is given by

(10) vy = (£, = b))+ (4 =

bydXgy + GoXpyp + Fyxg + ug,



which, using (9), is

N

. ' - ‘
(11) Ve = (ug = B) =Xy B Xy v Xy +pXgy + PyXgy
whence
o - rt ¥ t !
(12) Vi o= Ut Xip o Xgeaben /Ry o+ BXee v BpXge

We now introduce the notion of the represen-

tative value of 9Q, namely 5, given by

= . 2 2
(13) ¢ = B2v!®/Biv]

H

where B is the expected value pursuant to random

variation in variables Uy . Q is not necessarily equal

to BQ though it will be close to it unless T is small,

Using the assumed properties Eut = QC, Eug = 1, Butut,

(t £ t') = O it can easily be shown that

2
Pa = > .
(14) Brvy =T 2 4 ﬁ22x2 + ﬁgxg
2 . 2, N2
(15) EZvi®= 2(T - 1) - xi/xl + ﬂzxé + PeXi.

It may be noted that, in deriviné (14)Aand (15), and hence
(13), it has not been necessary to use the property that the
u, are normally distributed, To use the probability
points table which are based on the hypothesis of universal
normality we have to pretend that wé think that the

residual v, are independently and normally distributed,

s
in [5] the probability points are shown for .01

and ,05 for certain values of T up to 100 and for 2, 3 ... 6



coefficients adjusted (two in our case), Let A be the
value appropriate to the probability level to which we
are working, The critical value of F,, namely B,, is

then found by setting

(16) Q=2

or, using (13), (14) and (15),

2 .
(17) . BoX, = (2 = A)T + 2(* - 1) - Yl—ﬁgxs(A - ¥g)
(A' - Y2)
where the Xk and Yk are given by (7). If the true value

of ﬂ2 is less than as shown by (17) we shall wrongly
decide that the value is zero, that the process should
stop. The value shown is therefore a measure of the
sensitivity of the VN ratio in this simple case, It

is clear that as ngs increases the efficiency, given

T, of VN increases since the Yk will usually be small,
This is to be expected since the larger ﬁ§x3 is, the less
in the residual v

the relative influence of u given by

t t?

(10), which tends to assume functional form with a neces-

sarily small value of the VN ratio, Since ngg is
necessarily positive a zero or negative value for a high
.value of ﬁgxs will be interpreted as equation (16)
having no solution in Bz, a case of no praqtical

importance,

:It may be worthwhile placing on record a
generalised version of formulae (14) and (15) and hence
of Q. Suppose that; instead of having one coefficient
(apart from the constant) in the regression (i.e, bl)
we had XK', and thereforc K - K', in the "falsce residual"

v Then it may be shown that

t.



(18) BEv = T - K' -
(19) Biv® - a(T - 1]

OFf course the orthogonal
<2

functions of x whether
k

t

in the regre
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property is assumed in all the

The

use of orthogonal functions imparts a great simplicity

to work of this kind,

Analysis of Variance (AV)

This method is also much used for

aszessing

complietensss of representation in time series analysis,

Ve set up a regression
HeQ X
(20) y, = b + I b x o+ z b, x + vi,
o} . kTkt k™kt t
t K=i KeK'ad ©
All the x, . are still orthogonal functions. The problem
is to egtablish the sequential randomness of the resi.-
rduals v . This is done by identifying the KXK' signi-
ficant functions in the first & on the right. The
K -« Kt terms in the second 3, all deemed insignificant,
is arvbitrary. The analysis of variance schema [2] is
on the following lines -
Degrees
Group of Sum Mean Feratio
freedom | squares squaroe
(d¢.f)
First (X') terms X! 31 Ml=sl/x= F1=M1/M5
Seconé (K»Kf)terms X-X? 82 Mzzsz/(x~xr) ﬂ2=mz/mr
Residual terms T-K-1 S, m3=sq/(r"xn1) -
L, v
Total T3 S - -
|




If F1 is significant and F2 is not significant at the
selected probability level the XK' function regression
will be regarded as complete and the remaining X - K!
terms ignored as adding nothing to our knowledge of the
relationship. There are conceptual difficulties with
this approach which will be brigefly referred to later,
In the final section of the papér, itvis proposed (as

in [2 ] but on a larger scale) that in the first and
second groups the contribution of each term should be

set out individually, i.e, each with one d.f.

In the three function (5) case, how large. has
the coefficient ,% to be to enable-us to reject the

hypothesis that (5) is represented by the regression

(5]
(21) Ve = bo + b1x1t+ b2X2t + v, ?

we set up the analysis on the lines indicated in the
foregoing schema with X' = 1 and K = 2. From (9) the
sum squares and hence the mean square M2 (since there
is one d.f,) is
(22) M, = (B,X, + Ex..u.)2/X

"2 272 2t t 27
from which

(23) Bli, = ﬂgxg + 4.

from (18), (with X! 2 and X = 3)

it

i
+3
1
&R

2



Analogous to the procedure in the VN case we equate the
quoteint of'(QQ) by. (23) (to form a typical value of

F2 in the schema) to the appropriate probability point

A' in the F-probability table [5 ] from which the critical
value Bé of ﬁz is found from

2

(25) BY

Xp = [(A = 1)(T =-"8) 4 /\'/fgx31 [, (T = 3),
Other things being equal, the larger ﬁg the larger Bé
and therefore the less efficient the AV method, in
direct contrast with the VN test,. It has long beecn
recognised as a weakness in the Av method as applied to

multivariate regression that a low value of F (see

2
schema) may be due as much to a high value of MS as a
low value of M2. As will presently be.shown the AV
method is, however, far more efficient than the VN

method for dealing with the present problem; At the
same time we must not be blind to the hazards of AV :
éﬁis is why fhe term in Xeo has been introduced into
(5). It may be added that, since when ﬁ% is zero

Eb§X3 is unity; consequentlyﬂgx8 may be regarded as

0(1) in regard to T when ﬁs is not zero,

Von Neumann versus Analysis of Variance

The decision with which we are faced is,
having set.up é simple fegression, i,e. of form (8),
do we stop or do we go on ? To stop would bec =
wrong decision (since it has been assumed that 02 is
different from zero): to go on would be the right
decision. At a given significant probability level

the test must be favoured which yields the smaller
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regression estimatce of ﬂg. The statistics B2 and
Bé (given by (i7) and (25)) arce near-avcrage estimates

of what has been termed the critical value of ﬁé, i.e.
if 02 were less than these respective values in absolute

terms, ﬂ2 would be decemecdzero and a wrong decision made,

We accordingly introduce the efficiency ratio

o defined by
(26) H = B8
H being non-negative,

Asymptotic efficiency will be considered in
the first place. All the Bixk and ﬁﬁx& involved are
ordinary magnitudes i.e. O(1) in T as arc A and A', It
is therefore evident from (17) that ngg is O(T) while,

2.

from (25 ), Bé x2 is O(1). Accordingly X, from (26), is

-
E)

ot %), When T is indefinitely largce the efficiency of
VN, compared Qith AV is zero, However, we have ordinarily
to deal with T in something like the range 10 - 100 where,
as will appear, the advantage in all circumstances is by

no means so overwhelmingly in favour of AV, A few

particular applications will now be considered,

Orthogonal polynomials. The following Table

shows the value of relative efficiency H for a series of
values of T (assumed odd for arithmetical convenience)

and for five values of pgxs, namely 0, 2, 65, 7, 10, The
polynomia;s involved, Xipr Xy (sce (5)) are respectively of

2

degree: omwd, £'Wo. and three in t. As regards 32“2 we require only
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‘the ratios Y, = Xi/xk, Xk = 1, 2, 3 -« sec (17). The X,

were derived from Table XXIII of [ 2] and the X} were

!
calculated by the writer from data in[ 27] . As the ¥,

-2 .
are C(T ") they become very small as T.increases, Indeed
they may be ignored for T > 20, The A were derived

from [ 5] , Table 2 and the AN from [2], Table V, each

for probability .05. “

Table, Comparative Bfficiency H of VN and AV for Certain
Values of T and of Q§X3 at Probability Level .05

using Crthogonal Polynomials for Fitting

/§X3 ‘ 1% AV prob,

T point for
0 g 5 7 10 T-3 d.f,
11 . 596 .843 | 1,086 1.277 |1.650 11,3
21 .554 .688 . 906 1.146 12,123 8.3
34 528 .502 .784 .934 | 1,504 7.8
41 .485 . 542 .5658 .772 11.078 7.3
51 | ,458 . 506 .599 .688 | .904 7.2
101 . 390 417 L4587 509 | .594 6.9
w +) ¢ o 0 o) 6.6

As expected the larger the value of the undetected
disturbancé in tﬁe.residual (i.e. the ﬁBXSt term) tﬁe

less favourable the comparison for AV, dowever, the
general verdict must beoverwhelminglyagginst VN in this,
the polynomial} case, Indeed, the apparent superiority of
VIl as indicated by the ;alues of H greater than 1 in the
top right part of the Table is illusory. As shown by theo
1% points in the final column, an analysis would be in-
competent which failed to detect so very large a term in

ﬂs in the error residual, As indicated later, propor AV



procedure can guard against this cventuality,.

Fourier terms. Here the analysis can be much

more general than in the preceding case because of the
well-known summation properties of the Fourier terms,
Let the given PFourisr series be

kt

(27) X = COS 2£Iak(t + yk),

where the @, are given positive integers less than T and

the Yy are any real constants, also given, We then
have
T o
k tei kt
(28)
LN
X& = I Xﬁt =(1 - cos QECCkﬂT - 1 +
t=2 1
+ cos 201 & (aYk + 1))
T.
or
' Y, = X! /%,~2(1 - cos 210a,)
T
for T not small, As in the orthogonal polynomial case

toj=

E is O(T ?) so that the asymptotic efficiency of VN
compared with AV is zero, The main differencc between
the polynomial and Fourier cases ié that; as indicated
by (28), tae fundamental ratios ¥, with Fourier in-
dependents can no longer bc regarded as tending to zero
with T, .Furtﬁermore, from (17) a situation can arise
where it may be impossible to equate, as in (16) the
representative Valug of fhe VI ratio to the prbbability
poeint (given T). In .fact, (28) shows that the value
of the denominator squared in (17), namely ( A - Yg),

nzed not necessarily be positive, It will be positive
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only when ) is large or (from (28), second formula)
a%/T igs sufficiently small, To set up an efficiency
o

test, given T and therefore A, o, must be so small that

2 » 2(1 - cos E%E; )
T
(30) I
cCoSs 2Hak > 1 - %
T
when T is not too small, For probability ,05 and T

ranging from 25 to 40 (see [5]:) (the kind of range
usually dealt with) A is about 3/2, Accordingly, from

(30), the ratio ak/T cannot exceed 0.2,

The Fourier case may be studied from a view-
pciont d4ifferent from that of orthogonal polynomials.
Ve consider the value of ﬁs (the critical value, namely
B3) required to make VN and AV equally efficient? i,e,
H = &, or Erom (26), we equate the right sides of (17)

and (25} and solve for ﬁ§X Noting that A Aty

80

(k = 1, 2, 3) are ali ordinary magnitudes, i.,e. O(1) in

2

(31) B:;x3 ~ (2 -« T
A Y3
when T is not small. Now Y3 2 0O =0 that the minimum
value of ngs is
(52) (B2%,,) = (2 = A)T ~T
33 lqin T —__X;——.- ﬂd}fn

In general, in order that VN and AV should be equally
efficient,.BgﬁS should be O(7), say approximately T/3.
& glance at the last column of the Table will show that
this conditior entirely disqualifies VN when T exceceds,
say, 290, Bxcept as regards the last few remarks the
discuseion in this paragraph is general, and not

confived to Fouriler independents,



Conclusion

The insensitivity of VN having been cstablished,
Wwe must consider some alternative treatment. Clearly
this treatment should be on AV lines, Incidental to
the main purpose of the paper, it appears that AV can
also mask residual autoregression : this was the object
of intro@ucing the term in Xpg oo
The sensible course would appear to be to set
up a regression in considerably more individual ortho-
gonal terms than wWe have been accustomed to do in the
pasty, in fact, the number of terms should be of the
order of T, with orthogonal independents and even
with only a desk machince there will be little difficulty

in calculating the coefficients b, and hcence in setting

k
up an AV for single terms, each term having one ¢,f,
with relatively few terms in the remainder, Then the
Fk~for thé individual terms (see schema) would be
arrapged in ascending order of magnitude and a selcection
madé of the top terms representing estimates of the
Variance of Uy As suggested earlier, unless these be
mény (i.e. the significant terms few), much confidence
cannot be reposed in the representational power of the
series xky selected, Of course, the F-table as it
stands cannot be used for assessing significance, It
is a nice problem to decide on stochastic lines where
the division should be drawn betwecn terms to be

decemed respectively insignificant and significant at
say, .06 and .01 probability levels, It might be

well to prepare a table on such lines for different

values of T, number of significant terms and a few
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probability levels,

In [ 4] the author suggested that statisticians
should not be satisfied with residual randomness as
indicating that their task was completed, even when the
test of randomness is efficient, which the VN certainly
is not, In that paper it was cuggested that specific

attention should be given to the reduction of the residual

variance as a problem in its own right,

All the foregoing considerations apply to
multiple regression generally and not only to time series,
There is this important d¢ifferconce, however, that in
general regression we may not have an indefinitely ex-
tended series of independents available, If, wusing a
short series, as has been co often the case in econome~
tric analysis in the past, residual variance is found to
be unsatisfactorily large, other variables or relation-
sﬁips should be sought, The full set of independents
should then be orthogonaliscd using perhaps the latent
vector method [3 ] which has the advantages of being
symmetrical and unique, Furthecrmore, most computer
cdmpanies have programme sub-routines to do the nécessary
calculations, One can always transformone's orthogonal

solution back to the original independent variables.
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