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Improving the Efficiency of the Binomial Option Pricing
Method

Abstract

The binomial option pricing model is now widely used to value
options, particularly where fro analytic (closed form)
solution exists.    The aim of this paper is to present a
modified binomial option pricing algorithm applied to the
case of the American put option. These modifications, which
are based on a set of propositions concerning the binomial
method, considerably improve its computational efficiency.
They have a particular application to the valuing of long
lived options.
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Improving the Efficiency of the Binomial Option Pricing
Method

Introduotton

The aim of this paper is to pr’esent a modified binomial

option pricing algorithm applied to the case of the American

put option.    These modifications considerably improve the

computational efficiency of the method. They are based on a

number of propositions concerning the binomial method. These

propositions allow us to partition the set of ’nodes’ in the

binomial process into subsets, for each of which it is

possible to determine whether the immediate exercise value of

the option exceeds its holding value, or vice versa, without

$

having to explicitly calculate and compare these values. To

this extent these propositions contradict a long held belief

in regard to methods of pricing the American put option:
0

viz., the assertion 1 that the exercise boundary condition

must be checked at every instant in the pricing model (see

Merton 1974; Oeske and Shastri 1985, pp. 48 and 64).    In

respect of the binomial model we show that the probability of

early exercise in respect of certain periods of the model,

even when the option is in the money, can be demonstrated to

be zero. Before doing so, however, we begin with a brief

recapitulation of the binomial model and introduce the

notation to be used throughout the paper.

The BLnom~a! Optfon Pricing Model

We deal in this paper with American put options written on



non-dividend paying stock. We make the usual assumptions-

namely that the risk free interest rate, r, and the

annualised standard deviation of the underlying stock price,

~, are both non-stochastic and constant over the life of the

option.    We denote time by the index t (t = ~ ... T, the

maturity date of the option), the stock price at t by S(t)

and the exercise price by X.

In the binomial option pricing model, the life of the option

is divided into N discrete time periods, during each of which

the price of the underlying asset is assumed to make a single

move, either up or down. The magnitude of these movements is

given by the multiplicative parameters u and d. The

probabilities z of an upward or downward movement (p and 1-p

respectively) in the stock’s price are given by

p = (q-d)/(u-d) and

1-p = (u-q)/(u-d)

where q is the one period risk free rate, given by

.q = rT/N

The binomial method approximates the continuous change in the

option’s value through time by valuing the option at a

discrete set of nodes which together make a cone shaped grid.

We identify each node in the cone by <l,n> where j indicates

the number of upward stock’-moves required to generate the

option’s immediate non-negative exercise value at that node,

given by



B j,n = max (g ; X- uJ dn-J S) (for a put)

and n is the period of the model (n = g .., N).

(i)

When valuing European options or American call options on

non-dividend paying stock, it is only necessary to calculate

the N+I terminal exercise values of the option (i.e. the set

BjN, j=g . . . N in our notation).    Since there is no

(rational) probability of early exercise in these cases the

intermediate values of the binomial process (for ~ < n < N)

need not be computed.    Instead the binomial formula Is used

to ’jump backwards’ from the terminal values to the initial

option value (at node <~,~>). In Geske and Shastri’s (1985)

analysis c,f approximation methods for option valuations, it

was this featu.re of the binomial method that was chiefly

responsible for its outperformingitscompetltors (finite

difference methods) in terms of computing demands and expense

by a considerable margin in the valuing of a call option on

non-dividend paying stock (see, for example, Oeske and

Shastri 1985 table 2, p.60, and figure i, p.61).

However, the application of the binomial method to the

valuing of an American put option on non-dividend paying

stock will be much less efficient.    This is because the

possibility of early exercise requires that both the holding

value and the exercise value of the option be computed for

each node in the process. To see this we define Aj,n to be

the holding value of the option at the jnth node. This is

given by the weighted sum of the discounted values of the



option at the two points to which it can move in the

following period:

[max G; X - uj+l dn+l-J S; Aj+l,n+l]
q

(2)
+ ~ [max e;X - uj-1 dn-J S; Aj,n+l]

q

Thus the value of the American put option at <jn> is

Vjn = max (Ajn; Bjn) (3)

Typically the use of the binomial method to value the

American put would require the following set of calculations.

First, calculate the terminal values of the option at n=N via

the equation:

Vjn = Bin = max(e; X - u] dn-] S) for all j (=e.;.n)

Then use the values so obtained to estimate the values of the

option at n=N-1, discounting accordingly:

Ajn = Vj,n+1 (1-p)/q + Vj+l,n+1 p/q    for all j (=e...n)

These are the values of holding t’he option to the next

period. However, the immediate exercise value of the option

is given by:

Bin = max(e; X - uJ dn-J S} for all j (=g...n)

Thus the value of the option at period N-1 is

Vjn = max (Ajn; Bjn) "for all j (=e...n)

Repeat this process until the final calculation for n=e which

is the value of the option.



The virtues of this approach are that it is easy to program

and is closely tied to the economic interpretation of the

process. Algorithms using the binomial method are fast and

cheap to run. In Geske and Shastri’s (1985) comparative

analysis, the binomial was found to be the cheapest among the

set of methods they examined for the valuing of a single call

or put option (all methods were equally accurate).    As the

number of options to be valued increased, however, Geske and

Shastri (1985) found that finite difference methods became

more cost effective.    In the case of the call option, the

cost of valuation per option was least under the binomial

method up to 3(~g options: in the case of the put the

binomial’s relative cheapness lasted only up to the valuing

of nine options. As the authors note, this difference is due

to the infeasibility of ’time jumping’ in the put case.

Proposlt~ons

All the following propositions refer to the binomial process.

Proposition 1: let S* be any value of S, s.t. X- uS*>g.

Then

X-S* > (X-dS*)(1-p)/q + (X-uS*)p/q (4)

Proof:

(X-dS*)(1-p)/q + (X-uS*)p/q = -((1-p)d + pu)S*/q + X/q

since ((1-p)d + pu) = q
= -S* + X/q

Therefore



X-S* > -S* + X/q

which is true iff q>l (i.e. interest rates positive).

This proposition tells us that if both of the nodes to which

the process Call move in the next period have a value equal to

their immediate exercise value, then the value of the option

at its current node will equal its immediate exercise value.

Proposition 2: let X-S* = Bin and

then

Aj+l,n+l > Bj+l,n+l =X-uS*
Aj,n+l    > Bj,n+l    =X-dS*

(5a}
(5b)

X-S* < Vj+l,n+1 p/q + Vj,n+I (1-p)/q.

Proof: see the appendix.

(5c)

This proposition says that if both of the nodes to which the

process can move in the next period have a value equal to

their holding value, then the value of the option at its

current node will equal its holding value.

Two corollaries follow from these propositions.

(a) {from propositions I and 2):

Bj,n+1 > Aj,n+l

is a necessary condition for

Bjn > Ajn~

{b} {from proposition I):

Let S* = uJdn-jS. If X - uN-nS* > e then Bin > Ajn
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Proposition 3: Let S*=uJdn-JS:

if X-dN-nS* ~ ~ then Vjn = g

Proof: X-dN-nS* = X-uJdN-JS ~ g

so, X-ukdm-XS ~ e for all k ~>~ j

In other words, all nodes to which the process can move from

<j,n> have holding and exercise values less than or equal to

zero, hence Vjn is zero.

This proposition says that if, given the value of the share

price    at any node, there is no probability of the share

price falling below the exercise price within the binomial

process, then the option will have zero value at that node.

Proposition 4: if Sjn < X, Bin = ¢ and Vjn=Ajn

This is s’elf evident. The proposition says that if, at any

node, the option is out of the money, its value will equal

its {possibly zero} holding value.

Part|~ionI’ng the Binomial Cone

Define a to equal the maximum number of upward movements the

share price can make and still finish {at N) in the money.

Proposition 3 tells us that at all nodes, <k,n>, where k > a,

the option will have zero value. This allows us to define a

triangular area in the up@er right hand corner of the

binomial cone comprising zero valued nodes.    In the example

given in figure 1, the nodes in this area are indicated by

zeros.



[figure 1 about here]

Proposition 1 and corollary (b) tell us that for all nodes

<j,m>, m ~ N-a, Bjm > Ajm. This allows us to define a

triangular area in the bottom right hand corner of the cone

in which all nodes will take their immediate exercise value.

In figure 1 this comprises the nodes i.ndicated with crosses

and the first (i.e. lowest) diagonal values which lieonthe

boundary of this area.    More significantly, proposition 1

also tells us that we need calculate only the values for

nodes lying on this boundary (Ba,N, Ba-I,N-I, Ba-2,N-2 and

so on) and not those within the boundary of this area.

The effect of defining these areas is that calculation of

option values heed only take place within the rectangular

central area of the cone defined by the boundaries of these

two areas’ and including the boundary of the second area.

Within this central area we calculate the holding and

exercise values of nodes by taking each diagonal (rather than

each period) at a time.    So the first diagonal is the

boundary diagonal of area (2) for which we calculate holding

values only. For the next diagonal ( <a+l,N-l>, <a,N-2>,

<a-l,N-3> and so on) we calculate both the holding and

exercise values of each node. 3 However, in the next

diagonal we need calculate only the holding value of the

first node (<a+2,N-2>) (by proposition (4)) and the holding

and exercise values of the remaining nodes.    In the next

diagonal we calculate holding values only for the first two

nodes, and holding and exercise values for the remainder. As



we progress to later diagonals, the number of nodes for which

both sets of values must be calculated declines because,

although the size of the diagonals remains constant (at

N+l-a) , the number of nodes which are out of the money

increases by one each time. The value of the option at these

nodes is a function of values which have already been

computed.

This process can be carried on until we estimate the value of

the option as the last node in the first (or final, taking

the order of our computations) diagonal. In itself this

reduces the required number of computations considerably when

compared with the unmodified binomial method.    However,

proposition 2 and corollary (a) allow us to reduce further

the number of computations required, insofar as they permit

jumping over nodes in a manner comparable to that used in

valuing calls. If, in any diagonal, the <g,n> node takes its

holding value rather than its exercise value, then the values

of that diagonal can be used to compute the value of the

option directly.    This is because, if Bgn ~ Agn, then for

all m ~ n, Bjm ~ Aim.    In practice, then, we compute the

value of the nodes in successive diagonals, as described,

halting the process at the first diagonal for which <¢,n>

takes its holding value. We then treat the values in that

diagonal in the same way as we treat the terminal values in

valuing a call option: that is, we multiply them by their

probability of occurence and take their sum to yield the

option’s value.
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Binomial Coefficients for Diagonal Valuea

If such jumping backwards from a set of diagonal values is

possible, then to compute the value of the option we need to

weight these values by the appropriate ’binomial

coefficients’ (i.e. the number of ’paths’ linking the no.des

of the diagonal to the <g,¢> node) and the values of (1-p)/q

and p/q.    In this section we describe the computation of

these coefficients.

The binomial coefficients linking <j,n> to <¢,g> are given by

(n-j)!)

In the case of the nodes in a diagonal, this number will be

reduced by the value of the binomial coefficient for the

lower adjacent node, <j-l,n-l>, given by               "

I_kIL
(j-1)!(n-j)!

This means that the adjusted binomial coefficient for each

node in a diagonal will be given by

j!(n-j)! (j-l)! (n-j)!

which is

n! (1 - j/n) (6)
JT (n-j)!

For each <j,n> in the diagonal the appropriate values of

(1-p)/q and p/q are given by

(p/q) J ((1-p)/q)n-j

Accordingly, the option value is given by weighting the
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values of the first diagonal in the backward stepping

procedure for which V~n - A~n by (6) and (7) end eummlng. 4

An ~zample

Figure 1 shows a ten period binomial model valuing the put

option with parameters

X=45, S=4~,t=7112,~=.4,r=1.~5

This is one of the values in the set of examples given by .Cox

and Rubinstein (1985, p.248) and for which the value after

15e periods is $7.39. The ten period binomial values the

option at $7.48. The unbroken line in figure 1 separates

nodes at which the option is in the money (below the line)

from those where it is at or out of the money. The figures

shown are the value of the option at each node, and the

dashed line shows the early exercise boundary, so that nodes

to the right of the line "take as their value their immediate

exercise value while those to the left take their holding

value.

As can be seen, nodes in four diagonals of length 6 were

valued. In the final (leftmost) diagonal node <~,2> took its

holding value, allowing us to jump from this diagonal to the

option’s value. The calculations involved are set out in

Table 1. Thus there was no need to value the nodes in the

two remaining diagonals. In this example the total number of

computations of holding and exercise values totalled 39.

This compares with 121 which are required in the unmodified

binomial (the general formula for this latter being that the
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number of computations = (N+I)z). Clearly in a model with

larger N the effect of such Jumping would be much greater.

The advantage of the modified binomial is only marginally

reduced by the need to calculate the coefficients in the

weighting of the final estimated diagonal since this is a

computationally trivial task.

[tables 1 and 2 about here]

Table 2 shows the values of a sample of American put options

on non-dividend paying stock arrived at by this method,

together with some indication of the computational

requirements, vis-a-vis the ordinary binomial. Here we have

applied the method using 15~ time periods. The computational

savings are greatest for out of the money, low volatility,

short maturity options, but in all cases the computational

requirements are more than halved when compared with the

unadjusted binomial method.

Conclusion

Because of the risk neutrality assumption the value of an

option can be written as a function of its (rational)

exercise values. The method presented here increases the

efficiency of the binomial process by initially reducing the

area in which to search for the early exercise opportunities.

Furthermore, although we cannot know in advance the location

of the exercise nodes which will determine the value of the

option, we have shown that it is possible, using the binomial

method, to determine at what point we have located them all.
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It is this feature which allows us to Jump backwards over

redundant nodes of the process.

The backwards jumping feature of the method presented here is

possible because of the convergence of the value of

successive diagonals to the estimated put value.    In other

words, the discounted weighted value of the nodes in each

diagonal form a sequence which converges uniformly to the

estimated value of the put. The same is true of the sequence

of values of the option at each period in the model (see

Breen 198S for the proof). If we define

Pa(S} = X (p/q)j ((1-p)lq)N-a-J Vj,N_a (8)
J

where V is defined as earlier, then for any binomial model

with N periods, Pa(S) defines a sequence of functions which

converges to PN(S). Convergence occurs at Pm(S), where m is

the earliest period in the model for which Vem takes its

immediate exercise value rather than its holding value, m

will always be less than N unless the put should be exercised

immediately. Thus the backward jumping process can be

incorporated into the usual binomial model which values nodes

period by period, s In addition, however, the convergence

properties of (8) are the basis on which Breen (1988) has

shown that it is possible to approximate the Geske and

Johnson (1984) compound option model using the binomial. His

method, termed the accelerated binomial, uses convergence
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acceleration techniques in conjunction with the binomial

option pricing model. Thus, for large N, this will give a

very accurate value of the put and reduces the computational

requirements, when compared with the unmodified binomial,

quite drastically.    Typically, for example, the 15g period

accelerated binomial would require the calculation of only

61g node values in a three point Richardson extrapolation.

The present method, however, is useful in two particular sets

of circumstance - first in the case of options written on

dividend paying stock; and, second, in situations where

American options have very long lives - say over a year. The

quadratic approximation of Macmillan (1987) cannot price

options on dividend paying assets (except where the dividend

yield is conceptualized as a constant stream of payments)

while the two methods which utilise convergence acceleration

techniques can do so only at the loss of some efficiency.

The enhanced binomial presented here can handle constant

proportionate dividends without difficulty.    Where options

are long lived the Geske-Johnson (1984) model and the

Macmillan (1986) quadratic approximation return inaccurate

results (see Barone-Adesi and Whaley 1987) as does the

accelerated binomial (Breen 1988). This suggests that. finite

difference or binomial methods must be used in such cases.

Hence the modified binomial presented here is particularly

useful in such cases,    since it is not an approximation to

the binomial and does not break down with large values of T.

Evidence of this is given in panel B of Table 2 where, for
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options with three years’ maturity, the value returned by the

present method is virtually identical to that arrived at

using finite difference techniques. We might add also that

the modified binomial, as well as handling dividends in the

same manner as the ordinary binomial, can also value options

on commodites, foreign exchange, futures, and so forth,

simply by replacing q in the calculation of p by the ~ne

period cost of carry o



FOOTNOTES

1. Based on Merton’s (1973) proof that such options have a
positive probability of early exercise at every instant
duringtheir life.

2. By which we mean the probability within the binomial
model. This corresponds to a real world probability only if
investors are risk neutral.

3. Strictly speaking the routine outlined in the text appl.ies
only if X-uadN-l-aS > ¢ - in other words, if the set of
terminal values of S does not include the largest value of S
for which the option is still in the money. If this is so,
then the largest such value will appear in the penultimate
period of the model.    If, on the other, this value is
included among the terminal set, then, after calculating the
value of the nodes in the boundary diagonal, we need only
calculate the holding value of the first node in the next
diagonal, rather than its holding and exercise values.    In
the next diagonal we need calculate only the holding values
of the first two nodes - and so on.

4. Note that (1-p)n-j/q will be constant since for all nodes
in the diagonal n-j is constant.

5. Diagonals are used i’n the method presented here only
because they minimize the required number of computations
given the existence of the two triangular areas of the
binomial cone in which calculation of node values is
redundant.

6. See Barone,-Adesi and Whaley 1987 for a discuasion of the
value of the .cost-of-carry parameter for different kinds of
option.
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Appendix: Proof of Proposition Two

We wish to prove that if

Vj÷i, r,+:I. = Aj-,.1.,n+:~ > X -uS*

and

Vj,n+:L    = Aj,n÷i > X -dS*

then

X-S* < Aj÷:1.,n÷.t p/q + Aj,,,.~.t (l-p)/q

(al)

(a2)

(a3)

For convenience we write Aj+~.,n÷a. as A and Aj,n+~. as A’

(al) implies that

A > (X - u~S*) p/q + (X-S*) (l-p)/q (a4)

and likewise (a2) implies

A’ > (X-S*) p/q + (X - d=S*) (l-p)/q (a5)

Rearranging and summing yields

(A - (X-u~S*) p/q) _g_ + (A’. - (X-d:S*) (l~p)) g > 2(X-S*)
(l-p)                   q    p

(a6)

To prove (a3) We show that

2(A p_ + A’ (l_5p)) ) (A - (X-u~ZS*) I~) g ÷ (A’
q q q (l-p)

(X-d~ZS*) (l-D)) g
q P

Multiplying through by (l~_p_) (~) and rearranging yields
q    q

q q q q q q q kq;

(a7)

A I~ + A’ I-D > - (X
q     q 2((l-p) p_) - i

q q

(a8)
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By (a4) and (a5), (a8) holds if

((X-u:’~S~*)p_ + (X-S~)(l~p))p_ + ((X-d~S~)(l-p) ÷ (X-S*)p)(!-p)
q             q     q                 q             q    q

,. - 1
( (X-u:’:: S- )(~)=’ ÷ (X- d"" S- ) [l-p) :~2((l-p))D - i . ~ q "

q q

(a9)

Rearranging"

2(X-S*) (llp)Rq q ~ 12(l-p)Rq              -]q - 1             - I

-2(iz_p)p_
q q

) (alO)

(all)

We deduce from Proposition i that (all) holds,
(a9) which proves (a7) and thus (a3).
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TABLES

Table 1 Calculation of option value from final estimated

dl’ agona I

a b c d
Diagonal ’Binomial (p/q)J ( (l-p)/q)n- j Total

Values Coefficients’ (=awb~.c~d) .

12 27
9 44
6 7O
4 19
2 I0
0 66

1 1 .258
2 .489 .258
3 .239 .258
4 .i17 .258
5 .057 .258
6 .028 .258

3 17
2 38
1 24
0 51
0 16
0 03

Option Value = sum of totals = 7.48

p/q = .489

(l-p)/q = .508
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Table 2 Values and Computational Requirements of American
Put Options Using Enhanced Binomial (N=150)

A. S = 40, r = 1.05

Nodes
X P Valued

Nodes Valued
as percentage

of number
value l’n

unmo dl’ fie d
binomial.

s = .2 30 .00 2340
T = 0833 35 0.01 4483

40 0.85 7029
45 5.00 9223
50 10.00 9069

10.13
19.66
30.83
40.45
39.77

S    =    .3 30 0.10 5340
T = .333 35 0.70 6308

40 2.48 7239
45 5.71 8109
50 10.05 8894

23.42
27.67
31.75
35.56
39.01

s = .4 30 0.82 6112
T = .5833 35 2.16 6709

40 "4.35 7239
45 7.39 7764
50 11.12 8207

26.81
29.42
31.75
34.05
35.99

B. X = 100, s = .2, r = 1.0833, R = 3.00

P            P         Nodes
(Finite (Binomial) Valued

Difference)

Nodes Valued
as percentage

of nodes
value in

unmodi fied
binomial

80 20.00 20.00 8899 39.03
90 11.69 11.68 8609 37.76

100 6.93 6.92 8160 35.79
ii0 4.15 4.15 7860 34.47
120 2.51 2.51 7431 32.59

Finite Difference Values from Barone-Adesi and Whaley 1987,
Table V p. 317.
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FIGURES

Figure i: Node Values for example of Binomial Process given
in text
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