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The Accelerated Binomial Option Pricing Model
Alystract

This paper describes the application of a convergence
acceleration technigue to the binomial option pricing model ,
ir the context of the valuation of the American put ophtion on
non-dividend paying stock. The resulting model,
accelarated binomial option pricing model, can also be viewsd
as an approximation to the Geske-Johrnson model for the value
of the American put. - The new model is accuwrate and fTastes
thar the conventional binomial model. It dis also likely to
prove much more computationally convenient than the
Geske—Johnson  model . It is applicable to a&a wide ranges of
option pricing problems.
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The Accelarated Binomial Option Fricing Model

I I'mtroduction
The binomial option pricing model, introduced by Cox ., Ross

ard Rubinstein [31, is now widely used to value options,

particularly where no analytic {closed form) solubion sxists,

as  in the benchmark case of the American put option. More
recently, Geske and Jobnson 51 introduced a method of
valuing American put options based on the compourd option
model and wbilising convergence acceleration technigues. e
a result, their approach is a more efficient means of valuing
asuch options than the binomial. In this paper wa present a
method, called the accelerated binomial option priging model,
which is & hybrid of the binomial and Beske-Johnson models.
It can be viewed as a binomial model incorporating the
convergence acceleration techniques used by Geske and
Johnson:  equally it can be sgen as a binowmial approstimation
to the continuous timne Besk@~Jmhnamn.mmdwl. The purposse of
this pap@f ig to present the accelmtated b;nmmial oot o
pricing method and to illustrate its accuracy, rather than to
evaluate its computational efficiency wvis—a-vis other
methods. However, the results so far obtained with the
accelerated binomial method show it fto be more efficient than
the unmodified binomial mod&l and computationally simpler

than the Geske-Johnson model. These i

m
Y

ues are taken up
again in the paper’s conclusion. We begin by swiftly

reviewing the binomial and Beske-Johnson models, then go on

to present the acocelerated binomial option pricing model.
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We deal in this paper with American put options weitten on

non-dividend payving stock. We make the usual assumptions -

namely that the risk free interest rate, r, and the

annualised standard deviation of the underlying stock price,

oy are both non-stochastic and constant over the life of the

option., We denote time by the index t (& = O T, the

maturity date of the option), the stock price at t by 8

and the exercise price by X.

Il The Binomial Option Pricing Model
In the binomial option pricing model, the life of the option
is divided into N discrete time pariods, during each of which
the price of the underlying asset is assumed to ﬁak@ a %iﬁgl@
move, sither up or down. The magnitude of these movements i
given by the multiplicat&va parameters u and d. The

probability 1 of an upward movement is given by p, and the

one period risk free rate we denote by g. _ ‘

The binomial method approximates the continuous change in the
option’s value through time by valuing the option at a
discrete set of nodes which together make a cone shgped grid.
We identify each node in the cone by <i,n» where j indicates
the number of upward stock moves reguired to generate the
options immediate non-negative exercise value at that node ,

given by

Ej n = max (0 3 X - uwi dr=i 8 (for a pub) (1)
and n is the period of the model (M = O ... N). :

When valuing European options or American call options on




noan-dividend paying stock, it is only necessary to calcou

the N+l terminal everciss values of the option (i.e. the set

Bims J3=0 ... N in our notation) . Since there is no
probability of esarly exercise in these cases the intermediate

values of the birnomial process (for O < n < N nead not‘b@
computed. Instead the binomial formula is used to *jump
backwards® Trom the terminal values to the initial option
value (al. pode <0,0H) . In Geske and SBhastri’s [&] analysis

of approximation methods for option valuations, it was thi
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feature of the binomial method that was chiefly responsibl

for its outperforming its competitors (finite difference

3

methods) in terms of computing demands and expeéense by &
considerable margin 'in the valuing of a call option on
non—dividend paying stock (see, for example, Geske and

Shastri [&, table 2, p.é&0, and figure 1, p.6&11).

However , ﬂha'applicatimn of the binomial method to the
valuing of an American put option on non-dividend paying
stock will be much less efficient. This is because the
possibility of early exercise reguires that both the holding
value and the exercise value of the option be computed for
gach node in the process. We define the value of the.option

at the in *h node by
Vin = max (Aj.,, B;.) (2}
where E;., is as before and Aj~ is the holding value of the

option at that node:

A‘jn == (p/Lﬂ \)J G, bl + (1"“]:.).) :/CI:‘ v‘j,r'\"l"i (3




The binomial method entails the caloculation of the values of
all nodes in successively sarlisr periods, culminating in the

value Voo which is the option’®s value.

IIF The Geske and Jobhnson Compound Option Approach
The Geske—~Johnson analytic formula for the value of an

arlt

American put option, which we denote by 4, can be writtens:

—

O . —
Z F)I"Db (Sr".c:l'{" Snd'f'!‘ Smd'ﬁ‘ >/ Smd{" v m Lo
r==1

. (X~ [s:‘md'f'{g;r'.d'{' Sr‘\d'f'." E;md"}‘ Smd"}' Vm < nl)/yndd (43

That is, the value of the option is given by the sum of the
discounted conditional exercise values of the option at each

instant during its life. The condition in gquestion is that,

at instant ndt, the stock price, 8, should be below its

—

critical valus 8, not having fallen below its critical value
at any hreviada instant, mdt. To usg expression 4), then,
entails the evaluation of an infinite sequence of
successivaely higher order normal iﬁtéqralﬁ, Aréflecting the
fact that, at instant ndt, estimating the conditional
expectation of the option’s exsercise value requires the

evaluation of an n—-variate noreal integral.

Geske and Johnson [5] surmount this difficulty by defining a
reduced number of early exercise instants duwring the life of
the option and using Richardson®s sxtrapolation to find an

approximation to the true option value. Their thres point




extrapolation, for example, defines a

HE

et of oostion val
DT i 'u-.ll—!L.I.LJll ¥ oo

F(n) , based on exercise opportunities restricted as follows:

F (LY = option value based on exercise opporbtunities

restricted to T3 F(2) = option value based on exarcis

it

opportunities at T and T/2; F(3) = option value hased on
exercise opportunities at T, ZT/Z and T/3. The limit of this
‘sequence, F((n) n »0 is the option’s value, 4. The

approximation to ¢ is then given by
Fos B3+ 4.5KIF (D -F (DT = 0.5KIF @ ~F (1) ] ()

(ses Geske and Johnson, [B, pp. 1518 and 135231).

wdal e

IV The Accelerated Binomial Option Pricing Model
The sequence of functions
N—a ( N a-\)
Fa(By = % i (p/add (Q=p) /adN—a=i Vo nein (&)

3

whers V is defined as earlier, converges to P8 EVqe) for

any binomial model with N periods. Converganoe is uniform

from below (see appendix) and ocows at FL(E), where m is the

parliest period in the model for which Vg, takes its

immediate exercise valus rather than its holding value

L21).

(B 26
m will always be less than N unless the put should be

exercised immediately. In other words, for a binomial option

pricing model with fixed N, the value of the option iz the

limit of the seguence P, )

. PL(B) defines a seguence of

option values with an increasing number of xercise



ppportunities.  Thus, PaL{8) is a Ewropesan option, pasroaltting

ercise only at period N. Fqe(8y is the valus of an aption
permitting exercise at period N and period N-13; and zo on.
That the sequence converges to the option’s value is true by
gefinition (P (8Y=YVee) . That émnvergence is from below is
intwitively clear, insofar as, if this were not so, Fj (8

Pa(B) (3 < M and F;(S) would be the option’s value. But
this would imply that exercise opportunities in periods
garlier than period N-j would reduce the value of the option

- an obviows contradiction.

Consider now the related sequence, F*,(8), or F*{M) for

short, defined as follows: FT{) = FPa(8); F*(E) = binomial

option value permitting exercise at N and N/2 onlys F° () =

binomial option value permitting exercise at N, 2N/7% and N/Z

only. Again, this segquence converges to the option®s value, -

Frnu(8Y from below - that is, Fy(8) is the limit of the
sequence F* () as n -0 , It follows too that FP(2)x F° (1)

and that P* {3 » F* ), though not necessarily thalt PO(3)

Fe(2y, although in practice this usually seems to be the

case. &

To apply the Richardson extrapolation technigue to the
binomial we procesed by analogy with Geske and Johnson®s

exposition. The parallels betwesn the sequences P oand P°

are

clear: in both the number of exercise opportunities increases

as we move down the sequence. Thus we apply formula (5) to

the terms F (), n= 1,2,3. The value of the option is then

.given as max {(F*, X-8).




In practical terms the resulting amcelerat@ﬂ‘binmmial model
i véry masy to program. To give some idea of its accuracy
we refer first to Table 1, where three sets of American
option values for the data originally given by Cox and

fubinstein 041 and FParkinszon [81 are shown. These thres sets

W

of values are based on, respectively, the wumodified binomial
with 150 periods or Farkinson®s numerical approachi the
Geske-JdJohnson ’analyti;’ method using a four point
extrapolation: and the accelerated binomial method presented
here, using a three point extrapolation over a 1050 period
moddel . A1l three sets of values agree very closely. The
largest error in the accelerated binomial method is of the
order of one and a half cents compared gith the binomial or
num&ricallvalu@. Clearly a four point extrapolation would be
more acourate. What is most striking about the accelerated
binomial method, bhowever, is the reduction it brings aboult in
the amount of computation reqgquired. The unmodified binomial
method requires the calculation of (N+1)2 node values, which,
for N=150, is 22801. The accelerated binamiél, on the other
hand, calls for only 4N + 10 calculations -~ &10 for a 150
period model. Thus the accelerated binomial is very much
faster than the binomial method, reducing the ﬁumbaw of node
value calculations by 97 per cent. A second source of

comparison will be found in Table 2, which

shows put opltion
values calculated using the accelerated binomial together
with wvaluss obtained using three other mathods - the finite
difference methaod, the Gaake~Jahnaan'me£hod and Macmillan™s

£?1 guadratic approximation. Comparing the three other



methods against the Tinite difference valuss 1t can be ssen

that thers is little to choose betwsen them, although the
accalerated bhinomial is, if anybthing marginally more accourate

than either the Geshke-Johnson model (which is here computed

using a thres point extrapolation) or Macmillan®s. A similar

concluzion is reached if we compare the accelerated binomial

values in the present Table 1 with those given

by Macmillan

[9, pp. 13112231 for the same dabta using his own method.

L TABLES 1 AND & HERE 1

YV Conclusion

The only pravious attempt to investigate the application of
convergence accalaratiwn'tachnique% %m the binomial option
pricing model is contained .in & paper‘by Omberg L71. His
approach differs from the present one insofar as he sought to
find‘a'méana by which to accelerate the convergence of a
sequaence of bimnomial option models with increasing N (rather
than, as in the approach used hers, sesking to accelerate the
convergence of a particular binomial model with fixed Ny,
However , such a segquence convergss in an oscillating, rathear
than uniform, manner, and Omberg showed that it was
impossible to select the parameters of the binomial model in

such a way as to ensure uniform convwrgenaé. Navertheless,
Omberg [7, p.4641 notes that, if convergence acceleration
could be applied to the binomial, then "binomial-pricing
models might prove to be considerably more efficient than
compound option models".

The present accelerated binomial model has advantages over
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both the binomial and Beske-Johnson moddels
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it iz much faster than the unmodified binomial, suggesting
that it might prove to be more efficient than other numerical
methods (such as finite difference methods) not only for
valuing a small number of Dptimﬁﬁ, but also for valuing &
large number . On the other hand, the accelerated binomial,
viewsd as an approximation to the Geske-JdJohnson model,
removes the need to evaluate multivariate normal integrals of

up to order thrase or four (in a four point extrapolation) - a

computationally time consuming task. ®  That this iz the main

disadvantage of the Geske-~Johnson method has been recognised
by a number of authors, including Barone-Adesi and Whaley
[131, Omberg L[71 and also Selby and Hodges [101 who bhave
demonstrated a means by which the integral evaluation problamn
can be reduaced to more manageable prmportiqné. The approach
outlined here, hmwévar, ig likely to prove fTar more
convenient and accessible even than a Geske-Jdobhnson model

incorporating Selby and Hodges® modifications.
¥

Since the binomial itself is an approximation to the {trus
option value, ow application df the Richardson extrapolation
technique vields an approximation to an approximation.
Neverﬁhele%as this can be made as accurate as one desires,
first by choosing a sufficiently large value for N, and,
secondly, by extrapolating from a greater number of exercise
points. Clearly, however, ou choice of the conventional
value of N (150 and of a simple three point extrapolation

yields results which are sufficiently accurate for most

practical purposes. Finally, bescause the model presented
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here is a modification to the binomial, it retains all the

flevibility of the latier. Thus the accelerated binomial can

be wused to value all the varisty of options (on forseign
exchange, commodities, futures, and so on) for which the

binomial itself iz applicable.




FOOTNOTES

1. By which we mean, of course, the probability within the
bhinomial modsel implied by the risk newtrality assumpltion.

2 Az with the sequence F@O), this means that F* () dos
not converge uniformly to its limit. In discussing the
Geske-Johnson  model Omberg 7. pp. 465-44641 has g ested
that wuniform convergence of the sequence of F 0D would be
desirable on the grounds that this would ensure that ths
convergence acceleration technique performs as intended. For
both the seguences FM) and F* ) this couwld be accomplished
by ensuring that each term in the sequence permits esarly
auercise at every instant (or period, in the case of F* ()
at which exercise was permitited in forming earlier terms.
Thus, the term PO in the Geske-Johnson sequence would be
amended to pereit exercise at T, 3T74, 27/4 and T/4 — and
analogously for F* (3. In what follows, however, we retain
the original specifications of the terms of P and FP7.

e

#. The acceleratecd binomial, unlike the GGeske-Johnson
approach, does not reguire the separate calocuwlation of the
critical stock price at each permitted exercise point.
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AFFENDIX

Uniform convergence is defined by Dini’s theorem. In our
case, to show that the seguence of functions FLE)  (a=0 -

M) converges wniformly we need only to demonstrate that, for
all 8, F_o(8)2 Fiuy (8) .

Wrrite Fa-g (8 as

5 (5) v,
LAilp/gyd ((A-p /g i Vo,

J=0
n-1 r‘x-jl)

= 3 3 prgrd CA-pd /gy n—i=§ V, U-py/gq-
J=0

r-1 (nmi)
4+ X =1 (p/ad it ({l-p) /e mmd Vg p/g (al)
=1

Write Fo(S) as

n—-1 (n*i)
by 3 (p/ayd (L-pd /g n=i=d Vg (a)
Ge=0 )

Since for all V;
VJ » -1 >/ vJ ok N (p/gy + VJ 3 (1—-pd /q

aR is 2

n—-1 (n-1
x (_}) (p/gdd (A=-p)/q)r=i-j [V 4y, n(p/a) + V;, (1-p2/gl
J=0
n-1 @»0
= & J (p/gdd Al-p)/g)o-i=jy YV, (I-p)/g
J=0
n—-1 [n-1
+ X JMpsepd=t (Ll-p) iy emisi VMg o B/
j=Q
n-1[n-
= I i) p/grd (-pd/gir—i-i V; (-p)/g
=0 :
n (h-“i) .
+ L V-l p/gdi—t. (A-py /gy e V. p/Yg
d=1 .



Thus Fal(H) 2 Faeg (8)

and the

.14

sequence COnNverges

uniformly.
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Table

35.00
35.00
35.00
40.00
40,00
40.00
45.00
£5.00
45.00
35.00
35,00
33.00
46.00
40,00
40.00
45,00
45.00
45.00
35.00
35.00
35.00
40.00
40.00
40.00
43.00
45.00
435.00

1.133
1,083
1048
1,020
1,005
1,094
1,041
1.010
£.083
1,020
1,127
1,030

I'
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TARLES

Values of aAmerican Put
Geshe-Johnson and Accelerated Rinomial Methods

A, 8=$40; r=1,05

o

0.2000
0.2000
0.2000
0.2000
0.2000
0,2000
0. 2000
0.2000
0.2000
0. 3000
0.3000
0, 3009
0. 3000
0.3000
0. 3000
0.3000
0.30600
0.3009
0.4000
0.4000
0, 4000
0.4000
0.4000
0. 4000
0.4000

0.4000

0. 4000

T,

k3

0.0833
0.33330
0.58330
0.08330
0.33330
0.58330
0.08330
0.33330
0.58330
0.08330
0.33330
0.58330
0.08330
0,33330
0.35833¢0
0.08330
0.33330
0.58330
0.08330
0.33330
0.38330
0.08330
0.33330
0.58330
0.08330
0.33330
0.38330

B. 8=1; X=1; T=1

-4

0.5000
0.4000
0.3000
0,2000
0.1000
0.3000
0.2000
0.1000
0. 2000
0.1000
0.2000
0.1000

Numerical

0. 14800
0.12800
0, 10100
0.07100
0.03800
§.08400
0.046400
0.03600
0.05300
0.03300
0.04400
0.03000

Binpmial

0.01000
0.20000
0.43000
0.85000
1.38000
1.99000
5.00000
5. 09600
3.27000
0.08000
0.70000
1.22000
1.31000
2.48000
3.17000
3. 06000
3.71000
6.24000
0.23000
1.35000
2.16000
1.77000
3.38000
4,35000
3.29000
6.51000
7.39900

.
LD e s
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e

<

<
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Geske- Accelerated

Johnson  Bi

0.006200
0.199900
0.432100
0.852800
1.580700
1.9905300
4,998500
3.053100
3.271900
0.077400
0,469400
1.219400
1.319000
2.481700
3. 173300
3.039900
5.701200

Accelerated
Binomial

0.14720
0.12510
0.09920 .
0.070%0
0.03770
0.08360
0. 04330
0.03560
0.05240
0.0322
0.04440
0,0292¢

namial

0.006000
0.198900
0.433800
0.851200
1.574000
1.984000

6.505000
7.382000

Option

Cusing

numerical ,




Notes to Table 1z
For the bBiromi al anc accelerated binomial, M=1 850,
Geske-Johnson  value is based on four point extrapolations

Acoel erated Einmomial value is based on three point
@extrapol ation. Geske-Johnson values are from Beske and

Johnson L[5, p.l8191. Values in column 4, panel A,  are from
Cox and Rubinstein 04, p.2481:; values in column %, panel

=,
are from Parkinson [8, pp. 30-347.
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Table 2 Values of American Fut Optiomn using Finite
Differences, Geske-Johnson, Macmillan s Quadratic
Approdimation and Accelerated Binomial Methods (X=100)

r o t § FD 64 it AB

£.08 0.2 0,25 80 20.00 20.00 20.00 20,00
1,08 0.2 0,25 90 10.04 10,07 10,01  10.04
f.08 0.2 0,25 100 322 32 22 .22
1,08 0.2 0.25 110 0.66 Q.66  0.68  0.6b
{.08 0.2 0,25 {20 0,09  0.09 0.10  0.09
L1302 0,23 B0 20,00 20.01 20.00 20.01
.13 0.2 0,25 90 10.00  0.96  10.00 10.00
.13 0.2 0,25 100 2,92 2,91  2.93 Z.92
L13 0,2 0.25 110 0,85  0.53%5 0.38B 0.5
{43 0.2 0.25 120 0.07  0.07  0.08  0.07
1.8 0.4 0.25 B0 20,32 20,37 20.25 20.3%
1,08 0.4 0,25 90 12,56 12.538 12,31 12,56
1,08 0.4 0.25 100 711 7.0 7.0 7,09
.08 0.4 025 {10 370 370 371 70
f.08 0.4 0.25 120 4,79 179 1.81  1.80
1,08 0.2 0.30 80 20,00 19.94 20.00 20,00
1.08 0.2 0,50 %0 10.29 10,37 10,23 10,37
1,08 0.2 0.30 100 419 417 419 417
£.08 0.2 0,50 110 1.41 L4l 145 1,40
.08 0,2 0,50 120 0.40  0.40  0.42  0.40

Key: FD finite difference method; _
GJ Geshke-Johnson method, basded on three point
extrapol ations
MG Macmillan s quadratic approximations
AR  acrelerated binomial with N=130 and three point
extrapolation.

Columns 1 to 7 from Barone-Adesi and Whaley [1, Table 4,
pe.3151. '




