
with X standardized, i.e. $X: X=T 1_{k}$. The regression coefficient estimator is

$$
\begin{equation*}
b=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\frac{1}{T} X^{\prime} y-0+\frac{1}{T} X^{\prime} u \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathrm{b}_{1}=\frac{1}{\mathrm{~T}^{\prime}} \mathrm{R}^{\prime} \mathrm{y} \tag{3}
\end{equation*}
$$

be any linear estimator of ρ. The object is to show that the minimum value of 0 , where

$$
\begin{equation*}
\hat{0}=\mathrm{E}\left(\mathrm{y}_{1}-\eta\right)^{\prime}\left(\mathrm{y}_{1}-\eta\right) \tag{4}
\end{equation*}
$$

with
(5)

$$
\mathrm{y}_{1}=\mathrm{Xb}_{1} ; \quad \eta=\mathrm{X}_{1}
$$

is attained for $R=X$.

From (1), (3) and (5),

$$
\begin{equation*}
\mathrm{y}_{1}=\frac{1}{\mathrm{~T}} \mathrm{XR}^{r}\left(\mathrm{X}^{\prime}+\mathrm{u}\right) \tag{6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathrm{y}_{1}-\eta=-\mathrm{X}_{\rho}+\frac{1}{\mathrm{~T}} \mathrm{XR}^{\mathrm{I}} \mathrm{X}+\frac{1}{\mathrm{~T}} \mathrm{XR}^{\mathrm{t}} \mathrm{u} \tag{7}
\end{equation*}
$$

so that, from (4),

$$
\begin{equation*}
\oint=-\beta^{\prime} X^{\prime} R_{i}-\mathrm{P}^{\prime} X+\frac{1}{\mathrm{~T}} \mathrm{~B}^{\prime} \mathrm{XR}^{\prime} \mathrm{X}+\frac{1}{\mathrm{~T}} \mathrm{Eu}^{\prime} \mathrm{RR}^{\prime} \mathrm{u} \tag{8}
\end{equation*}
$$

```
where }\varphi\mathrm{ is the value of the terms in R in }\because(4)
```

We now propose finding the minimum value of $?$ from

$$
\begin{equation*}
\frac{\partial Q}{\partial r_{t i}}=0, t=1,2, \ldots, T ; \quad i=1,2, \ldots, k \tag{9}
\end{equation*}
$$ or, rather, showing that (9) is satisfied by $r_{t i}=x_{t i}$, these being the respective elements of R and X. Call the terms on the r.s. of (8) $T_{1}, T_{2}, T_{3}, T_{4}$. Clearly, w.1.g., T_{4}, which equals ${ }^{2} \operatorname{TrRR}$, can be taken as constant independent of R, e.g. $=e^{2}$. Of course, $T_{1}=T_{2}$, Set

$$
\begin{equation*}
X=z=\left\{z_{1}, z_{2}, \ldots, z_{T}\right\} \tag{10}
\end{equation*}
$$

it can then easily be shown that

$$
\begin{equation*}
\frac{\partial T_{1}}{\partial r_{t i}}=-\partial_{t} r_{i}=\frac{\partial T_{2}}{\partial r_{t i}} \tag{11}
\end{equation*}
$$

and not quite so easily that
with, from (10),

$$
\begin{equation*}
z_{j}=\sum_{j \stackrel{k}{\sum} x_{s j} x_{j} .} \tag{13}
\end{equation*}
$$

On substitution for z_{s}, given by (13) in the brackets () in (12), setting $r_{i, i}=x_{s i}$ and using the orthogonal property of X , we find

$$
\begin{equation*}
\frac{\partial T_{3}}{\partial r_{t i}}=2 z_{t}{ }_{i} \tag{14}
\end{equation*}
$$

Accordingly, from (11) and (14),

$$
\begin{equation*}
\frac{3}{\partial_{r i}}\left(T_{1}+T_{2}+T_{3}\right)=0 \tag{15}
\end{equation*}
$$

for $r_{t i}=x_{t i}$ or $R=X$.

```
We must bear in mind, however, that \(R\) has been conditioned by \(T_{4}=\sigma^{2}\), which should be introduced in Lagrangean form into the expression to be minimized, i.e.
\[
\begin{equation*}
Q=T_{1}+T_{2}+T_{3}+T_{4}-\lambda\left(T_{4}-T^{2}\right) \tag{16}
\end{equation*}
\]
so that \(i_{\%} / \hat{o r}_{\mathrm{ti}}=0\) with \(\mathrm{T}_{4}=-^{2}\) are satisfied by \(r_{t i}=x_{t i}\) and \(\lambda=1\).
So we have proved the intuitive result that
the best linear estimator of the coefficient matrix is
the regression estimator \(b\). No novelty is claimed: it
is a Gaussmark-off property. The matrix treatment and
the use of standardization of \(X\) may have some interest.
```

16 June 1967
Revised 17 October 1967

> R. C. Geary

