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Comparison of the Average Critical Point and the

Power Function Methods of Adjud~in$ Relative Efficient[

of Statistical Tests.    BY R.C. Geary

The situation is that in which we have a

random sample of n measured entities in regard to which

a decision has to be made between two specific hypo-
theses, He and HI, with regard to the populations from

which the sample has been drawn, e.g.¯ is population

mean more likely to be ~ o or ~1’ these parameters having

specific values?    We also consider two test expressions,

specific functions of the sample valuest for the purpose

of making decisions and we wish to ascertain which of

the two tests is the more efficient.    Decision in

every case will be determined by the value of the test

function.    We prefer the test function which in the

long run, i.e. after an indefinitely large number of

experiments, will lead to the greater number of correct

decisions.

The Power Function (PP) is on the following

lines.    We first consider the situation in which the
hypothesis H° is correct and we assume that we have a

probability table for each of the test functions.     We

then fix a certain high probability level (say .95, .99p

etc) and determine the corresponding "probability

points", i.e. the range of values of the test functions

which are such that the probability of finding values

of the functions inside the range have the stated

probability.    Outside the range is the "rejection
zone" when the hypothesis HO obtains~ clearly~ with

both tests, decision is correct in 95~, 99~ etc of cases.

The tests are equally efficient for this purpose.



But if H1 is correct the efficiency of the

two tests, as the following illustration will show,

may be quite different[i.    The right decision will be

made with each test function in a theoretically

ascertainable proportion of cases.    This proportion

is the PF of the test.    It equals the probability,

when Hl is true, of finding the value of the test

function in the H - hypothesis rejection zone.    Of
8

the two tests one prefers, in any particular problem,

the test with the higher PF.    As between a test A

and a test B, if the PF of test A is greater than that

of test B, then proportionately the same number of

correct decisions will be made if H is correct buto

a larger number of correct decisions using A if

hypothesis H1 is correct.    Hence with both hypotheses

under consideration proportionately more successes will

be attained using test A.    This is a brief synopsis of

the Neyman-Pearson theory [$].

There can be no question about the theoretical

superiority of the PF approach.    It unfortunately

happens, however, that it is extremely difficult to

apply this theory in practical applications,     Very few

probability distributions of test functions are known

exactly and the situation often arises in which~ even
if one knows the distribution when H° is true, it is not

possible, given any sample size n, to derive the

distribution when q obtains.     It is for this reason

that, many years ago~ the author [2] used as a

compromise, what he now terms the Average Critical

Point (ACP) method which is strictly applicable only

in the asymptotic case9 i.e. when sample size n is

indefinitely large.    In his work then he found~ in

particular applications, that conclusions as to



relative efficiency of tests which obtained in the

asymptotic case did not necessarily apply when sample

size was finite: the ACP method is subject to this

reservation.    Certain only is it that~ in practice~

the ACP method can be applied far more widely than PF.

The ACP Method

Suppose we have a test function t (xl, x2,

..., x ) where Xl, x2’ "’’’ x are the measures of n
n n

random drawings from a population ~(xt ~) (continuous

in ~ for all values of x) of defined form but with a

parameter ~, the value of which is at present un-

determined.    We wish to decide from the sample, using

the test t, whether in the population the value ofp

could plausibly be taken as zero or whether ~ has

probably some value greater than zero.    Clearly if

is very small (without defining "smallness") no test

will be sensitive enough to yield an answer (when n is

finite).    We propose to reject the hypothesis that in

the population ~ = 0 when the value found for t in the

particular sample is greater than~ say, the .95

probability point, say ~ on the ~ = 0 population hypo-

thesis, the critical value.    If ~ > 0 we are naturally

interested in the values of t which are "near" ~, some

greater and some less.    We therefore set

where B is the "expected" value, or the mean of an

indefinitely large number of sample values. Assuming

that E t(~l) varies monotonically with ~, (i) is solved

for g by an identifiably unique value g = M so that
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Now if there are two tests ti and t2 with

°95 F2oba?i!ity points rI and T2 yielding critical

values of~..~, namely Ml and ~2’ tI is the better, or

°"
It ~s only when

-sample size n is indefinitely large that this ACP

metho~ hac absolute validity in the stochastic sense,

for in that case all the values of t equal 9 when

variance t is O(n’~), ~ > O, as will ordinarily be the

case.    Note that the method involves only the

calculation of B t(~l), the first moment, as distinct

from deriving the frequency distribution of t(g) (an

i~co~parably more difficult algebraic problem), required

for the P,_~ method°

St!l.dy_...o_fa Simple Problem

A sample of n is drawn at random from a

normal !population with variance unity and mean ~,    We

wish to test in probability whether ~ is zero or some

po~itive quantity°     The two tests proposed are the

Gosset,-,Uioher t and the count of signs (+ or -) using

the binomial.    For the latter we require the

probability P(~) of a + sign on a single drawing; this

is

O0

".~l ~ dx e-(X-~)2/2
P (~) -

O

= 1 dx e-x /2

G~v,¢:: . ; .I ..... zalues of P(ig) can be obtained from the

normal probability table [I].     In a sample of n the

probability of obtaining m + signs is

/If1

where (~(~L) = i -- I’(~),

m
[ Q(/~ )] n-m
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Let n = 20.    On the H° hypothesis 9 = 0

and P(O)=~,    We find from the binomial table for

n = 20 that while almost equal numbers of + and - signs

are to be expected that the probability of a tail

of 5 or fewer minus signs is .0~07~ an arbitrary but

conveniently low value.    We accordingly adopt the

rule that we shall reject the nul-hypothesis

(correctly if, in fact~ ~ > 0) when we find 5 or fewer

- signs.

Let ~ have a few specific values.    When

p = 1 P(1) = .8413 so that Q(1) = .1587.    The prob-

ability of getting 5 or fewer - signs with this

distribution is

( 8413)2°+/2°~[ I)

= .9158

which is the power of the sign count test.     If p is in

fact i decision will be correct in about 92~ of cases.

The rival test should be the Gosset-Fisher t.

However, since n is as large as 20 it will be assumed

that the population variance is known (in fact = I) and

the test function will simply be the mean x~.    The

known variance of x is I/~20 = 0.22~6,    The nul-hypothesis

probability point corresponding to the above probability

of .0207 is 2.04: we adopt the rule that the nul-

hypothesis will be rejected if x is greater than

2.04 x 0.2236 = 0.4561,

Strictly9 the power function should be based on the
probability of t = ~n/s from a population N(~; i).
This is a very complicated function and the value of
the power could not differ much from the value .9925
found above.
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If, however, p = l, according to this rule,

using ~, the probability will be that of obtaining a

value greater than -(I-O.4561)/O.2236 = -2.43.    This

probability from the normal table is .9925, the power

of the test x.    Accordingly, by reference to the two

power values .9158 and .9925 the x test is far more

efficient than the sign count test for discriminating

between populations with means ~ = 0 and I.    The

powers corresponding to hypotheses ~, = O versus (in

succession) certain values of p are as follows:-

Test

I Sign

2 x

g = 0 versus ~ =

(I) 1.0 (2) 0.9 (3) 0.8 (4) (5) 0.6 (6) 0.5

.9158     .8531    .7537     .6495 .5183     .3843

.9925     .9757     .9382     .8521 .7389     .5793

(See appended diagram)

There can be no question of the superiority of

as a test compared with the sign count, for all the

far greater convenience, and indeed the greater scope~

of the sign count: for example, using the sign count to

establish the relationship over a series of years

between the unemployment and marriage rates all one has

to do is to count inverse concordances between consecutive

years and use the point binomial

+

where n is number of years.    Furthermore, the method

can be used when only qualitative judgments are available

even if actual measurements (necessary for the use of x)

cannot be made.    Finally the writer has encountered

particular cases in which the sign count was more

sensitive than x.    When significance may be adjudged on

the sign count, this test can confidently be used.



Of course there is nothing new in what has

gone before.    The writer merely deems it desirable to

set out certain~ now almost classical, considerations as

a preamble to the main theme of the memorandum which is

to compare this power function approach to the ACP

method of making comparisons of sensitivity of tests,

by reference to this simple application, one of the few

in which it is practicable to derive the power functions.

The ACP treatment in this application is very

simple~    On the sign count test the rule, as before,

will be to reject the nul-hypothesis when the count of

+’s is 15 or more, corresponding to a nul-hypothesis

probability of .0207~    The 15 will be the mean found

from an indefinitely large number of experiments of

drawing samples of 20 when the population probability

is 15/20 ~ 0.75.    The corresponding value of ~ namely

M2 is found from (2) with P(~) = .75.    We find

M2 = 0.675.    With the ~ test the value of ~, namely

Ml~ is found as Ml = 2.04/~20 = 0.456, the 2.04~ as

before, being the nul-hypothesis probability point

corresponding to probability .0207.    Since Mi < M2,

in the long run a positive aberration ~ from the nul-

hypothesis mean zero will be identified at a lower

value of ~ than using the count of signs method~    We

may regard the ~ test as the more "sensitive"~

As implied earlier, the ACP approach, by

reference to the present application~ seems to

exaggerate somewhat the relative superiority of x over

the sign count, i.e. given any level of the power

function the discrepancy between the critical levels

will be somewhat less than between the Ml = 0.456 and

M2 = 0.675 shown aboye for ACP.    Qualitatively,
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however, the findings are essentially the same.    A

diagram is appended illustrating the powers of the two

tests for different values of the parameter ~.    The

power of ~ for N = MI = 0.456 is, of course, exactly ~.

The "horizontal" lines show the corresponding values

of ~, given certain power levels.    At power 0.5 the

value for the sign count test is about 0.587 compared

to the 5~2 = 0.675.
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