EIGEN-VECTOF ANALYSIS OF THE LEONTIEF INVEFSE
 - AN EMFIFICAL AFFFROACH WITH NUMEFICAL
 ILLUSTFATION EY 14-SECTOF DATA

E.W. HENRY

Confidential: Not to be quoted until the permission of the Author and the Institute is obtained.

EIGEN-VECTOR ANALYGIS OF THE LEONTIEF INVEFSE
 - AN EMFIFICAL AFFROACH WITH NUMERICAL
 ILLUSTFATION BY 14-SECTOR DATA

Author: E.W. Herry

Dates 2 December $19 \varnothing \mathrm{~B}$
abs tract
Frimal and Dual eigen vectors are proposed, to match the cominant root of a typical (I-A)-1 Leontief Inverse square matrix. Description and characteristics of such systems are summarised and a brief algebraic statement of the theoretical model is given.

But lack of "regularity" in real-world cata permits only approximate numerical solutions to the algebraic "ideal". After computing the roots, the dominant root is used in an iterative process to reach a statele eigen-vector after 30 to 40 iterations. Separate vectors of Frimal and Dual are estimated in this way; by two such iterative processes. Numerical illustration is given, in two experiments on Irish 1982 14-s.ector transactions. An economic interpretation is made, for the Frimal and Dual vectors: and a few tentative conclusions are drawn.
fafer to ee fresented at the ninth international conference ON INFUT-OUTFUT TECHNIQUES (HUNGAFiY, September 19E9)

COMTEMTS

Fage

1. Introductionn...
2. Algebraic model and method of solution 4

Appendix1: Eigen results of the Table 113 -sector
structore expressed in $(I-A)^{-1}$ format $\ldots 28$
Tables

3. The (I-A)-1 Leontief Inverse derived from Table 1.
rows and columms (1) to (14).......................... 11

4. Eigen-roots derived from Tables 2 and $3 \ldots$.
5. Eigen results for Table 2 14-sector structure 14
6. Consistency test of transaction structure implied by the eigen-vector of 1982 final demand shown in Table E. Column (s)15
7. Eigen results for Table 3 14-sector structure 16

This paper provides a besic Eigen- Vector analysis of the typical (I-A)-1 Leontief Inversen I being the unit matrix of n rows and columns, and A the interwincustry matrix of m rows and Eolumns comprisimg the direct input coefficients der ived from domestic flows divided by totel imputs. Such analysis Mas not appeared im the main-stream literature of recent years, which jmplies that such amalysis is not a populat topic.

However, eigen-roots and eigen-vectors are an integral part of at least two branches of theoretical imput-moutput analysis. In relation to the Dynamic Model and the Tumpite system, the paper by Fetri [4] discusses eigen-roots and vectors of the dymamic system from the aspect of stability over successive time-periods.

As indicative of a separate branch of theoretical application of eigen-analysis, one may consider the text of Erody [1]; which in Marxian terme provides a mathematical statement of the Labour Theory of Value. Some three levels of economic development are analysed: Simple Feproduction. Extended Feproduction, and Two-Chanmel Frices. In effect, the eigen-analysis is performed on the complete tramsactions? matrik, not merely on the inter-industry part. The frimal results provide balanced-growth measures in terms of total outputs, final outputs, or investment for capacity expansion. The corresponding Dual resulte provide price or value information in terms of working-hours of inputy or worting-time equivalent of profits on investment, which may
extemd to costis of investment in human cepital.
Section 2 of the present paper provides the essential algebraic statement of the frimal and Dual equations for the Leontief Inversesystem, with description and Characteristics. An iterative method is outlined, to find
 Eigen…root.

Section 3 gives numerical illustration of frimal and Dual estimations by way of two experiments on Irish 1982 data comprising a 17-sector Social. Accounting Matri\%. Section 4 offers some ecomomic interpretwtion of the results, and draws tentative conclusjons as to the usefulness of eigenmanalysis and the validity of the approximations obteined by the iterative process. Appendix 1, which is seif-conkained, descvibes a supptementary eigen-andisis of the 13-sectot Leontief Inverse detived from tows and colums (1) to (i3) of 2. ALGEEGATE AWDEI AND AETHOD OF EOLUTYOM

The treatment is brief and empirical. to avoid heavy involvement in theory. First, we consider the description and characteristics of a square matrix C of n rows and columns, with its eigen-roots ri: $i=1, ~ m$, and Frimal eigen-vector y; corresponding to root rin by referring to Appendix 1 of Erody [1]. Each root rinas in fact two eigen-vectors related to it: the frimal vector y_{i} and the Dual vector n^{\prime} i. Secondly, we consider the particular form of C to be investigated, namely the Leontief Inverse (I-A)-i, and the question of exact or approximate root and vector relationships for "real-world" matrices such as (I-A)-i. Thirdly, a methodology of estimating dominant (or largest)
eigen-root r and related eigen-vectors y Frimal and m Duad is summarised.

Deseription arm Characteristics of the Eystem, rom matrik of Positive Eitumemte

The following four points give the required coverage:

1. We are intierested in a square non-symmetric matrix C of n rows and columms.s having all of its elements mij positiven The deswription "nonwsymmetric" means that off-diagonel Element c_{i}, j is mot Equal to element E_{j}, i,
2. We form the Eigen-Equation of the Frimel y

$$
\begin{equation*}
C y=\rho y \tag{1}
\end{equation*}
$$

leading to the Determimant equation

$$
\begin{equation*}
\mathrm{C}-\mathrm{OI} \mid=0 \tag{2}
\end{equation*}
$$

Equation (2) yields a polynomial of degreer iri p, of which the eigen-roots ri, $i=1$, m, emergen.

I $i s$ the unit matrix, of dimension (n, \boldsymbol{n}).
y is the Frimal eigen-vector, a column vector of dimension (n, 1).
$\rho i s$ a scalar constant.
We find a y_{i} corresponding to each r_{i}.
Our main interest is in the dominant (or largest) root among the ri, to be denoted r, with its corri"sponding Frimal eigen-vector: demoted y.
Z. The parallej Eigen-Equation for Dual m is

$$
\pi^{\prime} C=\rho \pi^{\prime}
$$

leading to an identical set of ri results,
π^{\prime} being the Dual row vector of Dimension (1, n). Here
again, our main interest is the Duel eigen"vector corresponding to dominant root r. and denoted m^{\prime}.
 and or positius elements: with domimant root read =igen-ヶEmtor \% and m:

Drawing partiy on Appendix 1 of Erody [1], the following three features of relevance apply:
(i) The dominant root r is real and positive. Gther eigen-roots may be positive or negative, or comprise complex-comjugate pairs in complex variable.
(ii) The eigen - vectors y and ${ }^{\prime}$ 'related to dominant root r have positive elements onlys there are no agero or negative elements included. Eigen-vectors derived from other roots ri may have zero. negetiven of complex - variable elements. Eut y and y derived from r are the only eigen-vectors to have all elements positive.
(iii) The internal proportions between the elements of y are unique: this also holds for the elements of m^{\prime}. Any scalar multiplication of vector y or vector π^{\prime} does not change the internal proportions between the elements of each of y and π°.

The Eeontisf Imtersen amo Approximate Eigen Solutions
As the particular form of C to be investigated, there occurs the (I-A) - 1 Leontief Inverse. I being the unit matrix and A the inter-industry matrix of direct input coefficients aij, of dimension (n,n). This inverse typically has all
elements positive, some of which may be quite smali or nearly zero. Its diagomal elements have typical values of between 1.0 and 1.5 although some values might be as small as o. 9 . This matrix is nom-symmetric.

In the input-output (IO) comtext, Equations (1) and (3) need to be restated, to give them an ewomomir meaning. We confined this meanimg to dominant root r. with related frimal y and Dual π^{\prime}, having all elements positive.

The Primel becomes, from Equation (1) above,
$\langle I-A\rangle-1 y=r y$
But, in an IO setting
$(I-A)-I y=x$
gives. sector outputs x derived from final demands y.
Thus combinimg (4) and (5) gives
$x=r y$
meaning that there is (or might be) a vector of sector outputs x in fixed proportion r to the elements of Frimal vector y interpreted as a set of final demands. This oceurs in the context of dominant root r and all elements of x and y positive.

The Dual likewise, from Equation (x) aboves becomes
$\pi^{\prime}(I-A)-1=r \pi^{i}$
Eut: in an IO setting
$\pi^{\prime}(I-A)^{-1}=P^{\prime}$
gives vector p' of sector output row price deflators: derived from price deflator vector n of total primary imput. Thus. combining (7) and (B) gives $p^{\prime}=r m^{\prime}$
meaning that there is (or might be) a vector of row price deflators p' in fixed proportion r to the elements of Dual vector m^{\prime}, interpreted as a set of price deflators of total primary imput. Here againg all elements of π^{\prime} and P^{\prime} are positive: in the context of dominant root r.

The treatment given above assumes that there exists an exact $f i x e d$ proportion r between x and y a and again between $p \prime$ and π^{\prime}, with all variables measurable by computation. Eut the "real"world" situation of economic relationships of supply and demand, underlying the numerien values of the elements of the Leontief Inverse, does not permit such precision. One must therefore seek for approwimate solutions to Equations (4) to (9), as now to be described.

Methodology ot Estimatimg Domiramt Root ramd Eigen-Vectors ध amd π

The first part of the estimation process is to find the eigen따opts.of the matrix (I-A)-1. The IEM Seientific Subroutines HEEG and ATEIG are Lised, as desmribed in [G; pp. 167-1701. Subroutine HSBG reduces the non-symmetric Leontief Inverse (an. \quad by n real matrix) by a similarity tramsformation to upper almost-triangular (Hessenberg) form. Thus the eigen-roots are preserved. subroutine ATEIG computes the values of the eigen-roots of the latter upper almost-triangular derivative, as a vector of n elements havimg the real parts of the rootss matched by a similar vector having the jmaginary parts. Each real root has its
imaginary part zero (in the complex-variable context).
The second part of the estimation process takes dominant root r and Leontief lnverse (I-A) -1 as given, and uses an iterative process to estimate each of vectors y and m'. A starting value of y is taken to be the vector (1.o. o., o.. . . O.) of n elements, all zero except the first, taken to be 1.0. Iterative step $:$ uses estimate y_{k} to reach estimate y_{t+1} as follows:
$(I-A)-1 \quad y_{k}=r Z_{k+1}$
$y_{k+1}=\left(1 / \Sigma_{j} Z_{k+1}, j\right) Z_{k+1}$
This says that elements of Z_{k+1} are uniformly scaled (as part of each iteration) so as to add to unity, per Equation (11), in order to become y_{k+1}.

After 30 to 40 iterations the y_{k} values became fixed or stable. Two possible meanings attach to this outcome:
(a) If (I-A)-1 were perfectly "regular", so that Equation (4) held exactly, then y_{k} is the exact eigen-vector Frimal value related to r.
(b) The typical outcome, of ($I-A)^{-1}$ not being perfectiy regular, occurs. Vector y_{k} is the nearest feasible estimate of y that is attainable with the given (I-A)-1 structure. Equations (4) and (6) do not hold exactly. For most elements of x and $y, x ; i s$ a very close approximation to ryi. Eut for a few elements, the approximation is not so close.

A similar and separate iterative process is required to obtain Dual vector $\pi^{\prime \prime}$, baed on Equations (7) to: (9): This iterative method of estimating the

Table 1: Part of Table 5.6 of Henry [2], showing a 17-sector Social Accounting Matrix of the Irish Economy for 1982

Table 5.6: Ireland, 1982 13sector transactions at 1982 haric prices (5 m)

Sectors	Energ (1)	Asriculoure (2)	Food (3)	Clothing (4)	Woad (5)	Chemicals (6)	Cay (7)	Engineering (8)	Construction (9)	Tramport (20)	Commerce (11)	Public and trofessional (12)	Arificial (IJ)	Household expend © savings (14)		Capital formation (15)	Exports (17)	Total Ounput	Sectorn
(1) Enerry	155.5	46.9	39.0	11.0	13.0	26.0	32.0	31.0	10.0	11.0	42.3	34.7	63.0	. 361.0			43.0	918.5	(1)
(2) Agriculture		24.0	1464.2	-	2.1					,	1.1	0.9		378.7		33.0	301.0	2205.0	(2)
(3) Food		247.0	824.0	28.2							9.8	8.2		1091.8			1950.0	4159.0	(3)
(4) Clothing				29.2	. 7									109.1			476.0	609.0	(4)
(5) Wood					92.1		.		29.0		. 10.9	9.1	204.0	280.9		15.0	246.0	887.0	(5)
(6) Chemicalo		58.0	3.6	2.5		56.8		43.3			2.8	2.2	42.8	22.0			924.0	1158.0	(6)
(7) Clay		9.0					98.6		3329		1.1	0.9	13.5	49.0			177.0	682.0	(7)
(8) Enpiucering	2.0	31.0		5.7	2.5	9.2	5.3	128.9	136.9	30.0	12.6	10.4	47.0	131.4		197.0	1952.0	2721.0	(8)
(9) Conutruction	7.0		17.0				4.0		317.1	17.0	10.9	9.1		43.9	141.0	- 1792.0		2354.0	(9)
(10) Transport		44.0							109.0		13.3	3.7	15.0	204.0	1	31.0	412.0	832.0	(10)
(11) Commerce	4.6	292.3	88.0	39.4	21.5	47.6	61.1	175.1	1956	2.7	25.4	9.7	71.0	2125.0	351.0	94.0	257.0	3891.0	(11)
(12) Public \& Protem.	0.4	33.7	10.0	4.6	2.5	3.4	6.3	19.9	15.4	0.5	2.1	1.8	8.0	124.0	2160.0			2395.0	(12)
(13) Astificial	46.3	94.0	545.5	68.8	68.4	226.7	142.3	204.3	89.4	30.0	42.1	13.9		1.0				1594.9	(13)
(14) Houschold income	171.7	842.0	507.8	132.4	507.9	197.4	147.8	500.1	373.5	281.0	1417.0	1368.0			2642.0		948.5	10037.2	(14)
(15) Government income	135.2	31.0	39.0	42.0	102.1	65.0	61.0	273.0	262.9	162.0	1081.1	880.9	488.1	- 897.0		83.0	-12.0	4522.4	(13)
(16) Saving	108.7	207.0	34.0	10.2	5.9	34.1	14.:	80.9	16.)	34.1	318.9	27.5		1977.5	-1146.6		1428.6	3171.0	(16)
(17) Iraporta	267.1	226.0	546.9	241.0	268.3	469.8 -	108.5	1264.5	358.)	223.9	839.6	11.9	69.5	2295.9	343.0	924.0	27.0	9110.1	(17)
Total input	918.5	2205.0	4139.0	-609.0	887.0	1158.0	682.0	2721.0	3364.9	852.0	3831.0	2995.0	1394.9	10087.2	4322.4	3171.0	9110.1	Tous	

Origin: Table 5.6 of [2] ; Responsible Authority; E. W. Henry (see[2]);
Date: 1986

Table 2: The $(I-1)^{-1}$ Leontief Inverse derived fron Table 1 Rows and Colums (1) to (14)

Sectors*		Energy (1)	Agriculture (2)	Food (3)	Ciothing (4)	Vood (5)	Chenicals (6)	Non-metallic (7)	Engineering (8)	Construction (3)	Iransport (10)	Commerce (11)	Public (12)	Artificial (13)	Households (14)
Energy	(1)	1.223633	. 072404	. 068408	. 052552	. 053167	. 055974	:104865	. 036651	. 053118	. 046202	. 040423	. 058075	. 061130	. 067835
Agriculture	(2)	. 027157	1.124141	. 517934	. 056532	. 050105	. 026041	. 039382	. 027242	. 046969	. 042296	. 045062	. 058512	. 012064	. 113827
food	(3)	. 044294	. 246722	1.392433	. 118611	. 077582	. 042441	. 064260	. 044488	. 076638	. 068998	. 074469	. 113066	. 019198	. 185754
Clothing	(4)	. 003347	. 007350	. 005888	1.043772	. 006737	. 003211	$\therefore 004843$. 003345	. 005779	. 005211	. 005364	. 008191	. 001549	. 014018
Yood	(5)	. 020388	. 036672	. 049530	. 033346	1.148272	. 041396	. 053327	. 023711	. 049364	. 027691	. 023131	. 033081	. 151395	. 046788
Chemicals	(6)	. 003865	. 036862	. 023927	. 011755	. 006200	1.059825	. 010539	. 022094	. 007393	. 006172	. 004455	. 006242	. 030415	. 008282
Non-metallic	(7)	. 004749	. 011476	. 009663	. 004553	. 005078	. 004490	1.176508	. 003314	. 195706	. 008298	. 004848	. 007086	. 011343	. 009880
Engineering	(8)	. 011482	. 044214	. 030343.	. 023144	. 016750	. 021796	. 028100	1.059069	. 078700	. 076181	. 014130	. 020175	. 036075	. 025328
Construction	(9)	. 013148	. 007554	. 011588	. 003984	. 004623	. 002963	. 012716	. 002928	1.162289	. 027706	. 007473	. 010629	. 002031	. 010237
Transport	(10)	. 008130	. 038056	. 024337	. 010761	. 013227	. 008927	. 013378	. 088097	. 066730	1.012714	. 015065	. 019079	. 012895	. 029388
Commerce	(11)	. 079773	. 305978	. 225976	. 166627	. 153480	. 121806	. 220792	. 142754	. 213742	. 121048	1.119733	. 175916	. 083995	. 291059
Public	(12)	. 005442	. 027369	. 019680	. 014828	. 011484	. 010513	. 019992	. 012751	. 018291	. 008352	. 007847	1.011802	. 008014	. 018560
Artificial	(13)	. 075166	. 106863	. 227076	. 148934	. 110666	. 225220	. 273977	. 097894	. 117974	. 087951	. 032701	. 038714	1.030849	. 049131
Households	(14)	. 294598	. 647786	. 517477	. 366406	. 512802	. 281118	. 424707	. 294333	. 507858	. 459151	. 473050	. 722483	. 126046	1.237100

* For more detailed sector headings, see Iable 5.

Table 3: The $(1-1)^{-1}$ Leontief Inverse derived fron Table 1, rovs and colums (1) to (15), 11

Sectors		Energy (1)	Agriculture (2)	Food (3)	Clothing,	Yood (5)	Cheinicals (6)	Non-metallic (7)	Engineering (8)	Construction (9)	Iransport (10)	Commerce (11)	Public (12)	Artificial (13)	Households plus Government (14)
Energy	(1)	1.226035	. 077683	. 072625	. 055538	. 057346	058265	108326							
Agriculture	(2)	. 028799	1.127750	. 520817	. 058573	. 052962	. 027607	. 10831748	.039050 .028810	. 057257	.049944 044854	. 044279	. 063964	. 062158	. 077918
Food	(3)	. 047068	. 252821	1.397305	. 122061	. 082410	. 045088	. 068.8258	. 047259	. 0891419	.044854 .073321	.047697	. 072536	. 012766	. 120719
Clothing	(4)	. 003530	. 007753	. 006210	1.04400	. 007056	. 003386	. 005107	. 003529	. 006096	. 005497	. 005659	. 1198688	. 020385	. 197401
Vood	(5)	. 021577	. 039287	. 051618	. 034825	1.150342	. 042531	. 055041	. 024899	. 051414	. 029544	. 025040	. 0359898	. 151904	. 014788
Chenicals	(6)	. 004100	. 037378	. 024339	. 012047	. 006609	1.060049	. 010877	. 022329	. 007797	. 006537	. 004832	. 006817	. 030515	. 009268
Non-metallic	(7)	005815	. 013821	. 011536	. 005879	. 006934	. 005508	1.178045	. 004379	. 197514	. 009959	. 006560	. 009701	. 011799	. 014358
Engineering	(8)	. 012524	. 046504	. 032172	. 024440	. 018562	. 022789	. 029602	1.060109	. 080495	. 077804	. 015802	. 022729	. 036521	. 029700
Construction	(9)	. 018692	. 019740	. 021322	. 010877	. 014269	. 008252	. 020705	. 008465	1.171842	. 036344	. 016372	. 024220	. 004402	. 033509
Transport	(10)	. 008926	. 039805	. 025735	. 011750	. 014612	. 009686	. 014525	. 008892	. 068102	1.013954	. 016343	. 021030	. 013236	. 032729
Commerce	(11)	. 096281	. 342266	. 254964	. 187152	. 182206	. 137554	. 244583	. 159242	. 242192	. 146769	1.146233	. 216388	. 091055	. 360359
Artificial	(13)	.072699 .077069	. 175210	.137781 .230418	. 0988451	. 128519	. 074671	. 116921	. 079925	. 134197	. 113142	. 115809	1.176690	. 036781	. 300879
Households plus	(13)	. 077069	. 111046	. 230418	. 151300	. 113978	. 227036	. 276720	. 099795	. 121253	. 090916	. 035756	. 043380	1.031663	. 057120
Government	(14)	. 450911	. 991163	. 791781	. 560630	. 784628	. 430132	. 649835	. 450353	. 777062	. 792537	. 723804	1.105456	. 192860	1.892861

Table 4: Eigen-roots Derived from Tables 2 and 3.

Main Diagonal Location	Table 2 Results		Table 3 Results	
	Real Part (1)	Imaginary Part (2)	Real Part (3)	Imaginary Part (4)
(1, 1)	2.218899	0.0	2.913179	0.0
$(2,2)$	1.159282	. 082779	1.183794	0.0
$(3,3)$	1.159282	-. 082779	1.223382	. 081609
$(4,4)$	1.038617	0.0	1.223382	-. 081609
$(5,5)$	1.072926	0.0	1.115509	0.0
$(6,6)$	1.023951	0.0	1.080100	0.0
(7, 7)	1.006742	0.0	1.038877	0.0
$(8,8)$	1.122092	0.0	1.036029	0.0
$(9,9)$. 994706	0.0	. 997747	. 009310
(10, 10)	. 919450	. 023243	. 997747	-. 009310
(11, 11)	. 919450	-. 023243	. 908810	. 015389
(12, 12)	. 922568	0.0	. 908810	-. 015389
(13, 13)	1.270659	0.0	. 905556	0.0
(14, 14)	. 748825	0:0	. 763569	0.0

Table 5: Eigen Results for Table 2 14-sector Structure.

						DUAL		
Sectors	Iotal Output proportions £ villion (1)	Total Final Demand proportions (except households) fil (2)	PRIMAL Eigenvector y Final Demand proportions (31st iteration) fI (3)	Sector outputs x derived from (3) ${ }_{(I-1)^{-1}}$ of Table 2 fla (4)	Ratio (4)/(3), Eigenroot approximation (5)	Eigenvector π^{\prime} of direct primary input coeffs. (33rd iter.)	Direct + indirect price vector p^{\prime} derived from (6) by $(I-A)^{-1}$ of Table 2	Ratio (7)/(6), Eigenroot approximation
(1) Energy	2.672	. 284	4.8064	11.6834	2.431	. 035886	. 087231	2.431
(2) Agriculture, forestry, fishing	.6.415	2.204	11.3565	25.1425	2.214	. 112005	.247972	2.214
(3) Food, drink, tobacco	12.041	12.737	13.8075	30.5687	2.214	. 157290	. 348228	2.214
(4) Clothing, footwear, textiles	1.772	3.141	0.6860	1.5188	2.214	. 063323	. 140193	2.214
(5) Yood, paper, niscellaneous manufacturing	2.580	1.722	4.2278	9.3600	2.214	. 068923	. 152591	2.214
(6) Chemicals	3.369	6.098	1.3592	2.8902	2.126	. 048738	. 103640	2.126
(7) Non-metallic einerals and mining (ex. peat and coal)	1.984	1.168	0.9608	2.1271	2.214	. 076653	. 169704	2.214
(8) Engineering	7.916	14.182	2.3121	5.1189	2.214	. 042356	. 093795	2.214
(9) Construction	6.877	12.757	0.8477	1.8767	2.214	. 095064	. 210466	2.214
(10) Transport	2.420	2.924	1:9039	4.2150	2.214	. 058502	. 129519	2.214
(11) Comerce	11.145	4.831	17.3426	38.3951	2.214	. 054472	. 120596	2.214
(12) Public + professional services	6.968	14.255	1.2874	2.8502	2.214	. 081890	.181299	2.214
(13) Artificial*	4.640	0.0	7.2078	15.9575	2.214	. 030843	. 068284	2.214
(14) Household Income	29.201	23.597	31.8943	70.6120	2.214	. 074045	. 163931	2.214
TOTAL	100.000	100.000	100.0000	222.3161	2.223	1.000000	2.217449	2.217

Table 6: Consistency Iest of Iransaction Structure luplied by the Eigen-Yector of 1982 final Demand shown in Table 5 column (3)
\& aillion

Table 7: Eigen Results for Table 3 14-sector Structure.

Sectors	Total Output proportions \& aillion (1)	Iotal Final Demand proportions (except households + Govt.) f (2)	PRIMAL Eigenvector y Final Demand proportions (31st iteration) fin (3)	Sector outputs x derived from (3) bij $(I-A)^{-1}$ of Table 3 (I (4)	DUAL			
					Ratio (4)/(3) Eigen- root approximation (5)	Eigenyector π^{\prime} of direct primary input coeffs. (31st. iter.)	Direct + indirect price vector p^{\prime} derived froin (6) by $(I-A)^{-1}$ of Table 3 (7)	Ratio (7)/(6), Eigenroot approximation (8)
(1) Energy	2.361	. 434	3.9047	11.3703	2.912	. 044338	. 129111	2.912
(2) Agriculture, forestry, fishing	5.669	3.373	6.6285	19.3021	2.912	. 105354	. 306790	2.912
(3) Food, drink, tobacco	10.641	19.492	8.8923	25.8943	2.912	. 121887	. 354934	2.912
(4) Clothing, footwear, textiles	1.566	4.807	0.5251	1.5291	2.912	. 059824	. 174206	2.912
(5) Yood, paper, wiscellaneous manufacturing	2.280	2.636	2.6277	7.6519	2.912	. 073086	. 212825	2.912
(6) Chenicals	2.977	9.332	0.6626	1.9296	2.912	. 044536	. 129690	2.912
(7) Non-netallic ninerals etc. (ex. peat and coal)	1.753	1.788	0.8628	2.4195	2.804	. 077528	. ${ }^{.} .217396$	2.804
(8) Engineering	6.996	21.704	1.3302	4.2680	- 3.209	. 037781	. 121221	3.209
(9) Construction	6.078	18.098	1.4185	4.1308	2.912	. 089010	. 259197	2.912
(10) Transport	2.139	4.474	1.3778	4.0120	2.912	. 062917	. 183213	2.912
(11) Commerce	9.849	3.545	14.0077	40.7904	2.912	. 061339	. 178620	2.912
(12) Public + professional services	6.157	0.0	10.5997	30.8664	2.912	. 092840	. 270349	2.912
(13) Artificial*	4.100	0.0	4.0975	11.9319	2.912	. 027325	. 079571	2.912
(14) Household plus Government Income	37.434	10.317	43.0639	125.4050	2.912	. 102236	. 297712	2.912
TOTAL	100.000	100.000	100.0000	291.5013	2.915	1.000001	2.914835	2.915

Eigem-vewtors has been developed empirically by the author: who does not claim originality in this regaran The approach worts well in practices as demonstreted by the mumerical experiments of Section z followimg.
Z. MUAERTEAL TLLUSTRATRON EY TRYGH IGEZ IA-GEETOR TRAMEAGTIONS

The Gocial Accounting Matrix (SAM) appearing as Table 1 has been used to test the theory and solution methods deseribed in Section 2 above. This SAM is part of Table 5.6 of Henry [2], and shows 177 rows of transactions matched by 17 corresponding columns: for 1982 at 1982 approximate basic values. All imports and outflows are included in row (17). The unit is IFE1 million, for all transactions.

The description "SAM" is appropriateg because National Accounts* items are an integral part of the Table. For examples. row totals or sub-totels show the estimate of Gross Natiomal Disposable Income (GNDI) as follows:

Household income total (row (14))	10,057.2
less Government current transfers (row (14) col. (15))	$-2,642.0$
plus Govt. income total (row (15))	+4,522.4
less Govt. current payments abrgad (row (17), column (15))	-545.0
plus Savings (mainly deprewiation) (row (16) cols. (1) to (12))	$+911.5$
GMD I	$12,4 \mathrm{E} 4,1$

To get GNF at Market Frices, one subtracts from GNDI the net income transfers from abroad, 5y1.5, given by column (17) entries $948.5,-12.0$, and reduced by the 345.0 of column. (15). This gives a GNF estimate of $111,892.6 \mathrm{~m}$.

Household savings of $1,977.5$ appear in colum (14), as Part of the disposel of household income. The Government deficiton current account appears an -1, 14G.G in column (15), meaning that in 1982 Govermment income needed to be supplemented by Eorrowing: to cover current outgoings. The Gavings row (16) entry of 1,428.6 in Export colum (17) means that this amount was the estimated deficit on current account for Ealance of Fayments purposes.

Two Eigen Foot experiments have been performed with the data of Table 1. The first experiment took as inter"industry matris the section comprising rows and colums (1) to (14): and used total inputs to derive the A-matrix. The resulting (I-A)-1 is shown as Table 2. Sector (14), households, is included, to generate Keynesian income and expenditure effects.

The second experiment used a new row (14) comprising row (14) plus row (15) of Table 1, and a new column (15) comprising columns (14) plus (15). without further adjustment. A 14-sector structure again applied. This suggests a "social" approach to combined resources of households and Government, both for income and outgoinge. From this A-matrix, the resulting (I-A)-1 is shown as Table उ.

Thus in summary, the two 14 -sector Leontief Inverse matrices as described were the material for Eigen-Foot and Eigen-Vector analysis. Economic interpretation of results appears in Section 4 below. Here we are concerned with numeric results as such.

Table 4 shows the eigen-root outcome for Tables 2 and 3 . Colums (1) and (2) of Table 4 show the roots derived from Table 2 , and associated with main-clagonal locations of that table, Of the 14 roots, 10 are eonfined to real variable, and 4 comprise complex variables, in théir expected groupings of two complex-conjugate pairs.

Of relevance to the problem in hand is the main or dominant root, of value 2.218897. This is real and positive. and shown in column (1) associated with main-wiagonal location (1,1). It implies an approximate eigen vector y associated with Tate 2, such that pre-multiplication of y by the Table 2 Leontief Inverse gives an x value approximately 2.219 times y.

The results derived from Table. 3 appear in columns (3) and (4) of Table 4. We find e real roots, and 3 pairs of complex-conjugate roots. The dominant root is again real and positive, and of value 2.71 F 179 . Thus the implied eigen-vector x of Table 3 , when premaltiplied by that table. yields an approximation of 2.913 times $: ~$.

Eigen-Vector Resurts for Table 2 (fimst Ekoeriment)
The outcome of eigen-vector estimation following from dominant root 2.219 of Table 2 is set out in Table 5. Column (3) of that table shows Frimal eigen-vector proportions adding to floom.: the stable outcome of iterations number (31) and later, of the iterative process of estimation.

For purposes of comparison, matching proportions appear for total output in column (1), and for total final demand
. (excluding household expenditure) in column (2). Comparison of columns \{1\} and (2) shows major. differences in proportions, for sectors (1), (2), (4), (6), (8), (9), (11), (12), (13) and (14), which means 10 sectors of all 14. The given 1982 structure of Table 1 therefore shows a very uneven set of ratios relating total oitput to total final demand (aggregate of colums (15) to (17) of Table 1) as defined for the present experiment.

The Frimal eigen-vector, of its nature, is final demand. Comparison of the vector proportions of column (s) with those of colum (2) total final demand shows major differences in proportions in some 11 of the 14 sectors. It is elear: therefore, that such an eigenwtructure could not apply to 1982 normal or average economic conditions: Only for growth purposes might it be feasible. More about its meaning will appear in Section 4 below.

Fremultiplication of the colum (3) eigen-vector by the Table 2 Leontief Inverse yields the sector output results of column (4): aggregeting to £222. Fm . . Division of colum (4) by column (3) gives the ratios appearing in column (5 : which are approximations to the dominant eigen-root: of value 2.219: The approximations are satisfactory. In aggregate the ratio is 2.22s, while 12 of the 14 sectoral ratios have the value 2.214. We see two noticeable deviations: (1) energy shows a much larger ratio 2.431, while (6) chemicals shows a somewhat smaller ratio of 2.126.

This outcome of the iterative approach is the nearest possible approximation to the ideal 2.219 for all settors.

The column (x) Eigen-vectom has picked up all the regular part of Table 2. Table 6 verifies that columns (3) and (4) of Table 5 are Eonsistent. Table 6 shows the detailed structure derivable from the Eigen-Vector final demande by means of the inputs structures of Table 1. All the Table G detail $=$ are produced by the computer" Except the "column sum" and "row sum" entries, compiled by the author. Jit is clear that roundimg errors alone cause the small deviatioms of the row and column sums from control values of Total Input and Total Output. Jn other words. Table 5 column (4) total output is structurally consistent with the eigen-vector proportions of column (3). The aggregate 2.22s ratio is the nearest feasible "real-world" estimate of the "ideal" 2.219" 12 of the 14 sectors show the same approximate value of 2.214. The other two sectors show larger deviations from 2.219 and we cammot improve on this outcome.

Columns (6) to (B) of Table 5 show the Dual eigen-vector estimates. Column (6) shows the stabilised vector estimates. from iteration number (x) onwards: 5 (caled so as to aggregate to 1.0. Fost-multiplicatiom by Table 2 matrix gives column (7) results: while column (8) shows the ratios given by column (7)/column (6). We see that the columm (g) eggregate ratio is 2.217, derived from the simple aggregates of vector componemts of columms (6) and (7). For individual sectors. the ratios (to $\underset{\text { decimal places) coincide with corresponding }}{ }$ Frimal ratios. Twelve take the same value 2.214! while (1) again shows 2.431 and (6) shows 2.126. The Dual vector is of the nature of price-change or cost-change of primary inputs

With its direct-plus-indirect columm (7) derivative =howing price inflators of Table 1 rows. More comment on it: meaning appears in Sewtion 4 below.

The results of eigen-vector Estimation based on dominant root 2.913 of Table 3 are given in Table 7 . Column (3) shows Frimal eigen-vector proportions adding to sloom., the stable outcome of iterations (31) and later. Columm (6) shows the Dual price-vector estimates, also stable after $\underset{\sim}{\text { at }}$ iterations of the process of estimation.

Here again, total output proportions or Table 1 appear in Table 7 Eolumn (1) and final demand proportioms in column (2). For this experiment: Table i final demand is confined to the aggregate of column (16) capital formation and column (17) Exports. Comparison of Table 7. columns (1) and (2) show major differences in proportions for 12 sectors. the exceptions being (5) and (7). There is no suggestion of any fixed proportionality between fimal demand and total output of Table 1 , from this comparison of columns (1) and (2).

Comparison of eigen-vector column (3) proportions with those of column (2) again shows general divergencen Dnly sector (5) shows similar percentage shares. of about 2.6. It is thus apparent that these eigen-vector proportions could apply only for ecomomic growth, and not for any general or average 1982 Table 1 -type structure.

The sector outputs derived from column (x) Frimal eigen-vector final demand appear in Table 7 columm (4). The

The ratios of colum (4) to column (3) appear in columm (5) as approximations of the eigen-root value 2. 913. We see that in aggregate thererto is 2.915 a 1 ittle larger than the
 ratios take the value 2.912 to \bar{z} decimal plames. The remainimg two values deviate somewhat: " sector" (7) shows a smaller value of 2.EO4, while sector (B) shows a larger value of $\because 209$

The Dual eigen-vector price outcome appears in columas (6) to (e). The ratio between aggregates of columns (6) and (7) is 2.915: again a little larger than the eigen-root value of 2. 913 Other ratio values of column (8) duplicate corresponding Frimal values of column (5). There are 12 values of 2. 912 , with sector (7) again showing 2.804 and sector (8) showing z. 209.

These frimal and Dual results of Table 7 show the nearest attainable approach to the "ideal" outcome of a ratio 2.915 applying for all sectors. The inherent lack of regularity (for eigen-vector purposes) in Table 3 prevents such an outcome, with sectors (7) and (8) showing noticeable deviations of ratio values from the root value 2.91 . Complete tonsistency of structure holds for colums (3) and (4), and again for columns (6) and (7). No equivalent of Table 6. to verify this consistency; is deemed necessary.
4. ECONOMIG TNTERORETATION DF RESULTE, AMD GONCLUSTOMS

This final sectiom of the paper comsidets triefly how ome might interpret, in an economic context, the eigen-vector
results just describec. A few tentative conclusions are them offered. on the whole exercise.

Econcmic Intaroretation
The eigen-wector Frimal y may be interpreted as a "uniform growth" structure. This Frimal vector of final demand mplies or generates a structure of sertor outputs x having approximetely the same value proportions between them as the sector elements of the Frimal itself: subject to how closely the (I-A)-1 structure conforms to the reqularity condition of the eigen-vector" "ideal" outcome.

The eigen-vector Dual m may be interpreted as a "uniform cost" or" "uniform price" structure. The Dual vector π^{\prime} of primary direct input coefficients implies or generates a structure of sector output row price deflators pl having approximately the same value proportions between them as the element of the Dual itself. Here also. the degree of approximation depends on the degree of regularity of the $(I-A)^{-1}$ structure of relevance.

Table 5 results may be consulted. as to how realistic is the Frimal eigen-vector final demand struwture of column (3) as a "real-world" growth structure? Final demand here comprises Government spending: Eapital formation, and exports of goods and services plus inflows of household income from outside the state. Column (2) provides the 1982 average actual structure, for comparison. The following aspects of the eigen-vector column (3) results suggest that they are umtealistia, in an Irish context. Major increases in shares of (1) energy: (11) commerces and (13) artificial =liggest
that these would have to be exported to a larger extent than applied in 198% which does not mate sense for these sectors. The major increase in (2) agricultureg also means extra exportss by contrast to the approved national policy of routing it through (3) food etc. The major redurtions in the shares of (6) chemicals and (8) engineming would newessarily mean cutting exports of these major exporters, which does not mate economic senses in the Irjsh context. Mejor reductions for (9) construction and (12) public and professional would mean cutting the major eapital formation sector, and the public service, respectively.

In summary, as a vector of expansion of final demand, the large entries of column 〈3 eigen $\begin{aligned} \text { vector do not make good }\end{aligned}$ sense in an Irish context. Similar. objections apply.to the corresponding eigen vector of Table 7 colum (\because. Discussion of the latter would not offer any new insights in addition to those already mentioned for the eigen-vector of Table 5 column (3).

However, the Dual price vectors of both tables may be acceptable, The main point they make is that price changes of total primary imputs need to Mave the eigen-wector proportions, as specified, to cause evenlymspread or approximately uniform relative deflation throughout the Economic system. The full deflation multiplier pj of row j will be approximately r times that of total direct primary input eigen-vector coefficient π_{j} of column j for r being the value of the dominant eigen-root of the leontief Inverse of relevance.

Comclumions

Three tentative eonclusions are offered:
(1) The estimation process, as described and illustrated. seems to work satisfactorily. The dominant root. as foumd, is real and positives for both mumerical examples. The iterative process: swith remsealing to unity after division by dominant root r, on completion of each iteration does reach a stable structure of both Frimal and Dual eigen-vectors after Bo or more iterations. These vectors comprise all positive elements: as required.
(2) The two Leontief Inverses examined show considerable regularity of structure, for purposes of eigen vector analysisn Twelve of the 14 sectors reveal a. ration sector output/fimal demand very close to the eigen-root value. The average for all 14 sectorg combined $i s a l s o$ very close to the eigen-root. This degree of regularity holds for both Frimal and Dual ejgen-vectors, in both Inverses.
(3) The Dual pricewvector may have an indicative use, as showing how proportions must hold between price changes of primary inputs: to obtain similar proportions between price changes of sector outputs. However, the economic meaning of the Frimal: as a vector of final demand growth, is less obvious.. In Irish conditions. as explained above, the Frimals obtained from both Iriverses do not make good economic sense. The wrong sectors are enlarged or reduced, by comparison with the 1982 actual
structures as estimated by Table 1 transamtions. For larger and less open ecomomies: however the frimal structure may be useful as ari indicator of balanced growth.

5. REFEREMEES

[1] EFGDY: A. Propottions, PricEs and plammimg: Eudapest: Abadémiai kiado: 1770: 194 pages.
 Dublin: Economic and Social Fesearch Institutes 1586: 169 peges.
[S] INTEFNATJONAL EUSINESS MACHINES COFFOFATION (IEM)

 1568: 454 pages.
[4] FETFI, F.A.? Convergence and temporal structure in the Leontief dymamic model Ira A Erody and A.F.. Carter (eds.) Jrput-Output Techmiques; Amsterdemu North…Holland! 1972! pp. 56s.57s.

APPENDIX 1: Eigen Results of the Table 1 1 -sector Structure expressed in (I-A) ${ }^{-1}$ Format

Eigen results appear in Tables A1.2 and A1. 3 for the 1982 13-sector stricture comprising rows and columns (1) to (13) of Table 1, expressed in the usual (I-A)-1 format, by means of total inputs of sectors (1) to (13). These Eigen-vector results relate to the dominant root, of value 1.487333, and real and positive, as should be. The (I-A)-1 Leontief Inverse is shown as Table A1.1.

Table A1.2 shows the outcome of 31 iteration for both y and π. Iterative results, even after 40 iterations, showed that stability was not yet evident. However, results of 31 iterations for primal y and derived x appear in columns (3) to (5) of Table A1.2. The average ratio across sectors is 1.381, which is not close to the 1.487 eigen-root value. The ratios of column (5) show a range of 1.346 to 1.498. The Dual results for p and πt of columns (6) to (8) show a more acceptable average ratio value of 1.478 , but their range is about the same, from 1.347 to 1.493 , as shown in column (8).

Results of some $8 \varnothing$ iterations appear in Table A1. 3. Stability was much improved, in the iteration process. A good approximation to the eigen-root value 1.487 is apparent in the x / y ratios of column (5), now within the range 1.485-1.487. The same small range applies to the pi/ní

Table A1.1: The $(I-A)^{-1}$ Leontief Inverse derived from Table 1 rovs and colunns (1) to (13)

Sectors		Energy (I)	Agriculture (2)	Food (3)	Clothing (4)	Mood (5)	Chemicals (6)	Non-metallic (7)	Engineering (8)	Construction (g)	Iransport (10)	Commerce (11)	Public (12)	Artificial (13)
Energy	(1)	1.207473	. 036883	. 040032	. 032460	. 025048	. 040559	. 081576	. 020512	. 025270	021025	014484	018459	
Agriculture	(2)	. 000041	1.064537	. 470320	. 022818	. 002922	. 000175	. 000304	. 000160	. 000240	. 000049	. 0001536	. 018459	.054219 .000466
Food	(3)	. 000044	. 149455	1.314732	. 063594	. 000583	. 000231	. 000489	. 000293	. 000382	. 0000055	. 003439	. 004583	.000466 .000272
Clothing	(4)	. 000008	. 000010	. 000025	1.039620	. 000926	. 000025	. 000031	. 000010	. 000025	. 000008	. 000004	. 000005	. 000120
Yood	(5)	. 009242	. 012173	. 029958	. 019488	1.128878	. 030764	. 037264	. 012579	. 030157	. 010325	. 005240	. 005757	. 146628
Chenicals	(6)	. 001892	. 032525	. 020462	. 009302	. 002767	1.057943	. 007695	. 020124	. 003993	. 003098	. 001288	. 001405	. 029571
Non-metallic	(7)	. 002395	. 006303	. 005531	. 001626	. 000983	. 002245	1.173116	. 000963	. 191650	. 004631	. 001070	. 001316	. 010337
Engineering	(8)	. 005449	. 030952	. 019749	. 015643	. 006251	. 016040	. 019405	1.053043	. 068302	. 066781	. 004445	. 005384	. 033494
Construction	(19)	.010710	. 002193	. 007305	. 000952	. 000379	. 000637	. 009201	. 000493	1.158086	. 023907	. 003558	. 004650	. 000988
Iransport	: (10)	. 001129	. 022667	. 012045	. 002057	. 001045	. 002249	. 003289	. 001105	. 054666	. 1.001806	. 003828	. 001916	. 009901
Commerce Public	(11)	.010438 .001021	.153570 .017650	.104226 011916	. 080421	. 032830	. 055666	. 120869	. 073504	. 094256	. 013022	1.008436	. 005934 .	. 054339
Artificial	(13)	. 063462	. 08171136	. 011916	.009330 .134382	. 003791 .	.006295 .214056	. 013620	. 008335	. 010672	. 001464	. 000750	1.000962°	. 006123
					. 134382	. 0 O30	. 21405	. 257110	. 086205	. 097804	. 069716	. 013914	. 010021	1.025843

Table 11.2: Eigen results for 13 -sector ($\mathrm{I}-\mathrm{A})^{-1}$ Leontief Inverse Table Al.1, after 31 iterations

Sectors	$\begin{gathered} \text { Total } \\ \text {. Output } \\ \text { proportions } \end{gathered}$	Iotal Final Demand proportions (including Households)	PRIMAL Eigen- Vector Y Final Demand proportions (31st iteration)	Sector outputs: derived from (3) by 13-sector $(\mathrm{I}-\mathrm{A})^{-1}$ Table 11.1	Ratio (4)(3), Eigen- root approx- imation	DUAL Eigen- Vector of direct Primary Input Coeffs. (31st iter.)	Direct 4 indirect price vector p^{\prime} derived from (6) by 13-sector $(I-A)^{-1}$ Table 11.1	Ratio (7)/(6) Eigenroot approximation
	$\begin{gathered} \text { Enillion } \\ \text { (1) } \end{gathered}$	$\begin{aligned} & \mathrm{fm} \\ & (2) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{fn} \\ & (3) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K(} \\ & \text { (4) } \\ & \hline \end{aligned}$	(5)	(6)	(7)	(8)
(1) Energy	3.774	2.450	20.6662	27.8399	1.347	. 0094761	. 012765	1.347
(2) Agriculture	9.061	4.322	5.6386	8.4434	1.497	. 2059138	. 307121	1.492
(3) Food	17.007	18.327	5.0065	7.4991	1.498	. 5664194	. 845715	1.493
(4) Clothing	2.502	3.548	0.0586	0.0798	1.362	. 0968200	. 143979	1.487
(5) Yood	3.645	3.286	16.8379	22.9767	1.365	. 0088133	. 012405	1.408
(6) Chenicals	4.758	5.737	3.5293	4.8937	1.387	. 0107573	. 014807	1.376
(7) Non-metallic	2.802	1.371	4.6549	6.2831	1.350	. 0264623	:036338	1.373
(8) Engineering	11.181	13.830	5.1910	7.1328	1.374	. 0062359	.008671	1.390
(9) Construction	9.714	12.020	2.3080	3.1074	1.346	. 0386993	. 053098	1.372
(10) Transport	3.419	3.924	1.6571	2.3001	1.388	. 0069690	. 009557	1.371
(11) Commerce	15.742	17.327	12.2611	17.0444	1.390	. 0062181	. 009089	1.452
(12) Public	9.841	13.852	1.3777	1.9163	1.391	. 0078432	. 011499	1.466
(13) Artificial	6.554	0.006	20.8131	28.6078	1.375	. 0093723	012976	1.385
TOTAL	100.000	100.000	100.0000	138.1245	1.381	1.0000000	1.478020	1.478

Table 11.3: Further Eigen results for 13 -sector $(I-A)^{-1}$ Leontief Inverse Table Al.1, after 80 iterations

	Iotal Output proportions	Total	PRIMAL	Sector	Ratio	DUAL	Direct + Ratio indirect $(7) /(6)$ price Eigen- vector p^{\prime} root derived approx- from (6) imation	
		Final	Eigen-	outputs X	(4)(3),	Eigen-		
		Demand	Vector Y	derived	Eigen-	Yector		
		proportions	Final	from (3)	root	of direct		
		(including	Demand	by	approx-	Primary		
Sectors		Households)	proportions	13-sector	imation	Input		
			(31st	$(1-A)^{-1}$.		Coeffs.		
			iteration)	Fubte	\vdots	(3)st		
				A1.1.		iter.)		
	frillion	fill	fir	fn				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) Energy	3.774	2.450	11.3692	16.8929	1.486	. 0019923	. 002959	1.485
(2) Agriculture	9.061	4.322	16.6597	24.7789	1.487	. 2239994	. 333164	1.487
(3) Pood	17.007	18.327	14.8350	22.0649	1.487	. 6218298	. 924878	1.487
(4) Clothing	2.502	3.548	0.0289^{\prime}	0.0430^{*}	1.485	. 1026662	. 152699	1.487
(5) Yood	3.645	3.286	10.5804	15.7218	1.486	. 0049362	. 007340	1.487
(6) Chenicals	4.758	5.737	3.6504	5.4269	1.487	.0039292	. 005840	1.486
(7) Non-metallic	2.802	1.371	2.2086	3.2809	1.486	. 0085729	. 012741	1.486
(8) Engineering	11.181	13.830	4.4303	6.5854	1.486	. 0028198	. 004192	1.487
(9) Construction	9.714	12.020	1.2609	1.8736	1.486	. 0104952	. 015593	1.186
(10) Transport	3.419	3.924	1.8612	2.7672	1.487	. 0020388	. 003022	1.486
(11) Coumerce	15.742	17.327	13.5864	20.1994	1.487	. 0055747	. 008291	1.487
(12) Public	9.841	13.852	1.5424	2.2932	1.487	. 0072552	. 010790	1.488
(13) Artificial	6.554	0.006	17.9866	26.7365	1.486	. 0038953	. 005791	1.487
TOTAL	100.000	100.000	100.0000	148.6646	1.487	1.0000000	1.487300	1.487

${ }^{4}$ To 5 decimal places, these are .02893 and .04297 , used for ratio of Column (5).

32

ratios of column (8). It is clear that continuing iteration has improved considerably the convergence of sectoral ratios to the eigen-root desired objective value of 1.487 .

The Primal eigen-vector of Table Al.3 column (3) may be compared with the Table 1 average final demand structure, shown in percentage form (as usual) in Table Al. 3 column (2). The Primal structure shows major unrealistic features. Energy has ll per cent of the total, Agriculture 17 per cent, and Artificial 18 per cent, most of which would have to be exported. Engineering, Construction and Public all show shares much smaller than the 1982 average final demand shares. The Primal also gives Wood some 11 per cent of the total, as against 3 per cent of 1982 final demand. Thus the Primal would make this group have major exporting.

One may reasonably conclude that, here again, the Eigen-Vector Primal is a mathematical curiosity, rather ihan a realistic framework of economic growth. Its structure implies exporting of outputs of infeasible sectors, balanced by cutting back on feasible outputs of construction and public etc. services.

