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LIKELIHOOD AND ESTIMATION*

Abstract

This paper argues that inferences about the true values of parameters

logically proceed via the expectation of the (log) likelihood. Ia particular, the

true values maximise the expected log likelihood. So the estimation problem

is to estimate these maximisiag values. Only for a single parameter, or for

special forms of the likelihood function, is this the same as maximisiag the

likelihood. A modification to the maximum likelihood procedure is proposed

and simple examples are used to suggest that the modification has advantages,

besides being intuitively plausible.

* I thank John FitzGerald and Gary Keogh of the ESRI for useful discussions,
and Professor John Spencer of Queen’s University for helpful comments.    The
faults and omissions remain my own.
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1 Introduction

It has been recognised that the M.L. procedure is not a self-evident principle.

For example, Kendall (1940, 1949) remarked, it is not immediately or intuitively

acceptable to proceed on the assumption that the most likely event has happened.

Fisher, of course, felt differently and went much further when he said (Fisher,

1973, Ch. 3) "The likelihood supplies a natural order of preference among the

possibilities under consideration". Obviously the likelihood could be used to order

a set of values of a parameter ~ but ~’natural order of preference" suggests that

the resulting order is some way associated with order of closeness to the true

value. Fisher went on to say "It is not surprising, therefore, though independently

demonstrable, that in the Theory of Estimation, all rational criteria of what is to

be desired in an estimate coverage on the particular value for which the likelihood

is maximised".

I will argue that the desirable properties of the ma~cimum likelihood

estimator, when it is the appropriate estimator, follow from behaviour "on average",

as related to the expected likelihood. It will be suggested that as a consequence ML

estimators may be less appropriate than an alternative approach in the multiple

parameter case. The arguments, which are solely frequentist in nature, are

aimed as establishing the intuitive plausibility of the approach and rely on fairly

simple examples. The objective is that the paper shall serve to raise discussion

on the possibilities of the alternative approach.
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2 A single parameter

An intuitive illustration may help introduce the arguments. Take a small sample

x1, where x1 is the vector of observations, from a normal distribution with

known variance. Let Do be the true mean. Then

l~g L(Po,X1) < log L(Xl,X1)

If the experiment is repeated, drawing the same size sample x2,

that

But,

it is also true

log L(Po,X2) < log L(x2, X2)

on the other hand, it could well be true that

log L(x2,xI) < log L(Po,XI) and log L(Xl,X2) < log L(]/o,X2).

m

So if drawings are repeated, there will be an x in any one repetition with a
¯ o

higher log likelihood than ~o’ but averaged over repetitions one could expect

that Pc would outperform any of the x Then the true value would maximise
1

the expected log likelihood and the problem of estimating the true value would

become that of estimating that maximising value. That the estimate might also

be the value that maximises the sample likelihood, if it does so, could be thought

of as coincidental.

Let e represent an unknown parameter with true value 0
o

vector of observations.

ElL(e, x)/L(O0, x)] = I

and since by the Arithmetic-Geometric Mean inequality,

E{log [L(O,

it follows that for 0 =:O
0

E [log L(O, x)] < E [log L(OO, x)]

So, given regularity conditions, it follows that, at 0 =:90,

3
--30 [ E(lo~ L) ] = E (3 log                30 L)=    0

and x be a

x)/L(Oo,X)]} < log E [L(O, x)/L(00, x)],

(1)
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This result also follows starting from

I L(e, x) dx = ~,

and differentiating both sides with respect to }9 giving

which, for O=O° is equation (1) again. Of course, there is nothing original

about equation (1) or in the methods of deriving it, but it can be interpreted

in a different way than it usually is. The fact that the true value maximises

the expected 10g likelihood leads to equation (1). Therefore.0o can be estimated

by equating the derivative of log L to the expectation it would have (zero) at the

true value. So the equation

log L
-03O

is an estimating equation for 8 , as well as giving the value that maximises
O

the sample likelihood. This coincidence of estimating true values and maximising

likelihood will not, usually, carry over to the multi-parameter case.

A broader question in the single parameter ease is if equal, or almost

equal, values of the log-likelihood for parameter values Ol and 82 imply that

these are equally supported by the data as contenders for the true value 0o .

Although 0oi cannot be directly related to log L (0 , x), it can to :E{log L(0,x)}

since, as has just been seen, this takes its maximum at 0o . By definition,

log L( 0
i’ x) and logL(O2, x) are unbiased estimators of E{log L(01, x)} and

E{iog L(82,x)} respectively, so if the log likelihoods are almost equal, the

expected values could well be also. Some notion of closeness to the true value

is implicit in questions of relative support for possible parameter values, and

indeed also for Fisher’s "natural order of preference". Suppose one is indifferent

between 01 and 82 if 18O- 01]" = 18o- 021.    The issue then is ifthis is
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implied by equal expected log likelihoods.

imply E[log L(01,x)] > E[log L(02,x)],

likelihoods probably differ similarly?

Conversely, does ] {9o- (91 [ <[ 8o- 82

so that the observed log

The simple case of a sample of size one from a Normal illustrates

the situation. First, suppose the variance is known. Apart from a constant,

and so

log L(14, x) = -½ log O2 I     (-x - ~l)2
o

"2(/ 2
o

Clearly, if

[I + log (/2 +
I    "

2]o 2 (~lo ~’D)
(/O

the expected log likelihoods are equal since

there is symmetry about ~o " Now suppose the mean is known rather than the

variance. Apart from a constant

and so

10g L((/2,x) = -½ log (/2
I

(x - ~o)2
’ 2(/2 ’

2
,(/

E [log L((/2, x)] = -½(log (/2 +    o2 ).
(/

and o~ were equidistant on each

(/2_. the larger would have the greater expected log likelihood.

This is not symmetric about °2o and if g~

side of

is measured by
Of course, the foregoing assumed that closeness to O°

Euclidean distance. Defining distance as the difference between expected log

like lihoods at

"closeness ".

0 and 0 would ensure that equal log likelihoods implied equal
O

This definition might sometimes produce sensible distance functions -

and in the immediate neighbourhood of the true value might always do so, since the

expected log likelihood would be approximately quadratic about its maximum - but

it often will not.

Then there is no general justification for assuming that equal likelihoods

imply equal proximity t o the true value. In the case of a single value from a
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Normal with known mean, an observed equality of log L(o~

with o~ and

true value.

generally enough for inference.

9

, x) andlogL(o2 , x),

2
02 very different, would suggest that the smaller is closer to the

Knowing all the values of L(0, x) for given x and varying 0, is not

The distributions, including the ranges of x matter.

3 Multiple parameters

As before it may be useful to commence with a simple illustration. Given

a small sample of size n from a Normal with known mean Pc ’ it will again be

true that

where

log L(02o, x) < log L(S2,x),

s2_ I (xi-  o)2.
n I

But if repetitions of the sample are considered, one expects that 02 will, on
o

average, give a higher log likelihood than any other o~ . If both mean and

variance are unknown it is plausible to expect, and can be easily proved, that the

maximum of the expected likelihood should occur at ~o’°2o . But in any sample

2
the values of ~ and o that maximise the likelihood are x and S2 where

S2 = in ~(xi - x)2"

In any sample
log L(~I° 02, x) < log L(x~S2, x),

but because the data are more closely grouped around the sample mean than

around ~o ’ and will be in every sample, one does not expect that an averaging

2
over repe’titions will reveal oo to have the highest average log likelihood.

Instead, a somewhat smaller value than 02 would have. The implication is that
o

averaging over repetitions, with x and S2 for ~ and .,02, does not lead to the

maximum of the expected likelihood.

The log likelihood is

n 2 1             2Constant - -~ log o - -- F;(x -1.1)
202
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w ith expectation

2Constant - ~ [log,O
2

This has its maximum at_ u° and 02

O

2
0. 2
O (P - PO)

+ -’--~ ’+ 2 ]
O O

¯ Having replaced p by x the log likelihood

is

Constant --’~ log 02      I E(X - ~)2
2              252

with expectation
02

n 2 n-1 oConstant - ~ (log (~ + )
n 2

O

whichhas its maximum at 02 = 02 (n-1)/n.
o

The arguments of the previous section that proved that the true value

maximises the expected log likelihood easily generalise, given regularity conditions,

to multiple parameters so that, if e is a vector of parameters with true value

E(31og L
30. )= 0, for e = O0

(3)i

e
O

Note that the validity of (3) requires that all parameters, not cancelling out of the

equation, be at their true values. If

3 log L
- G(e) H(8. x)

equation (3)implies E(H)= 0at O " O.
]. lo

the mean at the true value and determines the value Of :o

(4)

so that equating H to zero both equates to

corresponding to

the maximum of log L.

A little more generally, suppose

31og L
Y.a.z

3e. - G(e) H(Si,x) (5)
:1.

where the a. are perhaps functions of e. Then H may again be equated to zero
I

A

since the expectation of the left hand side is zero. If H reduces to the form Oi(x) -e.
A

then ei is an unbiased estimator and a variation of the Cramer-tlao bound argument

shows that its variance is a lower bound for that of any unbiased estimator. For
!

example, given a sample of size n from a bivariate normal:
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so

1 ~log L = C/11(x_ ~ ) +
~12(x2 _ P2)

n ~P 1 1 ’

I ~log L _ 012(xi_ Pl) + c/22(x2_ p2).n ~ P2

I

~log L _ I_~2 ~log L ] _ I (x1_ P l)

n[ ~ Pl ~22 ~:~2
°11

and the left hand side has expectation zero at the true value of 0 ¯

However, if a linear combination of the derivatives of the log likelihood

is insufficient so that, for example

logL)Cik r~ logL’?jk
Y, E aik( ~0i ~ 0~k j     = G(0) H(0ix),

then the expectation of the left hand side may be non-zero at the true value of 0

(6)

in small samples and setting H to zero may not be equating an expression to its

expected value. Returning to the univariate normal as an example:

and

1 ~logL" _ I (x- p)
n 8p. C/2

I ~’logL _ I + --J--1 ~[(x - p)2
n ~.02 2~2 2nO4 .

_ I + r, (x-
202 2n~

(7)

so 1 $1ogL (~ ~logL~2 I [02 1 E(x_~)2]
(8)

n ~,02    n .~---~’" =    .204    -

The expectation of the left hand side is -1/(no2) and not zero (where there is no danger

2
02 will be used to mean oo) and one could argue that {he right hand sideof confusion

should be equal to this and not to zero. It will be shown in Section 5 that in at least some

cases of the form (6) equating to expectations gives minimum variance unbiased estimators.

It should be said at this point that all problems cannot be reduced to the

form (6). There need not always even be a closed form algebraic solution for 0.
l

from a set of non-linear equations. When there is, the left hand side corresponding to (6)

could be a complicated function of x as well as of the 0 and derivatives. Also the final

estimating equations may be simultaneous, that is, taking the expectation of a left hand

side may not cancel out all parameters except 0i . However, it is
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not the purpose of this paper to present a general computational approach, but to

raise discussion on the possibility of improving on maximum likelihood. In

subsequent examples it will usually be most convenient to derive the equation of

the form (6) by starting from the derivative of the likelihood with respect to 0.

expanding it as two sets of terms with only the second involving parameters other

than 0£ and then replacing these by functions of other likelihood derivatives. Of

course, this is not being claimed to be a generally applicable method.

Maximum likelihood would equate the right hand sides of (6) and (7) to zero

by making all derivatives zero. An alternative procedure would equate to the

expectations of left hand sides, using the knowledge that

E( ~log L¯ -~. ~ = 0
for e -~ 0o.

i

These equations express the fact that the true values maximise the expected likelihoods,

which seem to be the only link between true values and likelihood in small samples.

For the remainder of the paper I will call these alternatives, which seem to me

more intuitively acceptable, the estimated maximum expected likelihood (EMEL)

estimators.

In the normal example the ML and EMEL approaches differ in how equation (7)

is interpreted and subsequently used. The EMEL interpretation does not mean     :

x - ~o= 0 but E(x -~) = 0, at~=~o.

~2
be eliminated from the equation for

So (x - pc)2 is non-zero and p should

by replacing the term by the expectation of

(x - ~o)2 rather than setting it to zero. In the normal example and more generally

in equation (6) the EMEL procedure could also be regarded as equating H to its

own expectation.
A

Indeed, if H reduces to 0i(x) - 0i the procedure is equivalent

to trying to correct the bias of the ML estimator.



10.

4 Some examples

EXAMPLE 1: A single sample value from a Normal: This is perhaps a rather

trivial case, but it puzzled me in the past. Maximum likelihood gives:

and

when

A
3 log L _ I (x -~), leading to ~ = x,

3D 62

¯ ^23 Iog L = I    + I    (x - ~)2, leading to O = 0,

30 2 202 204

is replaced by its estimate. That is, the likelihood is increased to

infinity by choosing the location parameter equal to the value and the spread

zero.

so that

This is an absurd result. The EMEL approach would be to note that

31og L I (3 log L)2 = _I

3o 2     2     3~ 202

Taking the expectation of the left hand side gives the plausible, if uninformative,

result

! 1

202
" 2o2

Other cases in which there are absurd results from maximum likelihood can

also be resolved by the alternative procedure.

EXAMPLE 2: Standard Multiple Regression: In this case the log likelihood,

apart from a constant, is

n 2 1- ~ log g -    - (Y - XB)’(Y -XB)
202

The well known maximum likelihood estimators are:

^ - ^2    !( ^
B = (X’X) I X’Y and O =    Y-XB)’

n

^

(Y-XB).

Now

log L _ n +    I
302    202    204

^

= [---n--n +-1 (Y-XB)
202 204

(Y-XB)’ (Y-XB~

^ ^ ^

’(Y-XB)] +--2~4 (B-B)’ X’X(B-B)

3 log Llog L 1

" ~(~ ~’B ) (X ’X)-I
Thesecond term is

3B
with expe ctation

^I    T (X’X. var B)
-

I

204    r. 2(72 p’



11.

where p is the number of columns in X.

or

n +

2O2

So the estimating equation is
^1 (Y-XB)’ (Y-XB) + I p = 0,

2o4 202

(Y-XB)’ (Y-XB)

EXAMPLE 3; Missing values of an explanatory variable in simple linear regression

The model is Yi = :b xi :+ el, i :~ I ,2,... ,n,

where thex for i = r +I, r +2,,..., n have been lost and will be treated as unknown
t

parameters.
r

i
n           ;

_ n log 02 I     I (Yi- bx. 2 _ I    E (Yi- bx )2log L = 2
202     I

::l
202 r+1

31og L _ ~ b
(Yi - bxi)’ i = r + I, r + 2, ..., n.

31og L _ I    r I     n
3b-~ O2 El xi(Yi - bxi) +                      02 r+Z1 xi(Yi - bxi)

n~log L n + I
r

bxi)2
I

bxi)2
---- .-- E (Yi -

+
E (Yi-

302 2°2‘. 204 I 204 r+1

Maximum likelihood leads to the estimators:

r r 2 ^ ^2     I r
_    . )2= E xiYi/ E xi, x. = Yi/b, for i > r and O - Y’ (Yi bx    .1 1

1    . n
1 1

So the greater the number of missing values, the smaller the estimate of the

variance. Using EMEL instead of ML leads to the same estimators of b and x. (i >: r)
[

because the expectation of the second term of the b equation, a linear combination

of derivatives w. r.t.x, is Zero, while the first equation could be written
1

b (-Yi      - ^
+          xi                    [ b       ~log L

n              Y. x.         31og L         ]

b.xi), r 2 3b j=r+1 3 3xjO-
E x
I

and the expectation of the second term is again zero. The equation for 02 may be

written
31og L n + I

r ^ r
Z(yi bx)2+ 1 (~ b)2 r

1- ~ - --    - Z x2 +~ E (Yi-
302 202 204 I 204 I 204 r+1

The last term on the right has expectation (n-r)/2 02 and the third has expectation

1/o2, being functions of squares of derivatives w. r.t. x. and b, leading to
1

r2 1 ^    2
0 - r-1 E (Yi - bxi)

I

bx. )
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In all three of these examples the procedure was to expand the derivatives of the

log likelihoods and then eliminate the other parameters by replacing terms by

functions of derivatives with respect to other parameters. Taking expectations

then led to the EMEL estimators.

5 Properties of estimated maximum expected likelihood

Many of the optimal properties associated with maximum likelihood are large

sample properties. If all observations are independent and come from the same

distribution f(0 x), where x is a scalar,

n
I ~logL .... I    ~ E [log f(8,xi)]    I .ny.    f(fJ(8’xi)e,xi)

¯ n ~@J i=I n i=1

n ~O0

where f. denotes differentiation with respect to e. . So (9) is a sample mean and
j ]

therefore by the strong law of large numbers tends to the expectation of each term

for large n. This expectation is

f’l (0, fi(e, xi)
xi)}= ~ f(eo, xi) dx. = ff (eo, xi) dx = 0, for e = eE ( f(0, xi) f(e, xi)

l j i o"
So, for large n the true value 0o satisfies the equations

_.. ] ~logL
-- - 0 as well as -" ~logL
n ~8i ’

E~ ~8i ) =" 0

and the former follows from the latter. If derivatives divided by n, and powers of

them, can be treated as zero then so can the left hand sides of equations such as

(5) and (7) and ML and E1V[EL coincide. So EMEL estimators have the same

asymptotic properties as ML estimators.

(9)

More interestingly, there are cases where the EMEL estimators satisfy

the criterion of consistency when the corresponding ML estimators do not. It is

well known that consistency difficulties can arise with maximum likelihood when

the sample values are from different distributions, for example, if the number of

parameters increase with sample size. Suppose there are n Normal distributions

with different means, and two observations from each. The case of one observation



from each gives another example very similar to the fLrst of Section 4. Apart from

a constant the log likelihood is:

n 22n log 02 - I
- -~- ~ E l (xij - pij2~

Lo- i=I j=1

31ogL I (xi Pi)
3pi = -7o    -

n 231ogL _ n I    y.    y. (xij

302 02 + ~ i=I j=1

Maximum likelihood ~ves
n

2]o^2 = ~1 in1    r (Xil- xi2)
i=1

~ince ~n~-strdffg law implles thattl~e samp~[~ mean tendS-to th6 expT~ctation of

2 1 2
(Xil - xi2) , that is 202, for large n, the estimator tends to ~o and So is

inconsistent. But writing

31ogL3o2 _
02n

1
n 2                          n 2        pi)2

+ E
E (xij- x.)2 + I     E

Y. (xi-
¯ "204" i=I j=1 ~ " l     204 i=I j=1

and replacing the last term on the right, which is half the sum of squared derivatives

w. r.t. the Pi’ by its expectation gives

2     I[1
n

- y. (xI - x2i)2 ]0 2 -n i ’
i=I

which is consistent. Per-haps it is worthwhile taking a closer look at the equation

2
for o .

n _ J__+ I 2 _
)231ogL     Y. [ 02 __

y. (xij- x.)2 + I (xi_     ] .

302 - i=I          2°4 j=1       l     ~-4     Pi

The right hand side is an unbiased estimator of the expectation Of the derivatives

and remains so if each (xi- pi)2 is replaced by its expectation. For the true

2 2
value, pi= :Pio and o = 00 , the expectation of each term in the summation is
zero and so the strong law of large numbers ensures consistency. If the (xi -

pi)2

are set to zero, however, each term has a non-zero expectation and consistency

does not follow.

13,

It may be going too far to claim that estimated maximum expected likelihood

will always produce consistent estimators when samples are drawn from different
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distributions. The strong law may not even hold. But supposing for a sample of

size r, a derivative equation can be written, having replaced appropriate terms

by expectations, so that the expectation of the right hand side is zero at the true

value. Then it seems plausible that arguments based on n repetitions of samples

of size r will prove consistency.

The optimal properties of a maximum likelihood estimators for O. in small
3

samples depend on the attainment of the Cram~r-Rao bound or on the existence of

a single sufficient statistic for O.. But in these circumstances, equations (4) or (5)
3

are valid and then ML and EMEL coincide. It is interesting to see if extra optimal

properties can be established. Suppose

~logL = P(@i x) + q(@i ~ x)

l

where ~ is the ~ector of other parameters occurring in the equation. As in

previous examples Q may be expressible as a function of powers of the derivatives

w. r.t. ~ so that the equations may be of the form (6). At the true value

E(P + Q) = E[P + E(Q)] = 0

SO

E{

where T(@i)

of T(@i)

T (@i)[P + E(Q)]} = 0

is a function of @i. Now suppose that t is an unbiased estimator

E(t) = T(8i)

Assuming regularity conditions and differentiating gives

E[t(P + Q)] = T’(@i)

Now assume E(tQ)= E(t)E(Q). There will be log likelihoods for which this is true

for any t that is unbiased. For example, if the likelihood can be written

The n

A

g(@i~ ~) h(@i, x)
A

where g is the distribution of qb .

E(t) = E [ E^ (t)] =
x/~

(10)

(11)

(12)
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If E(t), conditional on do , is a function of do as well as of 0. then the
J.

integral must be a function of dO as well as of e. and so t could not be unbiased

for all (~ ¯ and do ¯ Therefore1

E^ (t) = T(ei),x/do
and if the likelihood can be written in the form (12), then Q in (II) is a function

A

of x only through do . So

E(tQ) = ~ E^(tQ) = E (Q) E(t) = E(t) E(Q).
do x/$

Then (10) and (11) give

E { it -T(@i)] [P + E(Q)]} = T’(@i),

and, using the Cauchy-Schwarz inequality,

iT’ (Oi) ]2
var (t) >i E { [e + E(Q)]2}

This is an analogue of the Cram~r-Rao bound and it is attained when

15.

(13)

P + E(Q) = A[t - T (ei)].

So one procedure for seeking EIVIEL estimators sometimes reduces to equating

one statistic t to its expectation while attaining the lower bound (13). Obviously

t is very analogous to a sufficient statistic and one could continue to consider the

families of distributions that permit equation (14). However, for the present the

important point is that optimality properties can be obtained. A sample from a

Normal with unknown mean and variance is one example where the likelihood can

be written in the form (12). Then

n
alogL _     n +    I    )7, (xi _ p)2

~02 202    204 I

n + I n n 2---- Z (xi - x)2 + (x - p)
2(/2 204 I 2(/4

= p + Q.

So

P + E (Q)
n

n-1 +
1     Z (xi- x)2

2(/2 2(/4 1

or

P + E(Q) = [ E(xi - -,x)2 _ 02]

(14)
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which is of the form (14), so that the estimator

E(xi - x)2
S2 =

n-1

is the unbiased estimator of ~2 of minimum variance attaining the lower

bound (13).

2
It is fairly obvious that similar estimators of ~ , with this small sample

optimal property, will be obtainable in regression and analysis of variance models

where the degrees of freedom will occur in denominators. It is tempting to speculate

that the property also generalises to multiple variance component estimation and

may relate to the restricted maximum likelihood procedure, advocated by Patterson

and Thompson (1971) for analysis of incomplete block designs. I realise this

discussion of EMEL’s properties draws on suggestive examples rather than general

proofs, but perhaps this is sufficient to at least generate interest.

6 Summary and discussion

The argument of this paper is that since the expected log likelihood is maximised

at the true value, it is the co-ordinates of this maximum that ought to be estimated.
For any known 0 , the expected log likelihood is a function of 0 and 0° and is

therefore unknown, but the log likelihood provides an estimator, unbiased by

definition, of it. Since under regularity conditions

DlogL D
E( De ) - De E(log L) = 0, for e = Co,

this is generally equivalent to equating expectations of derivatives to zero.

From the expressions for the derivatives it is possible, at least in some cases, to

equate a function of ei and the data to a function of the derivatives. If this function

has a non-zero expectation the EMEL estimator, which equates to the expectation,

differs from the ML estimator which equates to zero. The EMEL procedure, like

MLin the case of a single sufficient statistic, sometimes gives on unbiased estimator~

of a function of ~)i while attaining a lower variance bound.
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The notion that the likelihood contains all the information in the sample

goes back to Fisher and has been variously interpreted. The extreme view that

the likelihood alone should suffice for inference is incompatible with the development

here, because even the choice of expectation of log likelihood rather than log

likelihood as a criterion would contradict this. Some of the implications have been

discussed in Section 2 for the case of a single parameter. However, even the

more common interpretation of information as the reciprocal of the Oramer-Rao

lower bound, could perhaps be questioned given (13). If no unbiased estimator can

have a variance below the bound given by (13) and if the bound is attained for one

estimator, is it reasonable to think the sample provides any more information ?

Fisher treated unbiasedness, at least in the context of maximum likelihood,

as a relatively unimportant property. Yet the optimal properties of maximum

likelihood in small samples in the case of sufficient statistics depends on an

unbiased estimate of a function of the parameter attaining the Cram~r-Rao bound.

Unbiasedness, though not necessarily of the final estimator, plays an important

part in the whole EMEL argument. The equation (15) equates quantities to their

expectation and, simple though this is, it is the essential step. This unbiasedness

may be carried through to equation (14) when that simplification is possible.

Large sample properties are the same for YIL and EMEL, at least for

independent observations from the same distribution. I would suggest that the

optimal large sample properties of ML occur because it is then tending to coincidence

with EMEL rather than vice versa. There is a direct connection between expected

log likelihood and the true values of parameters that gives EMEL some prior

plausibility which, to me at least, seems lacking in ML procedures.



18.

The aim of this paper was to introduce and argue a case for an alternative

approach to maximum likelihood and the examples chosen were capable of

straightforward solution. I have not tried to present a general computational scheme

and no doubt explicit algebraic solutions may be s ometimes unachievable, demanding

reliance on numerical methods. One approach in such a situation might be to start

with the ML solution, assuming that consistent, and try to move towards the EMEL

solution. The fact the EMEL is sometimes equivalent to correcting the bias of the

ML estimator suggests that the variety of bias reduction techniques might repay

investigation. On the other hand, the fact the EMEL estimators may be consistent

when MI~ estimators are not would hint towards a wider approach. However, it

would seem premature to investigate general computational methods before obtaining

acceptance of tl~e idea that it is the maximum of the expected likelihood that ought

to be estimated, rather than the maximum of the sample likelihood.
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