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OBTAINING EXPECTED MAXIMUM LOG LIKELIHOOD ESTImaTORS

DENIS CONNIFFE

The Economic and Social Research Institute, Dublin 4, Ireland

Abstract. This paper describes a widely applicable method of obtaining

expected maximum log likelihood estinmtors (EMLE). Approximate numerical

solutions are required Sn the most general cases, but exact algebraic

solutions are possible in special cases. It is shown that in an important

special case the EMLE solution coincides with ML as applied to conditional

likelihood¯ The method of restricted or residual maximum likelihood (REML)

is compared with EMLE by means of an example.

I Introduction

The likelihood L(8 x), where e and x are vectors of parameter variable and data

respectively, is not directly a function of the true parameter values e
o

However, the expected log likelihood is a function of O and e° and its maximum

Occurs at 0=0 . So determining the true value is the same as determining the
o

maximum of the expected log likelihood. Given regularity assumptions,

maximisation implies:

c~l°gL~ .=8. for all i and j. (I)
E~.~= 0, at ej jo

l

If there is only one component of e, this equation says that the expectation

of the derivative of the log likelihoDd is zero at the true value. Hence,

equating the derivative of the sample likelihood to zero and solving for 0
is a plausible way of estimating 00. Of course, it also maximises the sample

likelihood, so the estimate is the usual ML one. With multiple parameters, the

derivative for ei will usually be a function of other parameter variables besides



t

2.

8.. If these are replaced by estimates, perhaps obtained by equating other
l

derivatives to zero, ~ then, in general,

i

because the estimates differ from the true values. Then the values that

maximise the sample likelihood are not the same as estimates obtained by

equating functions of likelihood derivatives ~o the expectations they would

have at the true values of the parameters. This paper develops a generally

applicable method for obtaining the latter (EMLE) estimates.

Of course, it may be possible to manipulate from the likelihood equations
/

31ogL = %.(@x)
(2)

38° l
I

to the equations

(3)

so that @i may be estimated by equating ki to the expectation of Wi at 8o"

The expectation could involve parameters other than ei, but then estimates

could be inserted. If W. happened to be a linear function
l

then the expectations of W. would be zero and in fact EMLE and ML would
l

coincide. Examples Of EMLE solutions via the progression from (2) to (3)

were given in Conniffe (1987) for fairly simple cases. However, it is not certain

that unique algebraically explicit expressions for (3) can always be obtained

from (2), nor that exact expectations can be derived for the W.. Approximations
l

and numerical approaches are possible, but then it seems simpler to commence

the approximations at the stage of the initial equations (2).



o

2 Approximating Derivative Expectations

Suppose 0 has two components ~ and ~ and that an initial estimate ~ is

available. The derivative of the log likelihood w.r.t.~, evaluated at

, is approximately:

½ (~_~)2~ ~31ogL (4)

At the true values ~o~o, the expectation of the first term is zero. The

expectations of the second and third terms would depend on the composition

of ~, considered as a function of the sample data, but can be approximated

by the expectations of /

^ ~logL ^    2 ~31ogL (5)(~ - ~) ~8~ and ½(~-~) ~28~

where

^ 21ogL + c~_O~ (6)

and = -El ~2     ~ (7)

l_~21ogL    821ogLv

Assuming that the data consist of n independent values drawn from the

same distribution f(~x) the equation (6) is asymptotically valid for the

EMLE (or the MLE since they coincide asymptatically) estimator. So the

expectation of the first term of (5) is:

or n(V~.MIo010 + C M0101O) (8)

where

Mijk%m

°,



The expectation of the second term of (5) is

~f~ 31ogL~ ^ ~ 31ogL1iv4 Icov 2,

Us ing

~ 31ogL \

the expectation of the first term of (9) is

-in V¢(2MI0010 - M01100 -M2100O)

(9)

(10)

The expectation of the second term of (9) is

~2~logf~2 + 2V�C ~logf ~logf + C2/~logf~2 8 31ogf]
in Cov ¢ IT/ .    84 / ~     q-8~ /’ 8428~’_J (11)

From (7) it is clear that V¢ and C are O(~) so that (8) and (10) are

0(I), but (11) is 0(~). So (11) will be treated as negligible in

comparison to the other terms. Combining terms gives the approximate

expectation

n[C M01010 - ½V¢(M01100 + M21000)] (12)

By equating

81ogL ~(¢ x) (13)

to (12), which is approximately the expectation it would have at ~=~o’

an equation is obtained for 4. If (12) is a function of ¢o as well as of

~

Co, the estimate ¢ must be substituted for it.

~

Given an initial estimate ~, an equation for ~ can be obtained by

equating

81ogL    ~
8¢ (~ ~ x)

(14)

to the result corresponding to (12), which is

/

n[C MI0010 - iV~(MI0001 + M12000)] (15).
°,
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°

Alternatively, the result for ~ of equating (13) to (12) could be taken

as ~ and used in (14) and (15) to obtain a new ~ which could be inserted

again in (13) and (12), so definingan iterative process.

The procedure to generalise the approach to any number of parameters

is obvious in principle and not mathematically difficult in practice.

But the expressions, especially the ’M’ terms, quickly become very clumsy;

indicating the need for a more concise, though perhaps less transparent,

notation.

It may be useful to restate what has been done in the steps from (4) to

(12) and (13). The kndwledge that the expected values of derivatives of the
/

log likelihood are zero at the true values of parameters does not (except

in very large samples) justify replacing one parameter in the derivative by an

estimate and solving for the other parameter by equating to zero. But since

the derivative at the estimated value can be related to the derivative at the

true values by the approximation (4), the non-zero expectation to which the

former derivative ought to be equated can be deduced, at least approximately.

The procedure adopted here resembles that used in deriving corrections for

the biases of ML estimators [see, for example, Cox and Hinkley (1974), Chapter 9].

3 An Important Special Case and Conditional Likelihood

If one of the derivative equations, say for ~, takes the form

= AG(~ x) (16)

where A is not a function of x, it follows that

E[G(~ x)] = 0

and ~ may be estimated by just equating G(~ x) to zero and solving for ~.

But it is then also true that



o

and

El ~31°gLl ~A E/~G~

So C in (6) is zero and final expressions simplify considerably.

particular, if (16) takes the form

~log.___~L = A(~)(;-~)
(17)

associated with suitably parametrised distributions belonging to the

exponential family, (4) becomes
/

2~logL ~    2 dA (~ _~) dA

~ (~x) + (~-~) ~-½ d-~

with expectat ion

~V dA     I dA~ - ½~ ~ (18)

Note that with the form (17), there is no need to distinguish ~ and

since (6) holds for ~. For a vector of parameters ~, so that A in

(17) is a matrix, the generalisation of (18) is easily seen to be

½Tr (A- 1 HA

~) (19)

The EMLE approach will not always provide an estimator of 4, given

~. The form (17) corresponds to

~     2
log L = -½A(~)(~ - ~) + B(~ x)

But if B is not a function of x

2
~logL = _½dA ~ dB
~ ~ (~-+) + d-~



o

So that, evaluated at ~, the derivative is just a constant which, of

course, equals (18). For x to provide information about a parameter it

is obviously necessary that the distribution of x depend on the parameter,

but this is not sufficient. The derivative (13), or the ki in (3), must

be a function of x. The case may seem trivial but it is related to an

important result. Suppose

L (~x) = k(~x ]~)g(~) (20)

so that

~logL_ 81og $

~logL _ ~log k + ~log g

and further suppose

~      2
log g = -½A(~)(~-~) + B(~)

The EMLE method equates

~logL (~ ¯ 1 ~dAto (21)

from (18). But

81og g dA T 2 dB
= -½ (~-~) +-- (22)

~ ~ d~

so at ~ this derivative equals the second term on the right hand side

Of (22). But since the expectation of (21) must be zero at the true

values as g is a marginal likelihood

dB IdA=

Since the distribution conditional on ~ is assumed in (20) not to be

a function of ~ the derivative of log k is unaffected by replacing ~ by ~.

So (21) reduces to equating

°"



to zero. That is, EMLE on the joint likelihood (20) gives the same result

as ML on the conditional distribution of x given ~. Remembering the small

sample optimality sometimes attained by E~E [Conniffe (1987)], this may

explain why inference based on a conditional likelihood is sometimes claimed

to have advantages over inference based on a joint likelihood.

4 An Example of EMLE and of REML

2    2
Consider the problem of estimating the parameters ~,O1 and O2 given

independent samples of sizes nl and n2 from two normal distributions

with the same mean. The log likelihood, apart from a constant, is
i

n2
-nl 2 ~2 n. n2 ~     2 ~ y. (Y2i ~) 2

2 log 01,.vI       " ZI (Yli 2--    02 202 i=I
--

-
- ~) 2~-     log    + --

i=I
(23)

31ogL n!    n2

n~ n2)
3~ = 2 (YI-O)+~ (Y2-~)    ’321°gL

.01 02 -’3~2 = _    + --~ 02

-n2 I

302 = 20~ +20--42 Z(Y2i-~/)2
~21ogL     a2 I y. (Y2i_~) 2

6
a2

Also

321°gL = 0
2 2

3~1302

and

E 0



o

So the equations correspgnding to (6) are

2 2
^ O1 02 ~logL

- ~ = " 2 2 ~
nlo1+n2o2

(24)

A
^2    2     2o~
02 - 02 =

Z ~logL

n2 ~0~

(25)

(26)

The EMLE equation for ~ is obtained by equating
/

"202~2) = nl n2~logL (~ 0"1
(~I_B)+ __ (~2_~)

01 022 .

to the expectation corresponding to (12) wh$ch is

^                                    ^2

E~;~ - O~) ~21°gL + (O~- O~)~21°gL]+ I E(01. - (~)2 EE~31°gL

~31ogL ~ 1 ^2        ~-~31°gL 2~
(27)

Using (25), (26) and the derivatives of the log likelihood, (27) turns

~2 ~2
out to be zero. So for initial estimates 01 and 02 the resulting initial

estimate of ~ is

~      I
~=

~2 ~2
(n102 Yl + n201 Y2~)

~2 ~2
The ’natural’ initial estimators to take for 01 and 02 would seem to be

1_J___ T.(Y21 _ ~2)2I Y.(Yli - 71)2 and n2_I
n1-1
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2 is obtalned,by equating
The EHLE equation for 01

tO

E

whlch, using (24) and the derivatives of the log likelihoo~ turns out to be

-½ nl°                                                          (29)
2 2     2

01(n102 + n2o1)

;~ 2 is estimated2 which has to be replaced by    showing that ~I
This contains 02

by equating

2
--niO1 + Z(Yli -

to 21 ,)"-°"I
nl ~

2 oI

(30)

Thisequation is intuitively+plausible. Thesecond sample can only provide

information about the variance of the first distribution via improving

the estimate of the mean. If n2 is zero, or if the variability in the second

2 and ~ in (28) becomes
sample is hug~the right hand side of (30) becomes - OI

-                                 2 is still ~2
YI’ so that the new estimate of 01            ~I" But if n2 is extremely

large relative to nI, or ;~ negligible, then the right hand side of (30)

2 is
becomes zero and the new estimate of OI

I p)2
nlE (Yli -
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Described a little loosely, it could be said the second sample has determined

exactly, so that there is no loss of degrees of freedom in estimating

2 in the first sample.
UI

Formulae similar to (29) and (30) hold for deriving a new estimate of

02 and then the estimate of ~-’can be updated via (28). The whole procedure

2
is computationally somewhat tedious, but even ML treatment of this example

would have required ~terative computations.

The REML - restricted or residual maximum likelihood - procedure is

difficult to compare with EMLE in a general way, because REML seems to be only

defined for certain types of likelihood functions occurring in the interblock

analysis of experimental designs (Patterson and Thompson, 1971) and in certain

ARMAprocesses (Cooper and Thompson, 1977). If the log likelihood of y is

IoEL = constant - ½ loglH] - ½(y - x~)’ H-j(y - x=)

where x is a matrix of known constants, ~ is a vector of parameters to be

estimated and the elements of H are functions of another vector 02 of parameters,

¯ . maX    ~ " " " "~ ...... ’: ~’’ :    ¯then REML-estim~es a.by . imislngL,":-:;,*:the qikel£hood or joint distribution of

¯ | .

and then estimates 02 by maximising a ’residual likelihood’ L defined as ~:

v’~ qli :
logL = logL - logL

t;
Now it is reasonably obvious that if the derivatives of L w.r.t. ~ are

analagous to (|7) so that the resulting ~ are functions only of y, and if

L’ ms not a function of =, then the original likelihood must have been of the

form (20) with a for ~ and 02 for ~. So REML would then just be EMLE, or ML

based on the conditional distribution in the case of 02 and on the marginal

distribution of ~ in the case of ~. However, L , considered as a function of

02 , will usually be Such that the derivatives equated to zero give equations for

that are functions of 02.    REML surmounts this difficulty by replacing these
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by initial estimates. Similarly o2 estimated from L’ will usually be a

function of ~. Yet applying REML to the example of this section

suggests that the procedure can still give EMLE estimates, at least in

some situations.

For the log likelihood (23), x is a vector of units and

H

2
01 I

nI

0

M

0

2
°21n2

-I =
H

where I n
denotes the nxn identity matrix.

2       2
n102 71 + n201 72

:2 2
¯ n102 + n201

m

--2 In I O
OI

O I
--2 In2
02

The expression (31) is

with log likelihood

2 2 ~. 27-    2- ~ 2

I n102+n201 1°2 I + n201Y2
= L"

2 -~-~7 --     2 -
~102 LnIO2 + n201

, ,, "2 and 2LogL is (23) minus (32). L is a function of O1
~2’ as well as of

~, and equating the derivatives to zero gives

(32)

~      1        2 2
- 2 2 (n102 Yl + n201Y2) (33)

nlo2+n201

To actually obtain an estimate_    and 02 need to be inserted and then

(33) becomes (28). Note that if (33) replaced ~ in (32), the second term

2 2 become zeroof that expression and its derivatives with respect to 01 or 02

Thus
!

L at ~ =~ is
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2const -__nl log ~I

2

I 7 m n2
2 ~

Y(Yli-~)2"’~ ° log 02
T

2 and simplifying givesDifferentiating w.r.t. ~I

-nlcrl + r’(Yl -°’l
nl c~2 + 1
n2 2

I y.(Y2i_~) 2

2 22
+ -~. ~og 1o.~+n 2o.I

(34)

Now" replacing (~22 by ~2 gives (30). So at least in this example, EMLE and
J

REML coincide¯ This suggests there may be general computational methods
/

for implementing EMLE other than the procedure described in Section 2 and

used in the first treatment of this example.
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