THE ECONOMIC AND SOCIAL RESEARCH INSTITUTE

Memorandum Series No. 177 .

A BASIC INPUT-OUTPUT MODEL OF CAPACITY GROWTH, WITH RECURSIVE SOLUTION AND NUMERICAL ILLUSTRATION

E. W. HENRY

A BASIC INPUT-OUTPUT MODEL OF CAPACITY GROWTH, WITH RECURSIVE SOLUTION AND NUMERICAL ILLUSTRATION

Author: E. W. Henry, The Economic and Social Research Institute 4 Burlington Road, Dublin 4 , Ireland.

Date: 28 November 1988

Abstract

A basic input-output model of sector output capacity growth is proposed, having a solution through backward recursion from known capacities of a terminal year T. A non-singular square matrix is found, linking capacity expansion $\Delta x_{T}-1$ with known capacity differences derived from years T and (T-1). This matrix might be termed the "Capacity Inverse", for its resemblance to the Leontief Inverse of the open static model. Detailed numerical illustration and verification are provided, using Irish $12-s e c t o r d a t a \operatorname{and}$ "contrived" structures for which the numerical answers are known, for comparison with.model solutions. some economic interpretations and conclusions are proposed.

Contents Page

1. Introduction and background 3
2. The model, with solution by backward recursion 5
3. Numerical illustration of the model, using Irish 1982 12-sector data 16
4. Economic interpretation and conclusions 24
5. References 28
Tables;
6. Irish 1982 12-sector transactions, at approximate basic values 12
7. Leontief inverse $\left(I-A_{82}\right)^{-1}$ derived from Table 1 12-sector structure 13
8. Sector outputs x and changes Δx 14
9. B-matrix and domestic GFCF for capacity expansion Δx_{81} and Δx_{82}, excluding capital goods imparted.. 16
10. The $\left[I+\left(I-A_{82}\right)^{-1} \mathrm{~B}_{82}\right]$ matrix, referred to in the text as the $(I-C)^{-1}$ capacity inverse 17
11. The $\left[I+\left(J-A_{82}\right)^{-1} \mathrm{~B}_{82}\right]^{-1}$ matrix, referred to in the text as the (I-C) capacity matrix 18
12. Final demands, and (I-A)-1 ynon, for 1981, 1982 and 1983
13. Model results for $\Delta x 81$ and Δx_{82} compared with actual values, and Model iterative results for x_{81} at 1982 prices22

During 1985-86 the author did input-output (10) modelling work for the Industrial Development Authority (IDA Ireland) on economic projections, exports, and so on, for the Irish economy. The question arose as to how output capacity of various sectors could be determined consistently for some or all years between a base-year structure and a terminal year for which a full economic structure had been projected and finalised. The problem was therefore expressed in terms of sector output capacities. The paper which follows presents and verifies numerically the basic and rudimentary model solution proposed by the author.

The model solves the problem by backward recursion from terminal year T fully specified. Required data for each intermediate year t are the A_{t} matrix, the Bt matrix, and ytnon which is final demand (or final output) not required for capacity expansion. These symbols aredescribed and explained in Section 2 following. The model is, of its nature, similar to Dynamic Input-output models, but is a rather basic and simple version of such models. There is backward recursion only, without advertence to forward recursion, in the model solution. The emphasis is on sector output capacity, as distinct from output as such. The solution found is very much a particular rather than a general solution. Starting from a definite and complete structure for terminal year T, as first base, the model finds a consistent structure for year (T-1), and then for year
(T-2), using that of year (T-1) as base, and so on backwards to any earlier year ($\mathrm{T}-\mathrm{k}$).

The author is aware of a large and growing literature on dynamic $I 0$ modelling. Four selected publications of the period 1976-1988 give some indication of the scope and sophistication of the work being done. The Miller and Blair (1985) textbook devotes part of Chapter g to dynamic modelling, including problems of instability of solutions in forward recursion, with numerical illustration. Livesey (1976) finds a solution of the dynamic Leontief lo model for matrix B having rows of zero elements, by partitioning and transforming the B-matrix. The Leontief and Duchin (1984) report has a very informative Chapter 2 on the history of the dynamic $I 0$ model and various problems with solutions, as well as a methodology of multi-period capital gestation and of allowance for unused capacity, in forward recursion. szyld (1988) considers the existence of positive solutions to the dynamic 10 model when moving forward in time, depending on the initial structure lying on the so-called "balanced growth path".

In the face of so much work, the reader may reasonably ask what the author has to offer, by way of a useful model or application? Two features of the model proposed below may be novel - the author has not seen them in the mainstream literature, as published.

The first feature is the manipulation of the capacity growth formula, whereby capacity expansion Δx r-1 can be
expressed by application of abost matrix inverse to a known capacity difference, namely output capacity $\begin{gathered}\text { f }\end{gathered}$ non
year T, less required capacity X_{T-1} of year ($T-1$) to provide outputs other than those for capacity expansion. The output capacity X_{T} is postulated, as the start of backward recursion through year (T-1), year (T-2), and so an.

The second feature is the "Capacity Inverse" solution to the per-unit capacity expansion, an interesting parallel to the Leontief inverse solution to the per-unit final demand growth of output in the open static model. The term "Capacity Inverse" is proposed by the author as a description of the square matrix showing main characteristics of the usual (I-A)-1 Leontief Inverse. The detailed numerical illustration is intended to enable readers to verify results for themselves. The wider implications of the "Capacity Inverse" have not been discussed, to avoid undue length.

The following parts of the paper address major aspects. Section 2 gives algebraic formulation of the model, with description of symols, and solution for $\quad x_{T-1}$, given x_{T}. Section 3 provides a numerical illustration of how the model works, using as core a 12-sector 1982 Irish transactions table. Section 4 offers economic interpretation and conclusions, one conclusion being that the model as proposed is not usable for forward recursion.
2. THE MODEL, WITH SOLUTION BY BACKWARD RECURSION

We assume a capacity growth period covering years 1 to T, year T being the terminal year. A year g, before the
beginning of the growth period, will also have relevance in the discussion of section 4 below. We may assume valuation at approximate basic values, and at constant prices of some year (say 1980). The basic equation of the Model for typical year t, at constant prices, is $x_{t}=A_{t} x_{t}+B_{t} \Delta x_{t}+y_{t}^{n o n} \quad ;$
The variables and symbols are as follows:
x_{t} is the vector of sector gross output capacities of n sectors, during year t :

At is the inter-industry direct input coefficient matrix, which might include household income rows and household expenditure columns, of dimension (n, n).
$B_{t} \quad$ is the matrix of capital flow coefficients of year t, also of dimension (n, n), typically including rows of zero coefficients. The Bt investment is towards capacity expansion for year ($\mathrm{t}+1$), not for year t , for capital projects over several years (such as electric power stations), Bt includes those parts (per unit output) completed in year to permit capacity expansion in year (t+1). Parts constructed in earlier years are included in yt-1, yt-2, yt-3, and so on, in proportion to the value of $B_{t} \Delta x_{t}$ when the latter becomes known.
Δx_{t} is the growth of sector annual output capacity $\left(x_{t+1}-x_{t}\right)$, between year t and year $(t+1)$, of dimension n. At constant prices, $x_{t}, x_{t+1}, \Delta x_{t}$ denote required capacity or capactiy expansion. Unles s
otherwise indicated, the system is assumed to work at maximum efficiency of capacity utilisation, meaning that capacity equals output in year t, and is measured by output x_{t} at constant prices.
is " "exogenous" final demand, axciuding capital formation in. year t to permit capacity expansion Δx_{t} for year ($\mathrm{t}+1$), but including prior investment such as electric power stations during years before their year of completion. Thus y $\mathrm{y}_{\mathrm{t}} \mathrm{n}_{\mathrm{in}} \mathrm{ncludes}$ some gross fixed capital formation, as well as exports of goods and services, Gavernment current expenditure, inventory changes, and perhaps some or all of household expenditure on consumers' goods and services. It can also include replacement investment, to counteract scrapping of fixed assets.

All of $x, \Delta x, y, A, B, \quad$ comprise domestic flaws only, for imports excluded. Equation (2.1) says that domestic output x_{t} supplies inter-industry inputs A^{x}, also supplies "exogenous" final output $y_{t}^{\text {non }}$, as well as supplying gross fixed capital formation $B \Delta x_{t}$ to permit capacity expansion Δx_{t} for year $(t+1)$, available at the end of year t. And Equation (2.1) is to be interpreted as output capacity, as well as output as such, for full capacity utilisation.

Solution of the system by Backward Recursion
A complete solution will now be outlined, to comprise solving terminal year T first, then solving year ($T-1$), and so on, back to year 1. For each year, a satisfactory solution
of the Equation (2.1) system is required.
To solve year T, some feasible or typical growths of sector output capacities might be assumed for year (T+1), such as 1 per cent for agriculture, 10 per cent for engineering. Thus, we may express Δx_{T} in terms of x_{T} as

$$
\begin{equation*}
\Delta X_{T}=\hat{\lambda}_{\mathrm{T}} x_{\mathrm{T}} \tag{2.2}
\end{equation*}
$$

$\hat{\lambda}$ being a diagonal matrix of dimension (n, n) having zero entries except for the diagonal. These diagonal locations or elements might have the typical growth rates mentioned, such as $\quad 01$ for Agriculture sector (1) in diagonal location $(1,1), 0.10$ in Engineering sectar (18) diagonal location (10,1ø), and so on. For no expansion of capacity permitted, $\hat{\lambda}_{T}$ would be zero everywhere.

In terms of year T and growth rates $\hat{\lambda}_{T}$, Equation (2. 1) becomes

$$
\begin{equation*}
\left(I-A_{T}-B_{T} \hat{\lambda}_{T}\right) x_{T}=y_{T}^{n o n} \tag{2,3}
\end{equation*}
$$

The solution, in typical "Leontief-Inverse" form is
$x_{T}=\left(I-A_{T}-B_{T} \hat{\lambda}_{T}\right)-1 y_{T}^{\text {non }}$
where 1 is the unit matrix of dimension (n, n). To solve for year ($\mathrm{T}-1$), an algebraic ruse is required. We first look at basic Equation (2.1) for year (T-1):

$$
\begin{equation*}
x_{T-1}=A_{T-1} x_{T-1}+B_{T-1} \Delta x_{T-1}+y_{T-1} \tag{2,5}
\end{equation*}
$$

The algebraic manipulation has two components:
(a) Express Δx_{T-1}, as $\hat{\lambda}_{T-1} x_{g}$, thus free of x_{T} and x_{T-1}, for $\hat{\lambda}_{T-1}$ elements unknown but $x g$ known.
(b) Replace the left-hand-side (LHS) of (2.8) belaw, $x_{\mathrm{T}} \mathrm{f}-1$ by $\dot{x_{T}}-\Delta x_{T-1}\left(=x_{T}-x_{T}+x_{T-1}=x_{T-1}\right)$, thus the LHS of
(2.8) below becomes $x_{T}-\hat{\lambda}_{T-1} \times g$.

Making these substitutions leads to

$$
\begin{align*}
& x_{T-1}=A_{T-1} x_{T-1}+B_{T-1} \hat{\lambda}_{T-1} x_{0}+y_{T-1} \tag{2.6}\\
& \left(\mathrm{I}-\mathrm{A}_{\mathrm{T}-1}\right) x_{\mathrm{T}-1}=\mathrm{B}_{\mathrm{T}-1} \hat{\lambda}_{\mathrm{T}-1} x_{\mathrm{G}}+\mathrm{y}_{\mathrm{T}-1}^{\mathrm{non}} \tag{2.7}\\
& \mathrm{x}_{\mathrm{T}-1}=\left(\mathrm{I}-\mathrm{A}_{\mathrm{T}-1}\right)^{-1}\left(\mathrm{~B}_{\mathrm{T}-1} \hat{\lambda}_{\mathrm{T}-1} x_{\square}+\mathrm{y}_{\mathrm{T}-1}^{\mathrm{non}}\right) \tag{2.8}
\end{align*}
$$

Now we modify the LHS of (2.8):
$x_{T}-\hat{\lambda}_{T-1} x_{\emptyset}=\left(I-A_{T-1}\right)^{-1} B_{T-1} \hat{\lambda}_{T-1} x_{\emptyset}+\left(I-A_{T-1}\right)^{-1} y_{T-1}^{\text {non }}$

This, rearranged, gives
$x_{T}-\left(I-A_{T-1}\right)^{-1} y_{T-1}^{n o n}=\left[1+\left(1-A_{T-1}\right)^{-1} B_{T-1}\right] \hat{\lambda}_{T-1} x_{\emptyset}$
with all the LHS known.

It follows that

$$
\begin{equation*}
x_{\mathrm{T}-1}=x_{\mathrm{T}}-\hat{\lambda}_{\mathrm{T}-1} x_{\emptyset} \tag{2.12}
\end{equation*}
$$

The LHS of (2.11) is, of course, Δx_{T-1}. This needs to be subtracted from x_{T}, to give x_{T-1}, per Equation (2.12). The first term of the right-hand-side (RHS) of (2.11) is likely to have an inverse, because of I forming the diagonal, apart from generally small entries elsewhere. The numerical illustration below shows that no problems of inversion need occur. The form of the first terms on the RHS of (2.10) and (2.11) will be considered in Section 4. below.

By further recursion, one can move back to year (T-2), and so on. There is no condition of constant technology imposed on the A and B matrices, which may change from year to year, if required to. Once Δx_{T-1} is known, the prior investment entries for power stations, etc, can be entered

The solutions thus obtained for x_{T} and x_{T-1} have a clear meaning, provided that sector outputs generally increase from year ($T-1$) to year T to year ($T+1$). The capacity expansion by way of $b \Delta x_{T-1}$ and $B \Delta x_{T}$ has then an unambiguous meaning. But if any elements of, say, $\Delta x_{\mathrm{f}} \mathrm{f}-1$ are negative, then the solution Transactions Table structure includes negative gFCF columns, which imply full redistribution of spare capacity so that no idle capacity occurs. One solution of this difficulty is to replace such negative elements of B $\Delta x^{\prime} T-1$ by zero, meaning we carry excess capacity into year T. The revised transactions table for year (T-1) has corresponding zero GFCF columns, to give a revised and larger value of vector x d-1. But this means revised and smaller $\Delta x q^{\prime}-1$, for $\quad x_{T}$ constant; thus some iteration is required before a final Transactions structure for year ($T-1$) emerges. This aspect is illustrated below in the numerical examples, which provide numerical verification of the model for Δx_{t} all positive, and for Δx_{t} having both positive and negative elements.
3. Numerical illustration of the model, using irish 1982 12-SECTOR DATA

Numerical testing and verification of the Model of Section 2 are now described, in what follows. The core of the data base comprises a 12-sector 1982 Irish input-output (10) structure derived from Tablé5.6 of Henry (1986). From contrived total final demands for 1981 and 1983 , at 1982 approximate basic values, sector outputs for 1981 and 1983
are derived by means of the 1982 Leontief Inverse (I-A82)-1. These total final demands are contrived so as to give $\Delta \times 81$ having positive and negative elements, whereas $\Delta \times 82$ has positive elements only.

We therefore know the answers in advance. We know x_{81}, x_{82}, x_{83}, so we have Δx_{81} and Δx_{82}. By means of a B-matrix applied to Δx_{81} and Δx_{82} we can get the aggregate gross fixed capital formation (GFCF) part of final demand required for capacity expansion. This aggregate GFCF for 1981 is the net result of positive and negative capacity expansion, through positive and negative Δx_{81} elements, respectively. For 1982 , all capacity expansion is positive, since allelements of Δx_{82} are positive. The non-capacity final demand shares yon and yon comprise total final demand less (net) aggregate GFCF for capacity expansion.

From this available information, we ask the model to estimate Δx_{81} and Δx_{82}, so that we may compare them with the actual values. The full data set is shown, as Tables 1 to 8 , to enable readers to verify results on their own computers, if they wish. In view of so much tabular material on display, a minimum of verbal description is required. The following discussion first looks at the build-up towards the Δx estimates, covering Tables $1-7$; then the Δx estimates themselves are considered as appearing in Table 8 .

Data Preparations (Tables 1 to 7)
Table 1 shows Irish 1982 12-sector transactions, at 1982 approximate basic values. Domestic flows (excluding all

Table 1: Irish 1992 :2-Sector Transactions at Approxiaate Basic Values,fnillion, current

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sectors \& \begin{tabular}{l}
Energy \\
(1)
\end{tabular} \& \begin{tabular}{l}
Agriculture forestry \\
- fishing \\
(2)
\end{tabular} \& \begin{tabular}{l}
Food \\
drink tobacco \\
(3)
\end{tabular} \& \begin{tabular}{l}
Clothing, footweer, textiles. \\
(4)
\end{tabular} \& Hood, рарег, Misi. Merufact. (5) \& \begin{tabular}{l}
Chenicals \\
(6)
\end{tabular} \& \begin{tabular}{l}
Von- \\
melailic \\
winerals + \\
mining \\
(7)
\end{tabular} \& Engineering
(8) \& Construction
(9) \& Transport

(10) \& Comarce

(11) \& Public + professionial \& \begin{tabular}{l}
Total

Inter

 \&

Total

Final

 \&

Total

Output
\end{tabular}

\hline Energy (1) \& 155.5 \& 46.0 \& - 37.0 \& 11.0 \& 13.0 \& 26.0 \& 32.0 \& 31.0 \& 10.0 \& 11.0 \& 42.3 \& 34.7 \& 451.5 \& 467.0 \& 918.5

\hline Ag, for, fish, (2) \& \& 24.0 \& 1,464.2 \& \& 2.1 \& \& \& \& \& \& 1.1 \& 0.9 \& 1,492.3 \& 712.7 \& 2,205.0

\hline Food, drimk, tob. (3) \& \& 247.0 \& 824.0 \& 28.2 \& \& \& \& \& \& \& 9.8 \& 8.2 \& 1,117.2 \& 3,021.8 \& 4,137.0

\hline Clütio, fứtw. text (4) \& \& \& \& 23.2 \& 0.7 \& \& \& \& \& \& \& \& 23.9 \& . 585.1 \& 609.0

\hline Wedet, paper, wisc., (5) \& \& \& \& \& 92.1 \& \& \& \& 27.0 \& \& 10.9 \& 9.1 \& 141.1 \& 745.9 \& 337.0

\hline Chenicals (6) \& \& 58.0 \& 3.6 \& 2.5 \& \& 56.6 \& \& 43.3 \& \& \& 2.8 \& 2.2 \& 169.2 \& 963.8 \& 1,i58.0.

\hline | Nuf-metallic |
| :--- |
| hinerals + sining | \& \& 9.0 \& \& \& - \& \& 98.6 \& \& 332.9 \& \& 1.1 \& 0.9 \& 442.5 \& 239.5 \& 682.0

\hline Enoineeritg (8) \& 2.0 \& 51.0 \& \& 5.7 \& 2.3 \& 9.2 \& 5.5 \& 128.9 \& 116.0 \& 50.0 \& 12.6 \& 10.4 \& 393.6 \& 2,327.4 \& 2,721.0

\hline Construction (7) \& 7.0 \& \& 17.0 \& \& \& \& 4.0 \& \& 317.1 \& 17.0 \& 10.7 \& 7.1 \& 332.1 \& 1,731.9 \& 2,364.0

\hline Transport (10) \& \& 44.0 \& \& \& \& \& \& \& 109.0 \& \& 13.3 \& 3.7 \& 170.0 \& 662.0 \& E32.0

\hline Cownerce (i1) \& 4.6 \& 292.3 \& 88.0 \& 39.4 \& 21.5 \& 47.6 \& 61.1 \& 175.1 \& 135.6 \& 2.7 \& 25.4 \& 9.7 \& 903.0 \& 2,720.0 \& 3,831.0

\hline Fublic + Frof. (12) \& 0.4 \& 33.7 \& 10.0 \& 4.6 \& 2.5 \& 5.4 \& 6.9 \& 17.9 \& 15.4 \& 0.3 \& 2.1 \& 1.8 \& 103.0 \& 2,292.0 \& 2,395,0

\hline TOTAL INTER \& 169.5 \& 805.0 \& 2,445.6 \& 114.6 \& 134.2 \& 145.0 \& 203.1 \& 378.2 \& 1,055.0 \& 81.0 \& 132.3 \& 90.7 \& 5,739,4 \& 16,952.1 \& 22,741.5

\hline TOTALL IRPUT \& 918.5 \& 2,205.0 \& 4,139.0 \& 609.0 \& 837.0 \& 1,150.0 \& 682.0 \& 2,721.0 \& 2,364.0 \& 932.0 \& 3,831,0 \& 2,395.0 \& \& \& 22,741.5

\hline
\end{tabular}

Source: Table 5.6 of henry (i986).

13

Table 2: Leontief Inverse (I-Aez) ${ }^{-1}$ derived fron Table 1 12-Sector Structure

Sectors		Energy (I)	Agriculture (2)	Foud (3)	Clothing (4)	Wood (5)	Chemicals (b)	HenMetall. (7)	Engineering (8)	Construction (9)	Transport (10)	$\begin{aligned} & \text { Conifi- } \\ & \text { erce } \\ & \text { (111) } \end{aligned}$	Fublic (12)
Energy	(1)	1.20412	. 03260	. 02712	. 02535	. 02028	. 02725	. 06799	. 01596	. 02010	. 01734	. 01375	. 01773
Aqric.	(2)	. 00001	1.05450	. 47023	. 02276	. 00288	. 00008	. 00019	. 00012	. 00020	. 00002	. 00153	. 60203
Food	(3)	. 00003	.14743	1.31468	. 06356	. 00056	. 00017	. 00042	. 00027	. 00036	. 00004	.00344	. 00458
Clothing	(4)	0.	0.	0.	1.03960	. 00092	0.	0.	0.	. 00001	0.	0.	0.
Hood	(5)	. 00017	. 00058	. 00044	. 00028	1.11597	. 00017	. 00051	. 00026	. 01618	. 00036	.00325	. 00432
Chemicals	(6)	. 00006	. 03017	. 01451	. 00543	. 00016	1.05177	. 00028	. 01764	. 00117	. 00109	. 00089	. 00112
Mon-metall.	(7)	. 00176	. 00547	. 00345	. 00027	. 00007	. 00009	1.17053	. 00010	. 19067	. 00373	. 00093	. 00122
Enginearing	(8)	. 00338	. 02830	. 01301	. 01126	. 00330	. 00705	. 01101	1.05023	. 06511	. 06450	. 00397	. 00506
Constr.	(9)	. 01065	. 00212	. 00711	. 00082	. 00027	. 00043	. 00895	. 00041	1.15797	. 02384	. 00355	. 00464
Transport	(10)	. 00052	. 02188	. 01005	. 00076	. 00017	. 00018	. 00081	. 00027	. 05372	1.00113	. 00367	. 00182
Commerce	(11)	. 00708	. 14727	. 09327	. 07330	. 02805	. 04433	. 10725	. 06874	. 08908	. 00933	1.00770	. 00540
Fublic	(12)	. 00064	. 01717	. 01068	.00853	. 00325	. 00502	. 01209	. 00782	. 01007	. 00105	. 00667	1.00070

14

Table 3: Sector Outpucs x and Changes Δx fmillion at 1982 prices

imports) are shown, as well as total intermediate output, total final demand, and total output, same as total input. The total inter-industry input shows very small shares of total input for sectors (10) to (12), a possible source of "noise" in the system of twofold matrix inversion, for which single precision was used, as part of the test.

Table 2 shows the Leontief Inverse (I-A82)-1 derived from Table 1 12-sector inter-industry transactions.

Table 3 shows sector outputs x for 1981,1982 and 1983 , as well as derived Δx_{81} and $\Delta x_{8} 2$. We see that sectors (6) to (8) have negative elements in Δx_{81}, whereas all the elements of Δx_{82} are positive. The sector outputs x_{81} and $x_{8} 3$ were obtained by post-multiplying Table 2 Leontief Inverse by the total final demands of 1981 and 1983 , shown in Table 7 calumns (3) and (7), respectively. All autputs are ta be thought of as capacities.

Table 4 provides the data for the $B-m a t r i x$ and derived GFCF of capacity expansion during 1981 and 1982 . The four domestic non-zero rows of the B-matrix occupy the upper portion of the Table. The coefficients for imported capital goods, per f unit of sector output capacity, also appear, although not used by the model. The B-matrix therefore has eight zero rows. The basic data for the capital coefficients appear in a Henry (1989) forthcoming study of Domestic Wealth in Ireland. We see very large coefficients for construction. row (9) capital input per unit of capacity output. This row (9) might be spread over several years (re. electric power

Tatle 4: 8-Matrix and GFCF* Domestic for Capacity Expansion $\Delta \mathrm{x}_{81}$ and $\Delta \mathrm{x}_{82}$, Excludind Capital Goods Imported

* GrCF is fross Fixed Capital Formation

Table 5: the $\left[I+\left(I-A_{B 2}\right)^{-1} \mathrm{E}_{82}\right]$ Matrix, referred to in the text as the (I-C)-1 Capacity liverse

Sectors	Energy (1)	Agriculture (2)	Fưod (3)	Clothing (4).	Wood (5)	Cheriicals (6)	NonMetall. (7)	Engineering (8)	Construction (9)	$\begin{aligned} & \hline \text { Trans- } \\ & \text { port } \\ & (10) \end{aligned}$	Comiti- erce (i1)	Fublic (12)
Energy (1)	1.05358	. 03057	. 00707	. 02123	. 01574	. 01102	. 02337	. 00850	.00463	. 0407070	. 02252	. 05031
Agricult. (2)	. 00051	1.00041	. 00013	. 00027	. 10022	. 00016	. 00035	. 00012	. 00007	.00038	. 00027	. 00047
Food (3)	. 00085	. 00082	1.00026	. 00058	. 00046	. 00034	. 06074	. 000024	. 00019	. 00072	. 00050	. 000088
Clothing (4)	. 00003	.00002	0.	1.00001	. 00001	0.	. 00001	0.	0.	. 00002	. 00002	. 00003
Hood (5)	. 03728	. 01786	. 00485	. 01201	1.00828	. 00535	. 01106	. 00467	. 00120	. 02611	. 01730	. 03571
Chewicals (6)	. 00868	. 00723	. 000325	. 00684	. 00576	1.00453	. 00772	. 00290	. 00306	.01143	. 00651	. 00887
Non-Metall. (7)	. 46175	. 20571	. 05546	. 13791	. 07450	. 06061	1.12487	. 05347	. 01232	. 30618	. 22661	. 4198
Engin. (8)	. 50516	. 53988	. 19033	. 40064	. 33748	. 26564	. 58224	1.16981	. 18013	. 67261	. 32215	. 51784
Constr. (9)	2.80560	1.24810	. 33674	. 83736	. 57377	. 36780	. 75807	. 32464	1.07470	1.85949	1.37620	2.54778
Transport (10)	. 13024	. 08229	. 02708	. 06248	. 04701	. 03340	. 07118	. 02520	. 01523	1.08840	. 063572	. 14118
Cowmerie (11)	. 23861	. 22037	. 07123	. 15779	. 12486	. 09318	. 20110	. 06506	. 05228	. 18031	1.12586	. 22076
Public (12)	. 02703	. 01445	.00423	. 00978	. 00732	. 00506	. 01070	. 00398	. 00197	. 02043	. 01426	1.02501

Table b: the $\left[I+\left(I-A_{82}\right)^{-1} B_{82}\right]^{-1}$ Matrix, referred to in the text as the (I-C) Capacity Matrix

Sectors		Energy (1)	Agriculture (2)	Food (3)	Clothing (4)	Hood (5)	Chemicals (6)	NonMetall. (7)	Engineering (8)	Constr- uetion (9)	$\begin{aligned} & \text { Trans- } \\ & \text { port } \\ & 1101 \end{aligned}$	$\begin{aligned} & \text { Cowin } \\ & \text { erce } \\ & \text { (11) } \end{aligned}$	Public (12)
Energy	(1)	. 76726	-. 0159	-. 00465	-. 01079	-. 000802	-. 00553	. 01106	-. 00438	-. 00210	-. 02341	-. 01627	. 22829
Agricult.	(2)	-. 00016	. 97979	-. 00007	-.00018	-. 00013	-. 00010	-. 00021	-.,00007	-. 00006	-. 00012	-. 00009	-. 00015
Food	(3)	-.00021	-. 000043	. 99965	-. 00032	-. 00026	-.00021	-. 00045	$-.00013$	-. 00014	-. 00018	-. 00012	-. 00020
Clothing	(4)	-. 00024	-.00001	0.	1.0	0.	0.	0.	0.	0.	-. 00002	-. 00001	-. 00002
Hood	(5)	-. 02921	-. 01020	-. 00243	-. 00656	. 99596	-. 00223	-. 00435	-. 00244	. 00046^{*}	-. 018008	-. 01382	-. 02590
Chemicals	(6)	.00237*	-. 00366	-. 00166	-. 00304	$-.00303$. 9973	-. 00606	-.00140	-. 00245	-. 00361	-. 00090	.00133*
Non-Metall	(77	$-.34705$	-. 11789	-. 02752	-. 07533	-. 04564	-. 02457	. 95270	$-.02783$.00704*	-. 21556	-. 16495	-. 30942
Engin.	(8)	.14430*	-. 21256	-. 08717	-. 01770	-. 17735	-. 15758	. 35578	. 71847	-. 14441	-. 21348	-. 05216	.08220*
Constr.	(9)	-2.12023	-. 71587	-. 16706	-. 45742	-. 27705	-. 14713	-. 28704	$-.16896$	1.04282	-1.30734	-1.0017	-1.87950
Transport	(10)	-. 06144	-. 04726	-.01513	-.03464	-. 02631	-. 01885	-. 04030	-. 01404	$-.00902$. 96518	-. 02779	-. 07677
Cowinerce	(11)	-. 0.3681	-. 11487	-. 04072	-. 08549	-. 07227	-. 05717	-. 12531	-. 03627	$-.03913$	-.03321	. 97844	-.03429
Futlic	(12)	-. 01643	-.00755	-. 00213	-. 00514	-. 00365	-. 00244	. 00509	-. 00202	-. 00074	-. 01238	$-.00866$. 88509

*There are b positive entries among the 132 "expected" neyative entries.
station construction, and so on), but is all loaded into the one year, as a test of the stability of the structure, under matrix inyersion. The same B-matrix is used for 1981 and 1982 capacity expansion. Small shares of GFCF, such as furniture, etc., have been ignored, with coefficients confined to construction, engineering goods, and trade and transpart margins on the latter.

The middle section of Table 4 shows GFCF results of applying B-matrix coefficients to Δx_{81}. Cumulated positive and negative results appear in columns (13) to (15), the net aggregate being in column (15), some f258m. of GFCF, the major share of which comprises $£ 176 \mathrm{~m}$. of Construction output sector (9). The lower section of Table 4 shows corresponding GFCF results for $\Delta \times 82$, all positive, and aggregating ta about £735m. of which £473m. is Construction output. Deduction of these GFCF amounts from total Final Demand provides yon and yon, as shown in Table 7.
 derived from T ables 2 and 4 above, with addition of the unit
 near-unit values in the diagonal. Some rather large entries appear in the construction row (9), but otherwise most off-diagonal entries are smaller than unity. Because of its similarity to the Leontief Inverse (I-A)-1 structure, this writer tentatively suggests the description "(I-C)-1 Capacity Inverse", to be commented on in Section 4 below. The Table 5 matrix is used for 1981 and 1982 calculations, as a constant
structure.
Table 6 shows the inverse of Table 5. The Table 6 matrix shows near-unity positive values on the diagonal, with off-diagonal values generally negative and less than unity. Some large negative entries appear. in Construction row (9). Six offediagonal positive entries occur, and are marked by an asterisk (*). This Table 6 matrix bears a strong resemblance of form to the Leontief (I-A), so this writer tentatively suggests the description "(I-C) Capacity Matrix", the counterpart of the suggested inverse form of Table 5 .

In Table 7 there is shown the breakdown of 1981 and 1982 final demands between GFCF for capacity expansion and yon. The GFCF referred to has appeared already in Table 4 , with comment given above. The detailed breakdown of total final demand of 1981 and 1982 accupies columns (1) to (6) of Table 7. Column (7) shows 1983 total final demand, for which no breakdown is required by the modelling exercise. Columns (8) and (9) of Table 7 show partial sector outputs of 1981 and of 1982, respectively, obtained by postmultiplying (I-A)-1. by ynon for both years. These partial outputs are required by the LHS of Equation (2-1ø) above.

The Δx Estimates Compared with Actuals (Table 8)
The final preparatory data need to be considered first. These occupy columns (1) and (4) of Table 8, and carrespond to the LHS of Equation (2.10) above. They comprise the sector output values of Table 3 columns (2) and (3), less values of Table 7 columns (8) and (9), respectively, to give one LHS of

Table 7: Final Deunands, and (1-A) $)^{-1} \gamma^{\text {non }}$, for 1791,1982 and 1983 f willion at .1982 prices

Table 8: Madel Results for $\Delta_{x_{01}}$ and $\Delta_{n_{82}}$ compared with actual values, and model iterative results for $y_{B_{1}}$, at 1982 prices.
f million

Sectors	\longleftarrow - for $\Delta x_{01} \longrightarrow$			\longrightarrow for $\Delta_{\text {\% }{ }_{\text {a }} \longrightarrow}$			Furtier x_{01} result ${ }^{\text {a }}$		
	$\begin{gathered} x_{\theta 2} \\ \operatorname{less}^{\left(I-f_{B 1}\right)^{-1} y^{\prime} \mathrm{non}_{\theta 1}} \end{gathered}$	Hodel estimate $\Delta x_{B 1}$ based on (1) (2)	Actual $\Delta \%_{\%_{11}}$ (3)	$\begin{gathered} x_{\mathrm{B} 3} \\ l_{\text {le5s }} \\ \left(\mathrm{I}-\mathrm{A}_{\mathrm{B} 2}\right)^{-1} \mathrm{y}^{\text {non }} \end{gathered}$ (4)	Model estimate $\Delta x_{B 2}$ based on (4) (5)	Actual. Δx_{82} (b)	${ }_{n}{ }^{\circ}$ original from net GFCF plus $y^{\text {non }}{ }^{\text {es }}$ (7)	x_{81} from positive GFCF plus $y^{\text {non }}{ }^{\text {en }}$ (6)	${ }^{\circ} \mathrm{CO}$ after 4 iterations (9)
Energy (1)	6.112	1.286	1.286	28.949	15.327	15.327	917.214	720.461	920.010
Aģiculture (2)	123.978	123.916	123.916	124.161	123.983	123.783	2,081.084	2,081,131	2,081.126
Food (3)	261.317	261.193	261.193	261.706	261.346	261.706	3,877.807	3,877,903	3,877.075
Clothing (4)	47.510	49.508	49.508	49.515	47.509	49.508	559.472	559.474	559.493
Hoad (5)	30.403	27.492	27.493	35.482	27.64	27.643	857.50	861.189	860.887
Chemicals (6)	-95.293	-96.660	-96.661	108.907	-104.603	104.603	1,254,661	1,255.861	1,255.774
Nor-Matall. (7)	13.747	-19.899	-19.599	111.895	21,591	21.590	701.899	721.044	717.511
Engineering (a)	-122.114	-202.057	-202.057	462.121	210.013	210.015	2,923.057	2,994.625	2,988.333
Constructioñ (9)	205.507	1.199	1.203	550.103	1.764	1.760	2,362.797	2,479,043	2,457.583
Transport (10)	16,333	2.557	2.555	41.538	2.723	2.723	829.445	839.071	838.120
Conimerce (11)	40.167	7.228	7.226	142.299	46.126	46.128	3,823.774	3,849.926	3,847,809
Puthic (12)	3.158	. 859	. 860	11.722	5.269	5.267	2,394,140	2,395.647	2,395.422
TITAL	532.829	156.622	156.623	1,928,398	869.697	869.8	22,584,677 2	22,885.435	22,797.9

(2.10) for 1981 and one LHS for 1982 . We may notice that the LHS values of Table 8 column (1) have two negative entries, for sectors (6) and (8).

In accord with Equation (2.11) above, the LHS values of columns (1) and (4) shauld be pre-multiplied by the Table 6 matrix, to give Δx estimates. These estimates appear in Table 8 columns (2) and (5), matched by Δx actual values of columns (3) and (6), respectively.

The Δx_{81} results may be considered first. The estimates in column (2) are very close to the actuals in column (3), for all 12 sectors, including the three negative entries. The Δx_{82} outcome for 1982 is equally satisfactory, as shown by comparing columns (5) and (6). Agreement of the estimates with the actuals is quite close, for all 12 sectors. It is apparent, therefore, that the model developed in Section 2 is operable, and gives usable results. The numerical testing has verified it. The results do not show any "noise" occurring in the sets of solutions.

Columns (7) to (9) of Table 8 show further 1981 results, related to the iterative solution given in column (9). Column (7) repeats the 1981 sector output capacity results already shown in Table 3 column (1), resulting from final demands y81 plus net GFCF capacity-building. Column (8) shows larger 1981 values, resulting from y81 plus gross positive GFCF capacity-building, the latter GFCF aggregate £ 437.617 m . appearing in Table 4 column (13). This column (8) result implies that capacity substitution betwen sectors is not
allowed for 1982 versus 1981 . For 1981 outputs greater than those of corresponding 1982 sectors, the 1981 excess capacity is held idle during 1982. Thus, per Table 4 data, the 1981 GFCF of $£ 437 \mathrm{~m}$. is required as gross positive capacity-building, rather than the net f258m. This larger 1981 GFCF effect explains 1981 output capacities in Table 8 column (8) larger than those shown in column (7), in aggregate some $£ 250 \mathrm{~m}$. larger.

The Iterative procedure now asks whether any 1981-82 positive Δx_{81} elements derived from column (8) are smaller than those derived from column (7)? If so, then 1981 GFCF capacity-building should be reduced, and so on. In fact, there is little scope for iterative manoeuvre, because eight of the 12 column (8) values exceed those of 1982 (Table 3 column (2), the four exceptions being sectors (2), (3), (4) and (5). After four iterations, the stable result emerges, as given in Table 8 column (9). We see an aggregate $£ 35 \mathrm{~m}$. reduction of capacity, by comparison with the aggregate of column (8), capacity being measured by sector outputs at 1982 prices.

4. ECONOMIC INTERPRETATION AND CONCLUSIONS

Equation (2.10) is the key equation to the solution for x_{T-1}, given x_{T}, in backward recursion. In the light of what has been said in Sections 2 and 3 above, Equation (2.10) can be reformulated for the general year t:

$$
\begin{equation*}
x_{t+1}-x_{t}^{\text {non }}=\left(I-C_{t}\right)^{-1} \Delta x_{t} \tag{4.1}
\end{equation*}
$$

where

x_{t+1}	is the capacity required at the beginning of year
	$(t+1)$, assumed given.
$x_{t}^{\text {non }}$	is the direct plus indirect capacity required to
	satisfy $y^{\text {non }}$, and given by
	$x_{t}^{\text {non }}=\left(I-A_{t}\right)^{-1} y_{t}^{\text {non }}$ (4.2)
	as indicated in (2.10) above.
$\left(\mathrm{I}-\mathrm{C}_{\mathrm{t}}\right)^{-1}$	is the "Capacity Inverse", indicating the direct
	plus indirect capacity (increase) required per unit
	increase of Δx_{t}, for interpretation of ($\left.1-C_{t}\right)^{-1}$ as
	an inverse.
Δx_{t}	is the increase in capacity required to be
	available at the beginning of year ($t+1)$, and to be
	made available by the GECF of year t devated to
	$B \Delta t$. The solution Δx_{t} to the inverse Equation
	(2.11) may have negative elements, as illustrated
	in the numerical examples.

Equation (4.2) is the Leontief Inverse traditional solution, whereby y_{t} yields x_{t} as required sector outputs, through the Leontief Inverse ($\left.1-A_{t}\right)^{-1}$. Equation (4.1) may be interpreted in parallel. A unit of any element jof Δx_{t} capacity expansion requires direct-plus-indirect capacity amounts in all sectors, as indicated by column j of (I-C)-1. The full requirement for Δx_{t} is given by the LHS of (4. 2). This capacity requirement is the total capacity x_{t+1} required for year $(t+1)$, less the capacity x_{t} ron required in year to satisfy $y_{t}^{\text {non }}$ final demand other than capacity-building GFCF. Equation (4.1) indicates that for $\Delta x_{t}=\varnothing$, so is the LHS,
meaning $x_{t+i}=x_{t}{ }^{\text {non }}$, which makes sense.

Conclusions

Three tentative conclusions are offered:
(1) In backward recursion starting with x_{T}, the earliest set of capacities x_{1} derived as part of the series may differ considerably in structure from the $x \neq 0$ year \varnothing, not a part of the series. For capacity and capital stock fixed within sectors, rather than freely saleable or rentable for all sectors, there may therefore be a considerable discrepancy between the available x and the required x_{1}.
(2) In backward recursion from $x_{t}+1$ given, to find x_{t} by Δx_{t} and the inverse solution (2.11), we have seen that Δx_{t} may have positive and negative capacity elements. This was mentioned at the end of Section 2 above. In the iterative solution required for replacement of negative elements of Δx_{t} by zero, the Model of Section 2 is not needed. The iterations are performed at the Transactions Table level, on repeated values of $B \Delta x_{t}$, for x_{t+1} a given constant vector, and all elements of Δx_{t} positive or zero. Repeated applications of the system

$$
\begin{equation*}
x_{t}=\left(I-A_{t}\right)^{-1}\left(y_{t}^{n o n}+B \Delta x_{t}\right) \tag{4.3}
\end{equation*}
$$

çan be made, for Δx_{t} tending towards a constant vector, as it is re-estimated repeatedly as $\left(x_{t}+1-x_{t}\right)$. This process has been verified as operable, in the results shown in Table 8 column (3).
(3) Forward Recurston may be considered very briefly. Equation (4.1) sets the picture. Given Δx_{t} and $x_{t}^{\text {non }}$, x_{t+1} emerges as the solution. But, to know Δx_{t}, one must know x_{t+1} also. In this case, Equation (4.1) is tautological.

One may ask how could one.. really estimate x_{t+1}
without explicit reference to $\begin{gathered}\text { non } \\ t+1\end{gathered}$ which forms the core of the Leontief Inverse approach to sector output (or capacity) solutions? However, a forward approach through a speculative Δx_{t} may be considered. Equation (4.3) will give x_{t}, which with Δx_{t} gives x_{t+1}, anyway, regardless of Equation (4.1). But this latter $x+1$ vector of capacities has no explicit link with any required or actual $\begin{gathered}\text { non } \\ x_{t}+1\end{gathered}$, leaving aside any capacity expansion in year (t+1) itself. It may be concluded that the model system described above daes not enable forward recursion to be made satisfactorily, mainly because of no link-up non
with x_{t+1}.

5. REFERENCES

Henry, E. W. (1986) Multisector Modelitng of the lrish Economy, with Special Reference to Employment Profections. (Paper No. 128 of ESRI General Research Series). The Ecanomic and Social Research Institute, Dublin.

Henry, E. W. (1989) Domestio wealth in lreland during 1950-1984 Pilot Estimates at 1980 Prices. (Forthcoming paper of ESRI General Research Series). The Economic and Social Research Institute, Dublin.

Leontief, W. - Duchin, F. (1984) The Impacts of Autometton on Employment, 1963-2000. Institute for Economic Analysis, New York.

Livesey, D. A. (1976) A mintmal realisation of the Leontief dynamic input-output model. In: Polenske, K. R. Skolka, J. V. (ed.) Advances in Input-output Analysis. Ballinger Publishing Co., Cambridge, Mass.

Miller, R. E. - Blair, P. D. (1985) Input-output Anatysts: Foundations and Extensions. Prentice-Hall, Englewood Cliffs, New Jersey.

Szyld, D. B. - Moledo, L. - Sauber, B. (1988) Postitve solutions. for the Leontief dynamic input-output model. In: Ciaschini, M. (ed.) Input-output Analysis current Developments. Chapinan and Hall, London.

