
Residual Heterovariance and Estimation

Efficiency in Regression

Summary

The effect of heterogeneity o~ residual

variance o~ the efficiency of estimation o~

regression coefficients is examined in a

practical way,    Heterogeneity is shown to affect

efficiency adversely to a degree much greater

than has been commonly supposed~ so much so~

indeed~ that raw data for regression analysis

should always be systematically tested for

residual variance homogeneity before processing.

Suggestions are made for ensuring greater effi-

ciency in this regard~    Gates of one kind or

another should always be used in regression in

preference to absolute figures.    Adjustment of

data prior to regression may be fairly rou~h-and-

ready since it is shown that a small degree~/~ of

residual heterogeneity is not significantly

inimical to efficiency,

In-~-re~io~ wc -~c concerned with deriving

re!.s~on.~h~p~ or l~:ws from a matrix of da~a,     Tn the

simples~ case of two variables linearly related we

write
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conceived as a kind of ideal relationship between many

pairs of associated variables, time series or other,

(xt, yt) for t = i, 2, ..., T.     In regression relation-

ship, as distinct from "associative" relationship [i~,

the x is regarded as measured without error, i.e. its

values are those of the given series xt, for calculation

purposes, though the law (I) may be presumed to apply to

any value of x.    ~ does not, however, coincide with the

observed Yt even when x = xt.    It differs from it by the

error term ut so that

Yt = Yt+ ut"

Workers in applied statistics almost invariably regard

the error term ut as an intrusive element, an unfortunate

necessity.    Knowing little or nothing about ut we attribute

to it such properties, usually stochastic, as will enable

us tO derive estimates of the coefficients ~ and # in (1)

by the simplest methods.

The simplest assumption is that ut is a random

~2 2sample f~om N(O,     ) where ~ is unknown but may be

estimated from the data.    Note that on an indefinitely

large number of replications of the experiment of which

our data represent merely one such, the error variance

9
is presumed the same for all xt.    Such an hypothesis
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may, in certain cases, be quite untenable~ and demonstrably

so.    For instance, suppose that one is studying the

relationship between average number of cattle and farm

size.     Suppose also that, as in the example studied

later~ average number of cattle on 8-acre farms is 4.5

and on 73-acre farms 27°4.     It is quite ridiculous to

suppose that the variance ~ on the smaller farms is the

same as on the larger farms; it would be much more

plausible to assume that variance increased regularly

with size of farm, as will be ~und in the example to be

the case.     It would even be quite easy to derive the

relationships     In general this relationship will not be

known. It will presently be shown that estimates may be

made of a and p in (I) by having initial regard to some

relationship between variance and regressor~more accurate

than by least square (LS) procedure applied to the~ ~aw..

data.

General ML cage

The clas~icial procedure of solution, i.e.

the estimation of ~ and P in the model~

(3) Yt = ~ + #xt + ut’

where ut is N~O., ~) is by LS which is equivalent to

maximum likelihood (ML) when u, as is postulated~ is

Dormal with 2 the same for each observation; an

estimate s of also emerges from the procedure. It

is natural to enquire if, by ML~ a solution can be

found by assuming that the tth observation error has the

2 2
distribution H(O~ ~t) where the ~t are also to be
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estimated from the exercise.

then

The log frequency z is

T log 2H - Zlog ~ - ~ Z (yt    ~ - Pxt)2/~~z = - 5
t -

By partial differentiation,

giving

2
(6) °-t = (Yt - c - ’~xt)2"

Also

~¢__~z ~(Yt - ~ - Px )/0_2
t    t

(7) = ~(Yt - ~ - ~xt)-ICfrom (6)) = o~

Similarly,

(8) C_£z _ pxt)-1~P = Zxt(yt     c -
= O.

Estimates of the coefficients a and P as a and b a~e~

in theory, determinable from (7) and (8).    Of course,

there is no possibility of an exact solution~ as in

the classical case.     They can be solved by ~-dimensional

iteration.    A first approximation would be found as a
o

and b by classical least squares.    The values of
o

(~I° andI~)o for these values are calculated. If these
-. /

be small, as one would hope~ values would be found for a
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grid of (a, b) with values near to these.    The approxi-

mate answer would be found by inverse interpolation. An

obvious difficulty will be the aberrations which will

occur for some values of t for which (Yt - a - bxt) are

very small, which may yield a dominatingly large value of

its reciprocal.    As will appear, this method is not

suggested aspracticable.

A specific ML and LS comparison.

It may never be necessary to have recourse to

the foregoing procedure since there may be other

easier ways of obtaining nearly as accurate results.

The guiding principle must always be to ensure that, in

magnitude, the random variance is constant, or may be

plausibly regarded as near constant, for all sets of

observations.    $uppose the model is

(9)
Yt = ~ + Pxt + Atut’

where ut is N(O, ~), as before, and the k known,or
t

estimable.    The method proposed is to obtain ML

estimates of a and P by converting (9) into a bivariate

regression problem    by    dividing across by the known

At and Golving in the usual way by LB.    The procedure will

now be applied by using specific values for A The
t"

object of the exercise will be to determine if concern

about what we shall term residual heterovariance is of

any practical importance and, if it is, to suggest ways

of dealing with it. To study this question realis-

tically the most useful model which the writer has

succeeded in evolving is the following :-
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(10)
Yt = ~ + #xt + x~ut, t = 1, 2, ..., T,

where xt and yt~ the observations~ are assumed positive.

0-2
A is a know constant > O and ut is N(O,    ).     It will

be noted that model (iO) postulates regular increase

(in greater or lesser degree according to the value of A )

of residual variance with the magnitude of xt.
Dividing

A
(10) across by xt,

(11) zt = PlXlt + P2x~t + ut,

-i -i
= xl-Xt Pl    ~’ #where zt = YtXt~ Xlt = xt ~ x2t ~ = 2

The ML = L8 solution of (11) in matrix form is the

familiar

(12)
/ b = (zx,)(xx’)-I = P+ (uX’)(xx’)-I

I Var-Covar(b)     ~2(XX’)-i

where, in this case~

(13) XX’ =
S(- 2A) 8(1 - 2A)

S(Z-Sk) S(2 - 2~)

the sums S being given as

(14)
T KS(z) = Ext

I

Here we shall be interested only in b2, the estimate

of 192 = /9.     Its variance from the second of (12) is

(15) Vat(b#) = 9S(-2X)/[S(-2X)S(~.--2,\) - S#(1--2X)3.

For straight LS treatment (i0) is taken in ~he form
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(16)
Yt = ~ + ~xt + Vt~

%
where vt = xtut, whence the estimate b of~ and its variance

are

(17)
b = ZYt(Xt - ~)/B(xt - ~)2

= p+ r, Vt(Xt - ~)/~(xt - ~)2

(18)

2X, ~ 2xt~ + ~2)/[Z(xt _ ~)212

Var(b) = ~2~xt (xt -

-22[s(2x + 2) 2~ s(2x + i) + x s(2x)] /[Z (xt _~)212.

If the xt are all ordinary magnitudes, (18) oha~s that var(b)

is O(T-I); hence, though the solution (17) is not ML, the

estimate b is consistent.    Since the estimate b2 is ML

we know that, for A > O, vat(b2), given by (15) < vat(b),

given by (18).    The answer to the question posed above

involves comparison of the respective values.    Unfortunately

it is not possible to make any general assessment, i.e.

for any positive vector x~ closer than the two variance

formulae.     Instead we shall have to construct a numerical

example, deemed illustrative of various realistic circum-

stances.

Scale,     Both ML and LS estimates of P , repre-

sented respectively by b2 and b, become b2/p and b/P

respectively when all the xt are multiplied by a constant

2, as will appear from the first of (12) and (17).

Similarly, the variance formulae (12) (second) and (18)

show that such transformation yields the same multiplier,

2A-2
namely p for both var(b~) and vat(b).     Here, at

least, are points of similarity.
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Example

The vector x is the set of natural numbers

(i, 2, ... T), illustrative of the ~ case of

equally spaced regressors.     It is easy to show, from (12)

and (18) that both estimates are consistent for A < 1.5.

However, for A = 1.5, b2 is still consistent (though

variance is only O(iog-iT) but b2 is not.    8o large a

value as 1.5 for k may be regarded as unrealistic; we

shall concern ourselves merely with the range I ~ A ~ O.

Of course, for A = O the estimates are identical.

2
Taking ~ = i for the variance and using certain

values of T

ing table.

50, the results are shown in the accompany-

~ead vertically the table shows, for each

value of T, that the efficiency of the LS estimate b

dwindlos sharply with increased residual heterogeneity.

When A is small, on the other hand~ i.e. when the

tendency for residual variance to increase with x is

slight, the loss of efficiency by use of LS on the raw

data is inconsiderable: we infer that for practical

purposes it will suffice if the elimination of hetero-

variance, discussed in the next section~ is not complete,

i.e. that the rough-and-ready methods proposed may be

used with effect for elimination.

Read horizontally there is for each ~value

a tendency for relative efficiency to decline, though

the effect gets less marked as T increases.

For the purpose of the paper it will not be

necessary to consider a wide range of regressor types x
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Comparison of Values of Residual Variance and

Relative Asymptotic Nfficiency for Maximum

Likelihood (b2) and Least Squares (b) Estimates

of the Regression Coefficient

when x is 11, 2, ..., TI.

0

Variance
and effi
ciency
ratio

Var(b2)

Vat(b)

Ratio

Var(b

O.i Vat(b)

Ratio

Vat ( b2 )

0.5 Var(b)

~atio

Var(b2)

1.0 Vat(b)

~atio

T
" i

10 $0 1    30 40 5O

""f A
..O1212 .021504! .034449

i
.031876 .0 "9604

t! I w! t!

1 1 1 1 i

.01583 .0221901 .036956 .0S3076 .031638

.01611 .O22245! .037143 .033177 .031695

.9825 .9755 .9710 ~9582 .9664

.O2072 .023186 ,021078 .O35017 .032777

.03207 .023498 .021202 0’3. 5550 .033146

.9388 .9108 .8968 .8880 .8827

.04794 .0101~ .024171 .022242 .0~1390

.06567 .01579 .026897 .O23846 .022449

.7191 .5409 .6047 .5829 .5676

.22399 .08410 i ..04975 .03484 , .02664

.54424 ..~5549 .16681 .12381 . .09843

.4116 .5292 .2982 ¯ 28.1.4 .2706

Var(b2)

0.2 Vat(b)

~atio



- 10 -

or different modes off residual heterovariance0    The

table shows plainly that when heterovariance takes the

form of regular increase with the regressor, inefficiency

of estimate must be suspected, tested for and, if necessary,

eliminated.     The regressor vector chosen does not,

however, cover the general case of equi-spaced values of

positive xt.     One may infer, in fact, that the range

ratio between i and the various values of Y(i.e. T:I = T)

adversely affects efficiency.    To show what happens

when the range ratio is small, given T~ we contrast the

efficiency for T = 20, A = 0.5 for (i) x = I I, 2, ..., 201

given in the table for (2) x = [31, 32, ... 50 I, with

range ratios 20 and 50 : 31 = 1.6 respectively :-

Efficiency
Vat(b2) Vat(b) ratio

(1)    .01012 .01579 ,6409

(2)    .05991 .06090 .9837

These figures convey a more than broad hint

that heterovariance does not adversely affect LS

estimates based on raw data when the range ratio is

low, though, of course, the degree of residual hetero-

geneity is also reduced in (2) by the model adopted (I0).

In a paper [2 ] published some years ago,

the writer analysed agricultural data on farms of

different sizes in an Irish county.     It was, of course,

found that all classes of statistics (livestock, crops

and output) increased per farm very regularly with farm

size; of greater interest was the precession on farms

of different size, of the various statistics studied pe___r_r

I00 acres and per person engaged.    The coefficient
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of variation was also analyzed, showing, it is true, in

all cases a tendency to decline with increasing farm

size.     The standard deviation for farm units, however,

increased regularly with farm size: for instance~ for

total cattle it was 4.7 for farms of 6 - 10 acres and

14.24 for farms 71 - 75 acres.     It is calculated that

in (iO) k = 0.53 approximately for cattle on farm units.

If the "realization" were one farm in each of 14 size

classes, i.e. 14 farms in all, regression of number of

cattle on farm size using all the raw data would have

an efficiency of only about 73% as compared with the

accuracy of estimation obtainable if the data about the

precession of variance were obtainable and taken into

w
account.      How this can be done on the usual single

realization will be indicated in the next section.

Conclusion

This paper owes it~ inception to the writer’s

wish to clear up (for his own information and with no

thought of publication) a small point of theory, ex-

emplified in the simplest possible case he could devise.

Of course, in very general conditions, the ML solution

is asymptotically the most efficient, and is also, in

practice, usually the most efficient for samples of

ordinary size.     Before the present results became

available, like most other statisticians, he did not

attach much practical importance to the hypotheses for

the residual error, normality with population mean

zero and homovariance, the latter meaning that for

every regressor the population error variance is the

same.     (We are not concerned here with residual

w
Found from (&5) and (18) with x (14 elements, equally

...... ""~%’~.spaced, in acreage) = 18, !3, 18, ... , 731.     With

k 0.53, ~ = I, variances were vat(b) = .0090295,

vat(b2) = ,0065774.
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autoregression).    The presumption was that these hypo-

theses~ necessary for the LS determination of the coeffi-

cientsp did not matter much, that a marked degree of

residual heterovariance might not effect the efficiency

of coefficient variance very markedly.    The foregoing

results show this anticipation was not correct.    When

the residual variance increases more or less regularly

with the magnitude of the regressor LS estimation applied

to the raw data in the usual way m~y ~i®[~ estimates ~hich

may be only 50 per cent as efficient as if the data were

homovariant.     Such a statement means broadly that we

would be in the situation of rejecting 50 per cent of our

data~ usually hard to come by, in making our estimates.

The writer freely admits that residual variance may

vary in other ways~ which may not be so inimical to

estimation efficiency.     Nonetheless, in his opinion the

case he has considered, namely regular variation, is

that most likely to be encountered in practice~ that it

should always be suspected when the range of variation

in the regressor is wide and that steps should be

taken to counteract it.    In this paper the problem of

simple regression (i.e. one regressor) only is dealt

with.    Obviously, the findings would apply also to

multivariate regression.

As a matter of routine before embarking on

a regression we should take steps to ensure that the

hypothesis of approximate residual homovariance is

plausible.     Assuming the original data positive it

should be~ used without adjustment only when the range

of variation (say ratio value of largest to smallest)

is small.     If at all practicable, rates of one kind
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or another should be used in preference to ran data.

The common course of introducing a scale variable

(e.g. using absolute number of births and absolute size of

population, instead of the single variate birthrate) is

not to be recommended, though we may be bemused by the

inevitably large value of R2 with such treatment.    Our

concern should be, as in elementary statistics, to compare

like with like, even standardized rates to crude rates.

Apart from efficiency of estimation, this is merely common-

sense;     in simple regression we examine, on a cause-effect

basis two measured phenomena;    we should try to equalize

(or elminate) other possibly relevant sources of varia-

bility from the comparison.     It usually happens in

statistical practice that the sensible course is also

efficient.     In the agricultural example cited earlier

it would obviously have been more appropriate and inform-

ative to regress the statistic cows per iO0 acres rather

than cows per farm on farm size; everyone would expect

there to be more cows on farms of 100 acres than on farms

of i0 acres; as we now know the per 100 acre approach will

also yield much more accurate estimates of the parameters

involved.

We now consider treatment of the raw data to

eliminate residual heterovariance.     If the range of

values remains wide and if the number of sets of observations

is reasonably large, these might be deivided into, say,

five or six groups according to the magnitude of the

regressor (or to the magnitude of the principal com-

ponent of the regressors in the multivariate case: this treat-

ment would be designed to take account of non-linearity of

regressors.
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t

2
The estimated residual variance si (i = i, 2, ... 5 or 6)

would be calculated for each group.     If this seems to

vary regularly with ~i (the group mean of the regressor

values) strike a rough regression of log si on log ~i;

so the positive value of A would be determined and the

A
model in simple regression would be yt= a +pAxt + XiUt.

Divide through by xA. and apply bivariate LS to estimate
±

and /? .    Even if the procedure be very rough indeed it

would appear that the resulting estimates will be much

more accurate than if LS were applied to a model

Yt = a + ~xt + vt"

The paper raises a problem of exegesis. It

/would appear, at first sight~ than an expose of simple

regression cannot remain matter for elementary statistical

manuals~ as it has been heretofore, since the student

must, at a very early stage become aware of the stati-

stical notions of consistency and efficiency usually

regarded as "advanced".    This need not be the case if

the commonsensible approach of a previous paragraph,

with its emphasis on rates , be adopted.     There does

not~ however, seem to be any way of avoiding treatment

of bivariate regression by least squares at an earlier

stage than is at present usual.
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