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The Von Neumann ratio in the form

T T
Z (vt - vt_l)2/ ~: vt2

t=2 t=l

io much used for assessing completeness of representation

(or goodness of fit) of the regression estimate to

equally-spaced data in time series analysis.    The vt,

t = I, 2, ... T, are the regression residuals pursuant

to fitting a K + 1 - term regression to data, i.e. the

regression is

(2)     Yt = bo +
K
~ bkXkt + vt, t = i, ~,, ..., T,

k=l

the Yt being the observations, the Xkt a given set of

independent variables, all strictly functions of t. The

problem is to determine whether (~) affords an adequate

representation of a relationship of the form

X

Yt = ~o + Z flkXkt + ut, t = 1, 2, ..., T,: k=l

where the ut are entirely random (or, in fact, non-

autocorrelated) residuals with mean zero and variance

constant for all t.    The point is that at the start we

do not know the number of terms K to be used in the

regression (2) though we assume that we have available
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for use an indefinitely large set of functions Xkt,

polynomials, Fourier series or the like.    Of course,

the number of these functions required is less" than

T- I : if equal to T - i the fitted curve would pass

through all the observed points, which is not helpful.

Usually one hopes that only a few terms (not more than,

say, five or six) will be required and that we have

sound a_a priori reasons for selectin8 these.    We cannot

attach much value to, or have much confidence in, the

representational power of a formula (2) in which it is

necessary to use many terms, even if the coefficients

of these are significantly different from zero.    We

may infer in such case that the series Xkt we are using

is unsuitable.

i
The characteristic feature of time series is

that the successive terms are autocorrelated i.e. that

the correlation coefficient for the pairs (Yt-i > Yt)’

~= 2~ 3, ..., T, is significantly greater than zero.

The systematic procedure on Von Neumann (VN) lines would

therefore be first to establish that the original Yt are

autocorrelated at the .05, .Of etc probability levels

usin~ tables prepared by J. Durbin and G. $. 14arson [ ! ]

and by H. Theil and A. L. ~agar [5].    If the calculated

value of Q given by (1) with Yt substituted for vt is

not significantly different from its expected value on

the nul-hypbthesis, i.e..

= l)  21(T- ±)

when the vt (ov~ in this initial case, the yt) are

normally distributed, the successive Yt are presumed



to be like those which would be found on successive

drawings at random from a normal universe.     In such

case the Yt would be regarded as independent of t. Its

only representation could be Yt = Y.

If from the tables the value of Q is deemed

significantlylow at some probability level one selects

the first term x    of the predetermined series, establishit

the simple regression of Yt on Xlt and hence derive the

residuals vt.    The value of Q according to (1) is then

calculated and the significance determined from the

probability table, now with two degrees of freedom (d.fo)o

If not significant the process is ended;     if significant,

another function x2t is added, and so on.

What we try to discover in the present paper

is the sensitivity of the Von Neumann ratio as applied

in the manner outlined above.    The method used is

deliberately to falsify the hypothesis of residual non-

autoregression and try to determine how large the

falsification has to be before we find ourselves out,

given the number of observations T and the probability

level of non-acceptance of the nul-hypothesis.

We consider a simple case.

relation ~s

Suppose the true

(5)
n

Yt = #o + #iXlt + #2x2t + ’~3x3t + ut’

..., %,

where the ut are randomly distributed with mean zero

and standard deviation independent of t which, without

loss of generality, may be assumed to be unity.    ~The
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reason for introducing the extraneous term in x3t

will be apparent later.    Also without loss of

generality the functionsxlt, x2t and xzt may be

regarded as orthogonal, i.e.,

T
(6.)     Z XktXk,t = O; ZXk,% = O, k, k’ . I, 2, Z, k ~ k’

t=l

We require the following additional notation :-

(a) u~ = ut - ut_i; v~ = vt - vt_l; X’kt = Xkt

9(b) Xk ~.Xkt ; XI~ _. ,2
= = LXkt, t = 2, 3, ..., T.

-
= - ,/Xk

(c) ~k Xk

Xkt-i

As the set of Xkt is known so also are the Xk, X~

Yk’

and

regression

(8)

In error we now try to approximate (5) by the

Yt = bo + blXlt + vt"

From (5), (6) and (8), using (7),we then have

bk - P k = ~ktUt/Xk.

Formulae (9) are quite genera].. For the moment we

require only k = I.    The deviation vt is given by
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which, using (9), is

\\

"(Ii) vt = (ut - 5) - XltZt,Xlt,Ut,/XI +P2x2t + P3x3t;

whence

(12)

We now introduce the notion of the represen-

tative value of Q, namely 9, given by

(13)

where B is the expected value pursuant to random

variation in variables ut.    ~ is not necessarily equal

to EQ though it will be close to it unless T is small.

Using the assumed properties Eut = O, Eu~ = i~ Eutut,

(t ~ t’ ) = O it can easily be shown that

(14) EZv~ = T = 2 + ~X2 + ~X3

(is) ~. z v.~= 2(T - 1) - xl/xI + p2., ~2,

it may be noted that, in deriving (14) and (15), and hence

(13), it has not been necessary to use the property that the

ut are normally distributed.    To use the probability

points tablewhich are, based on the hypothesis of universal

normality we have to pretend that we think that the

residual vt are independently and normally distributed.

.J

in [5] the probability points are shown for. .0i

and .05 for’certain values of T up to I00 and for 2, ~ ... 6
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coefficients adjusted (two in our case).    Let % be the

value appropriate to the probability level to which we

are working.    The critical value of P2’ namely B2, is

then found by setting

or, using (.13), (14) and (15),

(17)
B~X2 = (2 -E)T + 2(%- i) - YI-~X3(A- Y3)’

(;~ - Y2)

where the Xk and Yk are given by (7).     If the true value

of $2 is less than as shown by (17) we shall wrongly

decide that the value is zero, that the process should

stop.     The value shown is therefore a measure of the

sensitivity of the VN ratio in this simple case,     It

is clear that as p2 3X3 increases the efficiency, given

T, of VN increases since the Yk will usually be small.

2
This is to be expected since the larger p3X3 is, the less

~the relative influence of ut in the residual vt, given by

(I0)~ which tends to assume functional form with a neces-

sarily small value of the VN ratio Since 2¯ B2X2 is

necessarily positive a zero or negative value for a high

2
value of P3X3 will be interpreted as equation (16)

having no solution in B2, a case Of no practical

importance.

:It may be worthwhile placing on record a

generalised version of formulae (14) and (15) and hence

of ~.     Suppose that, instead of having one coefficient

(apart from the constant) in the regression (i.e. bl)

we had K’, and ~her~fo~e .... K -    K’_ ~ in the. "ealse_ _ residual"

vt.    Then it may be shown that



(18) B~ 2
nvt = T - K’ - I +

K
Z ~kXk

K’+I

Of course the orthogonal property is assumed in all the

functions of ~:kt whether in the regression or not. The

use of orthogonal functions imparts a great simplicity

to work of this kind.

Analysis of Variance (AV)

This method is also much used fo~ assessing

comPm.~tene~a of representation in time series ana!ysi~.

We set up a regression

K ’ K
(9,0)      Yt = bo + Z bkXkt +    ~    bkXkt + v~.

k=i            k=K ’ +1

All the Xkt are still orthogonal functions° The problem

is to e~tablish the ,3equentia! randomness of the resi.-

,duals v’ , This is done by identifying tile K’ signi-
c

ficant functions in the firs~ E on the right.     Tile

K - i(~ terms in the second Z, all dee.led insignificant~

is arbitrary.    The analysis of variance schema [~] is

on tile following lines :-

Group

f

First (X’) terms

Second (X-K~ )terms

Residual terms

Total

Degrees
of
freedom
(d.f;)

K!

K-K ’

T-K- 1

T- 1

Sum
squares

1

82

Mean
squats

V-ratio

F1 = M1 / r’,/[3

L’2    ~ 3
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If F1 is significant and F2 is not significant at the

selected probability level the K’ function regression

will be regarded as complete and the remaining i[ - K’

terms ignored as adding nothing to our knowledge of the

relationship.     There are conceptual difficulties with

this approach which will be briefly referred to later.

In the final section of the pap’er, it is proposed (as

in [2 ] but on a larger scale) that in the first and

second groups the contribution of each term should be

set out individually, i.e. each with one d.f.

In the three function (5) case, how large has

the coefficient ~ ~o be to enable-as to reject the

hypothesis that (5) is represented by the regression

Yt = bo + blXlt+ b2x2t + vt ?

we set up the analysis on the lines indicated in the

foregoing schema with K’ = 1 and l< = 2.    From (9) the

sum squares and hence the mean square r,I2 (since there

is one d.f. ) is

(22)     r,~2 = (p2x2 + ~x~tut)2/x~,

from which

from (18), (with K’ = 2 and K = 3)

(~4) ~M3 = (T - 3 + P~X3)/(T - 3).
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Analogous to the procedure in the VN case we equate the

quoteint of (22) by, (~3) (to form a typical value of

F2 in the schema) to the appropriate probability point

A’ in the F-p1~obability table [5 ] from which the critical

value B~ of P2 is found from

(25) B~2X2
, 2

= [ (A’ - i) (T - 3) + A P3X3] ./, IT - ,3),

2
Other things being equal, the larger P3 the larger B~

and therefore the less efficient the AV method~ in

direct contrast with the VN test.     It has long been

recognised as a weakness in the Av method as applied to

multivariate regression that a low value of F2 (see

schema) may be due as much to a high value of M3 as a

low value of M2.    As will presently be shown the AV

method is, however, far more efficient than the VN

method for dealing with the present problem;    At the

same time we must not be blind to the hazards of AV :

this is why the term in x$t has been introduced into

(5).     It may be added that, since when P$ is zero

Bb~X3 is unity; consequently p2zX3 may be regarded as

0(1) in regard to T when ~3 is not zero.

Von Heumann versus Analysis of Variance

The decision with Which we are faced is~

having set up a simple regression, i.e. of form (8)~

do we stop or do we go on ?    To stop would be a

wrong decision (since it has been assumed that ~2 is

different from zero): to go on would be the right

decision.    At a given significant probability level

the test must be favoured which yields the smaller
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regression estimate of ~2"    The statistics B2 and

B~ (given by (17) and (25)) are near-average estimates

of what has been ~ermed the critical value of /72, i.e.

if P2 were less than these respective values in absolute

terms, ~2 would be deemodzero and a wrong decision made.

We accordingly introduce the efficiency ratio

H defined by

~ being non-negative.

Asymptotic efficiency will be considered in

the first place. All thek involved are

ordinary magnitudes i.e. O(1) in T as are k and k’. It

is therefore evident from (17) that B2X2 is O(T) while,

from (25 ), B~2X2 is O(i). Accordingly ~{~ from (~G), is

.A
O(T a).    When T is indefinitely large the efficiency of

VN, compared with AV is zero.    However, we have ordinarily

to deal with T in something like the range lO - I00 where,

as will appear, the advantage in all circumstances is by

no means so overwhelmingly in favour of AV.    A few

particular applications will now be considered.

an= following TableOrthogonal polynomials.     ~’~

shows the value of relative efficiency H for a series of

values of T (assumed odd for arithmetical convenience)

and for five values of $~X3, namely O, 2, 5, 7, lO. The

polynomials involved, xlt~ x2t (see (5)) are respectively of

dege£.e~ Q~%.~¢~ and three in t As egara~ 2. , r ~ B2X2 we require only
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the ratios Yk = Xk/Xk’ k = 1, 2, 3 - see (17).    The Xk
were derived from Table XX!II of [ 2] and tile XI’~ were

calculated by the writer from data in [ 2:] .    As the Yk

are O(T-~) they become very small as T increases.     Indeed

they may be ignored for T > 20.    The A were derived

from [ 5] , Table 2 an(] the ~ from [2 ] , Table V, each

for probability .05. o

Table ¯ Comparative Efficiency X of VN and AV for Certain

2~rValues o£ T and of p3~3 at Probability Level .05

using Orthogonal Polynomials for Fitting

T
O & 5 ~     I0

11

21

31

41

55
101

�O

,~7 prob.

Ipoint £or
T-3 d.f.

I

.696

.584

.528

.485

.458

¯ 390

0

.843

.688

.602

¯ 542

, 505

.417

0

1,086

.906

¯764

.65°

.599

.467

0

1.#77

1. 146

.9~4

.772

¯688

.509

0

1.650

2.123

1. 504

1..078

.904

¯ 594

0

11.$

8.3

7.,5

7.3

7.2

6.9

6¯6

As expected the larger the value of the undetected

disturbance in the residual (i.e. the ~$x3t term) the

less favourable the comparison for AV.     However, the

general verdict must be overwhelmingly against VH in this~

the polynomial, case. indeed~ the apparent superiority of

VN as indicated by the values of H greater than I in the

top right part of the Table is illusory.    As shown by the

i~ points in the final column, an analysis would be in-

competent which failed to detect so very large a term in

$3 in the error residual.     As indicated later, pro~,-;r #v
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procedure can guard agalnst this eventua.lity~

Foueier terms. Here the analysis can be much

more general than in the preceding case because of the

well-known summation properties of the Fourier terms.

Let the given Fourier series be

(27) Xkt = cos 2.H ~k(t + yk.),
T

where the ~k are given positive integers less than T and

the Yk are any real constants, also given.    We then

have

(28)

T 2
Xk = Z Xkt = T/2

t=i

T

X~ = Z X’2kt =(~- cos 2Hc~k)[T- i +
t=2 T

+ cos 2H ~-k (~y )~-- k + ! ]
T-

or

for T not small.    As in the orthogonal polynomial case

H is O(T-~) ~o that the asymptotic efficiency of VH

compared with AV is zero.     The main difference between

the polynomial and Fourier cases is that, as indicated

by (28), the fundamental ratios Yk with Fourier in-

dependents can no longer be regarded as tending to zero

with T.    Furthermore, ?tom (17) a situation can arise

where it may be impossible to equate, as in (16) the

representative value of the VH ratio to the probability

point (given T).    In fact, (28) shows that the value

of the denominator squared in (17), namely ( A - Y2),

need not necessarily be positive.    It will be" posit±vc
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only ~hen X is large or (from (28), second foemula)

~k/T is sufficiently small°     To set up an efficiency

test~ given T and therefore k; ~k mu3t be so small that

cos

2~(¢..
% ~    2(1- cos ~. )

211.~ Ak > i-5¯
T

~qhen 2’ is nog too small°    For probability °05 and T

ranging from 25 to 40 (see [5]. ) (the kind of range

usually dealt with) k is about 3/2o     Accordingly~ from

(30)~ the ratio ~k/T cannot exceed O 2,

The Fourier case may be studied from a view-

pcJ~t dif?erent from that of orthogonal polynomials=

Ne consider the value of P3 (the critical value~ namely

B3) required to make VN and AV equally efficient~ i.e.

H =~ J.~ or from (26), we equate the right sides of (!7)

2 A,and (25) and solve for ~3X3o     Noting that A, ~ Yk

(k = I~ ~, ~) are al]. ordinary magnitudes~ i.e, 0(1) in

T~ we find

% ": Y3

when T is not small.

of B~X3o isvalue

Now Y3 ~> 0 s.o that the minimum

2
(32)

(B3X3)irlir,- =-. (2 -., A)T.--.--.T.._

In general, in order that VN and AV should be equally

effic-Lent, B3X3 should be 0(~?)~ say approximately T/3o

A glance at the last column of the Table ~ill show that

this condition entirely disqualifies VN when T exceeds:

say, ~0o     Bxcept as regards the last few remarks the

discussion in this paragraph is general, and not

confi~tc.d To }7outlier independents~
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Conclusion

The insensitivity of VN having been established,

we must consider some alternative treatment.    Clearly

this treatment should be on AV lines.     Incidental to

the main purpose of the paper, it appears that AV can

also mask residual autoregression : this was the object

of introducing the term in x3t.

The sensible course would appear to be to set

up a regression in considerably more individual ortho-

gonal terms than we have been accustomed to do in the

past~ in fact, the number of terms should be of the

order of T.    With orthosonal independents and even

with only a desk machine there will be little difficulty

in calculating the coefficients bk and hence in setting

up an AV for single terms, each term having one d.f.

with relatively few terms in the remainder.    Then the

Fk for the individual terms (see schema) would be

arranged in ascending order of magnitude and a selection

i

made of the top terms representing estimates of the

variance of ut.    As suggested earlier, unless these be

many (i.e. the significant terms few), much confidence

cannot be reposed in the representationai power of the

series Xky selected.    Of course, the F-table as it

stands cannot be used for assessing significance.    It

is a nice problem to decide on stochastic lines where

the division should be drawn between terms to be

deemed respectively insignificant and sisnificant at

say, .05 and .Of probability levels.     It might be

well to prepare a table on such lines for different

values of T, number of significant terms and a few
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probability levels.

In [ 4] the author suggested that statisticians

should not be satisfied with residual randomness as

indicating that their task was completed, even when the

test of randomness is efficient~ which the VM certainly

is not.     In that paper it was suggested that specific

attention should be given to the reduction of the residual

variance as a problem in its own right.

All the foregoing considerations apply to

multiple regression generally and not only to time series.

There is this important difference, however, that in

general regression we may not have an indefinitely ex-

tended series of independents available.     If~ using a

short serieo~ as has been so often the case in econome-

tric analysis in the past, residual variance is found to

be unsatisfactorily large, other variables or relation-

ships should be sought.    The full set of independents

should then be orthogonalised using perhaps the latent

vecto~ method [3 ] which has the advantages of being

symmetrica! and unique.    Furthermore, most computer

companies have programme sub-routines to do the necessary

calculations.    One can always trans~ormoAe~s orthogonal

solution back to the orisinal independent variables.
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