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OBTAINING EXPECTED MAXIMUM LOG LIKELIHOOD ESTIMATORS

DENIS CONNIFFE

The Economic and Social Research Institute, Dublin 4, Ireland

Abstract. This paper describes a widely applicable method of obtaining
expected maximum log likelihood estimators (EMLE). Approximate numerical
solutions are required in the most general cases, but exact algebraic
soluﬁions are poséible in special cases. It is shown that in an important
special case the EMLE solution coincides with ML as applied to conditional
likelihood. The method of restricted or residual maximum likelihood (REML)

is compared with EMLE by means of an example.

I Introduction

The likelihood L(® x), where 0 and x are vectors of parameter variable and data
respectively, is not directly a function of the true parameter values 60.
However, the expected log likelihood is a function of 6 and 60 and its maximum

occurs at 9=00. So determining the true value is the same as determining the

maximum of the expected log likelihood. Given regularity assumptions,

maximisation implies:

dloglL, _ _ . .
E(ae )= 0, at 6j—ejo for all i and j. 1)

i

If there is only one component of 8, this equation says that the expectation

of the derivative of the log likelihopd is zero at the true value. Hence,
equating the derivative of the sample likelihood to zero and solving for ©

is a plausible way of estimating 60. Of course, it also maximises the sample
likelihood, so the estimate is the usual ML one. With multiple parameters, the .

derivative for ei will usually be a function of other parameter variables besides

o




ei. If these are replaced by estimates, perhaps obtained by equgting other

derivatives to zero,.then, in genefal,
ologL,, =~ ~
E[—i«wi (.eiej...ekx)] # 0

because the estimates differ from the true values. Then the values that
maximise the sample likelihood are not the same as estimates obtained by
equating functions of likelihood derivatives to the expectations they would
have at the true values of the parameters. This paper develops a generally

applicable method for obtaining the latter (EMLE) estimates.

Of course, it may be possible to manipulate from the likelihood equations

rd

dlogl, _ ) i

to the equations

dlogL _ V
Wl('a-é——, e) = ki(elx) (3)

so that ei may be estimated by equating ki to the expectation of Wi at 60.
The expectation could involve parameters other than Gi, but then estimates

could be inserted. If Wi happened to be a linear function

_ dlogL
zA; 0) 5

i
then the expectations of Wi would be zero and in fact EMLE and ML would
coincide. Examples of EMLE solutions via the progression from (2) to (3)
were given in Conniffe (1987) for fairly simple cases. However, it is not certain
that unique algebraically explicit ekpressions for (3) can always be obtained
from (2), nor that exact expectations can be derived for the Wi' Approximations
and numerical approaches are possible, but then it seems simpler to commence

the approximations at the stage of the initial equations (2).




2 Approximating Derivat ive Expectations

-~

Suppose O has two components ¢ and Y and that an initial estimate ¢ is

available. The derivative of the log likelihood w.r.t.y, evaluated at

~

¢, is approximately:

ologL 52 logL 2 10gL :
® (pyx) + (Cb ¢)a¢aw + £(¢ ¢) a¢23¢ (4)

At the true values ¢01p0, the expectation of the first term is zero. The

_expectations of the second and third terms would depend on the composition

of ¢, considered as a function of the sample data, but can be approximated

by the expectations of , Y
A . ~ 3
G - ) TIE ana 4G5 -2 Lotk (5)
where'
Cg"d) - d)i%;gL Cg&)ogL )
_ Vy C -1 Flogl  5%loglL
and . = -E| 3'¢2 3oy (7)
¥ logl 3*logL
¢ W 2950 2

Assuming that the data consist of n independent values drawn from the
same distribution f(¢Px) the equation (6) is asymptotically valid for the
EMLE (or the MLE since they coincide asymptatically) estimator. So the

expectation of the first term of (5) is:

2 2 '
V.E (BlogL ) 1ogL)+ o E(&logL o d ;ogL)

¢~ \ o o oy Y o9oY

or n(VMinq10 * C My1g40?

(8)
where

M - Blogf) dlogf Glogf 2logf) 8210gf>;ﬂ
ijkm o 0¢2 093y o2




The expectation of the second term of (5) is

logl e vz 9 3logL ;
vy o(35me 2k, joov 1G22, $aoth O ®

Using

E 931ogL -~ -%E ologlL azlogL - dlogl azlogL)~ Elli}ogﬁ? 9logL
0929y o 3%oy oy 02 3¢ /
the expectation of the first term of (9) is

=t Vo (M 0010 ™ Mo1100 ™ M210007 (10)

The expectation of the second term of (9) is

2
dlogf dlogf dlogf 2(3logf) 93logf
in Cov[:¢ ) 2V¢C 56 50 + C 50/ 35250 (11)

From (7) it is clear that V¢ and C are O(%? so that (8) and (10) are
0(1), but (11) is O(%). So (11) will be treated as negligible in

comparison to the other terms. Combining terms gives the approximate

expectation

nlC My1010 = £V Mg1100 * M210007] (12)
By equating

aligL G ¥ (13)

to (12), which is approximately the expectation it would have at w=¢o,

an equation is obtained for Y. If (12) is a function of ¢o as well as of

~

wo’ the estimate ¢ must be substituted for it.

-~

Given an initial estimate Y, an equation for ¢ can be obtained by
equating

Bk 4y ) | (14)

to the result corresponding to (12), which is

n[C M -V, M,

10010 = #0001 * Mi20007! (13).



Alternatively, the result for Y of equating (13) to (12) could be taken

as y and used in (14) and (15) to obtain a new ¢ which could be inserted

again in (13) and (12), so defining an iterative process.

The procedure to generalise the approach io any number of parameters
is obvious in principle and not mathematically difficult in practice.
But the expressions, especially the 'M' terms, quickly become very clumsy;
indicating the need for a more concise, though perhaps less transparent,

notation,

It may be useful to restate what has been done in the steps from (4) to

(12) and (13). The kndwledge that the expected values of derivatives of the

7
Ve

log likelihood are zero at the true values of parameters does not (except

in very large sampies) justify replacing one parameter in the derivative by an
estimate and solving for the other parameter by equating to zero. But since
the derivative at the estimated value can be related to the derivativevat the
true values by the approximation (4), the non—-zero expectation to which the
former derivative ought to be equated can be deduced, at least approximately.
The procedure adopted here resembles that used in deriving corrections for

the biases of ML estimators [see, for example, Cox and Hinkley (1974), Chapter 9].

3 An Important Special Case and Conditional Likelihood

If one of the derivative equations, say for ¢, takes the form

Q%%EE = AG(P %) ) (16)

where A is not a function of x, it follows that
E[G($ x)] =0

and ¢ may be estimated by just equating G(¢ x) to zero and solving for ¢.

But it is then also true that




2 E[G(¢ x)] =0

E ET

Te)-

9%logL|_ 9A _[3G
E(§¢zaw ) 5 :(35)

So C in (6) is zero and final expressions simplify considerably. 1In

and

particular, if (16) takes the form

§$°gL AW (b ) (17)

associated with suitably parametrised distributions belonging to the

exponential family, (4) becomes

;
Ve

dlogL 2da 2 dA
REL i) + (0-8) He-0) g
with expectation
dA 1 dA
v ¢dw = ixa@‘ ‘ (18)

Note that with the form (17), there is no need to distinguish ¢ and
é since (6) holds for ¢. For a vector of parameters ¢, so that A in
(17) is a matrix, the generalisation of (18) is easily seen to be

1 dA

T 5 (19)

The EMLE approach will not always provide an estimator of ¥, given

¢. The form (17) corresponds to

~ 2
log L = -3A@) (¢ - ¢) + B(Y x)

But if B is not a function of x

2
ologl,
TR %dw @ -) + 38 lP
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So that, evaluated at ¢, the derivative is just a constant which, of
course, equals (18). For x to provide information about a parameter it

is obviously necessary that the distribution of x depend on the parameter,
but this is not sufficient. The derivative (13), or the k. in (3), must
be a function of x. The case may seem trivial but it is related to an

important result. Suppose

L(ox) = k(Yx|6)g(ovo) ' | (20
so that .

ologL _ 3log g

% o
/
dlogl. _  3log k + Olog g
b Y oy
and further suppose
~ 2
log g = -1A() (¢~ ¢) + B(Y)
The EMLE method equates
9logL . .- 1da
50 (6 ¥ x) to i ) 21)
from (18). But
Slog g _ _, dA & % dB .

~

so at ¢ this derivative equals the second term on the right hand side
of (22). But since the expectation of (21) must be zero at the true

values as g is a marginal likelihood

dB _ ,1 dA

ay " K dQy

-~

Since the distribution conditional on ¢ is assumed in (20) not to be
a function of ¢ the derivative of log k is unaffected by replacing ¢ by ¢.
So (21) reduces to equating

dlog k
oy




to zero. That is, EMLE on the joint likelihood (20) gives the same result
as ML on the conditional distribution of x given ¢. Remembering the small
sample optimality sometimes attained by EMLE [Conniffe (1987)], this may

explain why inference based on a conditional likelihood is sometimes claimed

to have advantages over inference based on a joint likelihood.

4  An Example of EMLE and of REML

. . . 2 2
Consider the problem of estimating the parameters W,04 and 0, given
independent samples of sizes nj and ny from two mormal distributions

with the same mean. The log likelihood, apart from a constant, is

n

+t2 * ( - )2 (23)
20, . Y2i L
2 1=1

n: ‘n,.
~n1 2 1, o N2 P
-1»2--:10g 04 | -'-2-6:12 i§1 (Y1i W 3 log o

2
2

2 n n
dlogL. _ M1 - T2 - 9%10gL _ (M1 M2
’ ¢ 9

.01 0'2 ~3p
oel, - ™ 1 2 2
3o 207 20 2)2 : "
: 1 1 3(01) 20, 0o
n _
por i B0, T TOUNTC I A U YOS
207 20, "20, “V2i 3(05)2 20% cg 2

Also
2
9 logL
5.2 = 0
861802
and




So the equations corresponding to (6) are

02 02 ' :
A 172 dlogL (24)
L 7. 2
n101+n202 ou
~2 2 204 i
oy =0y = 1 9logL ‘ (25)
4 362
1
~2 2 _ 20, '
02 - 02 = 2 alogL : (26)
) o
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(y,~W)
to the expectation corresponding to (12) which is

~ 2 N 2
E[EU$ _ Oﬁ) 9 10§L . (Oi _ 03)8 13g§}+ %ME(O -G ) E[3° logL é]
dudo oud (0 )

~2 _ 9~ logL A 9 logl
+EE 0)(0 O] [uac%:] 2 2) E[ua(o {[ (27)

Using (25), (26) and the derivatives of the log likelihood, (27) turns

~ ~

out to be zero. So for initial estimates U% and 0% the resulting initial

estimate of U is

~ ~

The ‘'natural' initial estimators to take for 0% and Ug would seem to be

2 1

- - .2
2y - y)"  end a1 2y - vy

n1—1




10.

Strictly, of course, only the ratio of c% to Og is needed in (28),

The EMLE equation for G% is obtained by equating

n
ﬁs}_(pgz . _‘_z(y,l-u)
1

ac . 202 11’

g (a _ 3 1o L +'_ E(u ) E[? 9" logL L2 )|
) ’ auad au 3(0 )

which, using (24) and the derivatives of the log likelihood, turns out to be

2 .
-3 ™% (29)

2 2 2
01(n10‘2 + n201)

This contains o% which has to be replaced by o§ showing that d% is estimated

by equating

2 ~.2
_ n101 + Z(y1i p) to ] (30)

2
172
N |
n 2

04

N

This;gguation is intuitiveiy:plapsible.A Ihé»second saﬁple can only provide
inform%tién about the variance of the first distribution via {épfoving““

the éstimate of the mean. If n, is zero, or if the variability in the second
sample is huge, the right hand side of (30) becomes - G% and ; in (28) becomes

~

;1, so that the new estimate of cf is still G%. But if n, is extremeiy
large relative to n,, or Og negligible, then the right hand side of (30)

' " 2 .
becomes zero and the new estimate of 01 is

1 2
?1'12(Y1i - W
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Described a little loosely, it could be said the second sample has determined
M exactly, so that there is no loss of degrees of freedom in estimating

02

1 in the first sample.

Formulae similar to (29) and (30) hold for deriving a new estimate of

62 and then the estimate of U-can be updated via (28). The whole procedure

2
is computationally somewhat tedious, but even ML treatment of this example

would have required ﬂgterative computations.

The REML — restricted or residual maximum likelihood - procedure is
difficult to compare with EMLE in a general way, because REML seems to be only
defined for certain types of likelihood functions occurring in the interblock
analysis of experimental designs (Patterson and Thompson, 1971) and in certain

ARMA processes (Cooper and Thompson, 1977). If the log likelihood of y is

1 -
logL = constant - } log|H| - 4(y - xa) H 1(y - X0)

where x is a matrix of known constants, o is a vector of parameters to be

estimated and the elements of H are functions of another. vector 02 of parameters,

thgnﬁREMLlegtiﬁ%;esumby~maiimiéinglh”~ chgﬁlikelihood or joint distribution of

[CLECI LR LR

. o ’ . '
and then estimates 02 by maximising a 'residual likelihood' 'L defined as

B o
1ogL"='10gL - logL' ’

Now it is reasonably obvious that if the derivatives of L' w.r.t. o are

analagous to (17) so that the resulting o, are functions only of y, and if
L' 1s not a function of a, then the original likelihood must have been of the
form (20) with o for ¢ and 02 for Y. So REML would then just be EMLE, or ML

based on the conditional distribution in the case of 02 and on the marginal

~ "

distribution of o in the case of a. However, L ', considered as a function of
02, will usually be such that the derivatives equated to zero give equations for

o, that are functions of 02. REML surmounts this difficulty by replacing these




12.

by initial estimates. Similarly 0? estimated from L' will usually be a
function of Y. Yet applying REML to the example of this section
suggests that the procedure can still give EMLE estimates, at least in

some situations.

For the log likelihood (23), X is a vector of units and

/i
where I denotes the nxn identity matrix. The expression (31) is

2 - 2 -
0, ¥y ¥ 104y
22 2
P2 M0y
with log likelihood
202 n,0%40.0° |n 02§ +n 02§ 2
1 7172 7271 17271 27172 "
constant ——1og 5 -5 5 - 5 5 - H =L (32)
k1° 504 949, 040y * 10y

v, . no, . 2 2
Logl 1is (23) minus (32). L is a function of 01 and 02, as well as of

U, and equating the derivatives to zero gives

2

=

2 - 2 - -
(n1o2 ¥y + n,0) yz) | . (33)

- N

2
n102+n o

~ ~

To actually obtain an estimate 0% and G% need to be inserted and then

(33) becomes (28). Note that if (33) replaced u in (32), the second term

of that expression and its derivatives with respect to cf or 02 become zero.

Thus
L' at y=u is



RO

13.

. 6202
2 201 2 202 n1c72+n201
Differentiating w.r.t. 0% and simplifying gives
2 SN2 2 _ 1 '
-0y + Z(y12—u) = -0 1 ;f—gz~—— ‘ (34)
1.2+
™2 c:?‘

Now replacing cg by 02 gives (30). So at least in this example, EMLE and
REML coincide. This suggests there may be general computational methods
/s ’

for implementing EMLE other than the procedure described in Section 2 and

used in the first treatment of this example.
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