Comparative Efficiency of Maximum Likelihood and Bx Ante
Reduced Form Methods of Solution of Behaviouristic
Equations for Forecasting and Policy-making
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The famous issuc of maximum likelihood (ML)

versus least squares {(L8) in the solution of a behaviourist:ic

" S equation system flares up from time to time but seems as
w ©O
B yet unresolved. Accordingly, as the writer is about to
o
o3
=t ‘embark on a possibiy large model for his own country based
o
D on time series, he himsell har L0 face the .lssue NoOwW-
¢ = ’
ug)_ 5 She

The present investigation leaves hiim convinced that gx

ante reduced. form (RF) th individnal equation.LS is:.the

better way. .

4 ss.on ¢f ©

and the Institute is obtai’ned.

Of course, Yit all .deperds .on what. one. wants
4 s - ; - N N /s

o % the-model forv, to quote-the too fPanilisamgliche., Owme
D - . . . . v
i 3 objective the writer has not in mind is dadividur 1l
Ao ' -
& ) - . . -
S coefficiont estimaiicn. - e was vehement some jyears ago
(?} (:
fﬁ, cadl in the assertiosn that in multivariate regression (and,
< 5 a fortiori, in equation systems) individual coefficients
O 3

are meaningless: the only coefficients possibily economically

significant are those of simple vegression| 1 ] . The.

writer is.not. aware of any serious attempt to rebut his

views; nonetheless, economic interpretations of individual

coefficients (usually interpreted as "aelasticities" or

such like), with their implicit untenable ceteris paribus

assumption, are still rife,:

N

The only use the writer can find in solving large

or small equation systems is forecasting (of the endogerous

variables) and policy-making; for what follows, however,

it will suffice to assume that forecasting is an objective.

This objective requires the calculation of. y the vector

for some specified time t of endogenous values iven
- p ?




the véues of the- predetermined variables.. (Of-course the
estimation of the coefficients is involved, but to be used

onlv as a set and not individually.,

Original and Reduced Form

—

Let to original form (CF) of the model (in matrix
notation) be
(1) 3 = Xe + u
There are T sets of observations, p endogenous variables
Yy, 4 exogenous variablcs x and an error matrix u about
which the usual assumptions are made, including non-
autoregression and a population var-covar matrix, the
same for all times t,f and a« are the population coefficient
population matrices. The dimensions of the five matrices
involved are accordingly as follows:~ y: T x p,f: p X p,
-%; Tx g,a: 9 x p, u: T x p.d is a square matrix, usually
with principal diagongd urities. Wo ocasume fqr simplicity
that x is pure exogenous, i.e, it contains no lagged endo-
genoug variables, not aa issue here, OFf course,'x need
not be linear, though y must. In accordance with the
usual convention, the stochastic properties of the model
enter solely through u, x being the same for each realisg-
ation, of which we have, in practice, only one. The
expected value E is the mean of a hypothetically in~-
definitely large number of realisatvions. For the éomparative

efficiency purpose of the present paper, the population

valucs, x& , ¢ and the var-covar matrix are supposed known.

We shall conrern ourselvec with ex ante RF.
We assume that (1) has been set up on theoretical
considerations: usually one equation is designed to explain
each endogenous variable, the explanatory, or causal,
variables in each equation being other endogenous and
exogenous variables. These explanatory variables afe
customarily few in number, at most four or five. The

coefficients® eaenda are still in the form of symbols,'
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unestimated., From this form we may derive ex ante RF

as follows

(2) y = xq8 + vy,

or

(3) v = xY + v

where Y =aﬁ’—JL and v = uﬂ—lo The object of this transformation

is to pick out, on the right side, the exogenous variables
with non-zero coefficients, which theory, enshrined in

(1), ordains. One hopes that, as in the case of OF, the
right side exogenous variables will be few in each equation.
As the var-covar matrix of u isBu'u/T, the corresponding

1 u'uﬂmi/T , a fact of considerable

matrix for v is B(@ ')
importance for what follows.

We do not consider LS applied to the individual
equations in OF in non-recursive models as, following the
well-known work of Haavelmo[ 2 ], we regard this method
as invalid, In fact, asymptotically it yields dinconsistent
estimates of y.

Suppose)now, that it is possible to estimate,
by ML or otherwise, the coefficients [ and qby b and a
respectively and residual u by ﬁ in a consisfent way,

i.e. so that each element tends in probability (as T
increases) towards its population value, a property which
may be written

A

(&) bup ; ave; FTRIIN

It is necessary to have recourse to ex post RF to estimate
y p

y by v.;
(5) Yo = Xab—quX@ﬁ -1 =7n; ¥V = Yo é;"éruuﬁel.
It is quite clear that the var-covar matrix of

(v = y ) ~B( ") wrap T

We can also estimate a calculated value of Yy,

call ixAle, from the ex ante RF version of the model (3):~-

A A
(6) Tqeg = X¥Cnxy = ni ¥ = Ve + W Wworaupl

1

Obviously the var-covar matrix of (y - ylc)mEUEY)— u'uﬁrl/T,

as in the case of QOF, It is to be noted for comparative



—- L -

purposes, that, at (5) (OF)-and--(6).(RF), y(involved in

the estimation of Y and ylc)’ x and7 are identical, y

an¢ x because they are data and 7§ is the value of y, civen

[

. . : . -1
X Wit u is =zero, so that nl = xa impliesn = xaf .

Given our criterion based on the difference
between the actual and calculated value of the endogenous

variables (y -~ yC) or (y - } and our objective

Yic
(forecasting and policy-making), the identity of the
population var~covar matrices means that there is no

asymptotic (T-»w ) difference in efficiency between OF

(with ML) and RF (with LS).

Pesiring to examine the issue to a closer approx-
imation, we decided to compare the vdues (from now on
using non-matrix notation) of B (yt - ytc)2 and
E (yt - ytlc)Q’ the mean square of an indefinitely large
number of replications of the deviations for given values

of x for a particular simple model. We prefer the

t,
criterion we have adopted to, say, E (ytc -ﬂt)z, mainly
because, in any relization, the latter is not estimable,
whereas the former is. Our method is to expand the

. . . -1 ; o] .
criteria to terms in T &, the terms in T  being the same

in both cases, as we have seen in the general case.

The Simple Recursive Model

As our object is measurement, we have recourse
to the only case in which the OF (ML) solution is
algebraically manageable, which is the recursive system
of equations. In this case, as is well-known, the ML
solution is found by individual equation LS in OF, when
u in (1) is normally distributed, now assumed, We select
the simplest possible recursive model, as follows
(7) (1) ¥yq =%, Xgq * Y%gq 2

(ii) y o =P, Yeqg * % g Xeg ¥ utz./ t =1, 2, «¢., T

The estimates of al, a2, and ﬁl are a a, and b, respect-

1’ 72 1

ively. There is no issue with regard to 7 (i): the OF
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23 3 = h 21 ¢ %
and RYF estimates of &4 { by al) and of Yiq ( by Jtlc)
are identical. Investigation will therefore be confined

to 7 (ii) of which the ML solution is found by ordinary

Ls. delding the equations:-
(8} (bl - ﬂ?i)}l(alxtjL + utl)g + (32 - QE)Z(axtl+uti) Xig
= Eutg (axtl + uti)
(by =0 By g+ uyy) %0+ (8, - Q)E‘xgtz
Ytz ¥¢g

The & indicates summation with regard to t. It will now
be convenient to deem (without loss of generality) xl

and X, as standardized, i.e,,

- 2
5 = 0; % x €1 = T; 2x7_, = T;

X Xgg = %P

E = M
(9) Xiq O; & Xy

Then (3) becomes
2

-3 o Y - o
(10) (b, -7 g) (27 v 2m, e, o) + (a, 5) ( 1[7+ e.)
= @ S
1% * %
-/ a - -
(By = Fy) (&g Pr o) + (2 g) = %y
with
r . . = 5 : T — ¥ ¢
Tel by Upq ¥eq) T82 Upq Fygs Tey Zut2 X qs
Te, = thg XKiai
(11) 5 5
Teg =2u, *% % By Yo,
As, for the purpose of comparison of eﬁficiency, we are
entitled to assume knowledge of ¢ , «_, ﬁl end the
, ) 2 )
variances of the error terms L) and Ui namely Fl and

2 . o
Ub y We can go further and assume, without loss of

3% ! ,
generality, thatmvi and Tg are both unity and u,, and

U g independent., Then the variances of all the e's
=13

(except e5) at (11) are 1/T, while it will suffice to

note that Ee5 = 1.

’”* . .
If the original valuews .n (7) B.. :,4{£g+nﬁ§by primec
symbolg, (except X, and x 9 unchanged) tr&mlj*mnq&t¢ ths
3]

form with residual variancg unity is effected by:V'
- ut ¢ = u! o = U o - = ot .
Uopg = Bl g/Tg Vg = Wig/ Ty Oy 1/ %5 Veg = V'eqloys

i

Veg = V'ealTgi Py =014/ Ty

&



[ 4

-5 -
The OF forecasting formula from (7) dis,

X

(12) a

Veae T 21P1%e1 * 2%
shere ay is found by LS from (7) (i) as
(13 o= g+ Zutl/T =y + Cye

The dfecision function is

2
) hie = B -
(14) X “(ytg thc) .

It is to be noted that in the hypothetically indefinitely

large number of replications implicit in (14), t, X 4

aﬁd’xt2~are-the-same.in all. From (7) and (12},

5 -y - - - a p —(a - ,
(18)  ¥yg = ¥yge = (uyg + Fyupy) — (ayb = B) x  ~(a -a,)x .,

From which it is evident that the leading term in (14) is
(16) =B u )2 = 1 2
Blugy + Bqugq) =3 +0 4.
Two Cases
Two views may be taken about the explicit error
term, (ut2 + piutl), in (15), according to whether one
is concerned with (i) measuring goodness-of-fit of

estimate Yige to observation y or (ii) using the

t2

formula for forecasting and policy-making. In case (i)

only the T sets of observations are involved: Ui g and

usg in (15) are the error terms involved in the estimation

of &g u2 andl?l 80 that the error term is not statistically

independent of the estimates of the coefficients of Xeq

and x In case (ii) we are concerned with future time,

t2°*

actual as regards forecasting and hypothetical as regards

policy-making; the u and u being errors pertaining

t1 t2’

to future time, are independent of the errors in the

estimated coefficients of xti and xt2 which are functions

of the errors in past time, The result is different values

of X given by (14), in cases (i) and (ii), We consider

t’

approximations to both.

Case (i): Geoodness~of~fit

For the preseant purpose expansion of (14) to the
term in 1/T only is required: the right side of (15) is

and b

squared after substitution of a , 1

from (13) and a

v}

1

N

from (10):-—b e ;= [(ale3+e6)—@<1p+eg)]e4 /d

' 2 o e ,
J““g = E(al + 2 ,e +e5)b4-(a1/pe3 +Q 1F66+a192 3+9296)] /4,

(17) ag 194




where 4 is given by

, 2 2 2 2
i8 d = (a + 2n.e, + e - (e + 2 e, + e .
(18) ey 171 5) = ey F “1 “2 2]

s0 that (using (11)),

(19) i za-a? (1 -f2)+ 1

and

(20) Ea” & 42,

The symbol "&" means "equals, to the approximation required".
The actual or approximate values of the six terms (Ti)*

in the expansion of the right side of X (14) using (15) are,

after much algebra, given by:-

2
Tl = 1 +/3l
. 2 2 2 2
A 1, = 2(ay™x tg t X g9 — @, fxtlxtg)
2 2 2 2 2
'—AT. T '-‘1 2 { bl ) d <
3 (e7gX7gq — @ 1/’xt1xt2) 2P X
. 2 2
( T T = )
(21) AT, T X" g (« 1t i)
. 2
- AT, T5 = 2 1/ X q1%eq
AN, T, = @ A 5% X2
» T = oy w007 ) x7
whence
. 2 1 2 2
‘s — ré — — e
(22) X & (1 + 7 ,) Txf(a g FPTLE) x 1 Qf 1X¢1 Xo
2 2
+ (1 +« 1) x t2}
(23)
The ex ante RF model of the system is
(1) Vg = ag¥gy + vy
(31)  yyp =¥ gXgq + @y Xpg + Vig,
where
A T = “ [\ M o= ] *
(24) 17 0P g5 Vig = Uy 40 vy

The TIF (LS) expression corresponding to (22) is found to be
Yig = ¥' )2
t2 t2c 5

2 (L + 07 .) 2 . 2
(1 + 7 1) - TTI_:TZ%T (x €1 sztl Xig + X t2)’

(25) X' = 5(

il

*If the coefficignts on the right of (15) are A

cen T = TAe = 9QR/
A., then T, = A 1 ng PBAl Ag, TS
T

— 2 A T —_— ¢ i
= 2EA_, A g = EA3 .

2 73’

1’
= 28B4, A, T,

(¢ SR
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From (22) and (25),

lIs

(26) DT (X, - X'.) (1 +/>2¢)x2t1 - ?P(l + %)xtlxt2+(f2+%ﬁx2ﬁzA

wh2ore

(2/, &= @1m.—/9)+ 1; b =4 (1 —ﬁgn b= 0% .

As tne discriminant of the right side of (26),

~ 2 2. 2
.-_—.—-[.aj.; 1( i - f ) 3

is always positive. [Hence th X’to Hence, as regards

goodness of fit, RF with LS is at least as efficient as

negative, this right side

4]

OF with ML. It is surely remarkable that this property
holds for each set of the exogenous variables and not

merely for the sum sguares differences EE)(Xt - X't)c

Case (ii) -~ Forecasting and Policy-making

As already remarked, the error term in (158),

(ut2 + ﬁl utl) is now independent of the coefficients of

. 2 .
Xeg and Xigs which means that E(ytz - yt@c) is the sum
Tl + T4 + Tg + T4 (see (21))in the OF (ML) situation:-
2 2 1 2 2 2
2 - B - 2 o & )
(38) vy = Bl¥pg = Vg ) = (240 )+ mpllar g+l )%y

2 ) 2 ., 2
- Qf @7, XKyq Xpg + (14 c l)}x £9

The corresponding RF (L$) impression is

: 2 . (:2
t (Yyg ™ Yege) = (L +774)

pu
+ 1+ ~ 12 (X
L =p°)

i

(29) ¥', = B
p)

2

- 2w
t1 T “PFer%ee T

t2)
We now see that the expressions for Y and Y' at (28) and
(29) differ respectively from ¥ and X' given by (22) and

(25) only in the sign following (1 + 32 Hence

1)'

(30) X, = X', 2 ¥, - Y.

The situation is therefore now reversed: OF with ML is
now more efficient than RF with LS. 1In both cases the
relative superiority arises only in the term in Thl,

O . . . 4
The T  term is identical throughout, namely (1 + ﬂ?i)’
s0 that asymptotically the two approaches are equally
efficient,

The Value of E(ytzc - mt)z

hct 4 T 1 i
. Here the population vdue n  of y o (or y' ., ) is
given by




(31)
We have rejected E(ytzc

assessing the relative merits of ML and LS,

n =

t Gy By Xgg + g Xgg =

1

n P
t) as a

Y X

t1 T g %go

valid criterion as

Nevertheless

it may be interesting to observe that if Zt and Z't be

the respective values of this expression under ML and

LS conditions (Zt - Z't) is found to be approximately

- (Xt - X't) given by (26).

Hence

(Zt - Z't) is a

non—positive quantity for all values of the exogenous

set

(x

c1? Xegle

This

result is a consequence of ML

being asymptotically more efficient for estimating the

coefficientes which alone enter the calculatiocn: the

residual errors u

eliminated,

(32)

- [
Xt X t

and

Therefore,

Yso

to complete

] —_ - ]
Y & 4 Z

t : t

as explicit terms are

(30),

- Zto

A Constructed Example

at the

that we would be able to

Unsure,

start,

cope with the algebra of even the simple recursive model,
we set up a constructed illustration using the following

population values (see (7)):~ a, = 2,

1 Py

were found from fairly highly

=5, a = 3§,

2
T =

30, and x

X1

correlated (ﬂ = ,83) annual time seriecs;

t2

Upqo and Uyq
were independent random samples from N(C,1). So Viq

and x

and Y gwere built up, constituting, with X1 £0?

the "data",
We need not give the details. Following are
the estimated values of the coefficients using the two

systems: -~

-

-

Cocfficient

Reduced

Estimation

Original form (OF).

2.20
4.92

.

3447
form
2.20
12.18
5.54
1.B7

(RF)

Population

B2

A O

i0
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Hengce, on ﬁhe showing of these figures, there can be no
question about the superiority of OF (ML) as regards
individual coefficient estimation, in .which, héwever,

we are not interested, The ex ante RF (with LS) yields
bizarre values. Yet all the errors of estimate of the
coefficients lie within. the .95 probability limits. The
main reason for the greater accuracy of the OF (ML)
estimatesc is that the residual (population) variance

is 1, whereas it is 1 +g?12 = 26 in the RF (LS) case.
Yet the latter affords the better goodness—of-fit to

the data for we find:-

2
OF : X(yt2 - thC) /T = 21.8

RE: % ( - yltgc)g/T - 20.9

Yio

As we have but one realization there is no possibility

of calculating the E values of the text. Comparison of

it

the deviations in each of the T 30 sets of data shows

that 7~ 17 cases (yt2 - yltgc)2 (i.e. RF) is the smallex

and in the remaining 13 cases (yt2 )2‘(i.e. OF)

TV tac
is the smaller. If we had the E values the RF (LS)
value would be smaller in every case. In truth, as
far as results go in any single realisation, there
seems. little to choose between OF (ML) and RF (LS).

As stated in the text all the advantage comes from

computational simplicity in the geﬁeralwnasal

Conclusion

"~ From_the strictly statistical point of Vview
there'is gﬁtrlittle_difference in efficiency between tThe
. QF (with ML) and ex ante RF (with individual egquation
/LS) approaches. For forecasting andupbligy-making,
-~OF (ML) is the more efficient by our criterion; on the
.goodness-of~fit test, RF (L8) is the more efficient.
It is true that these comparisons are based on an
examination of the simplest possible recursive system:
the writer would be greatly surprised, however, if

investigation by algebra or Monte Carlo on a general
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system yielded a different assessment, for then-the
problem would remain of explaining away the recursive
case,

Even in this simple case (and only to terms
in 4/T the elementary algebra was formidable, but the

outcome pleasing in thdt quite definite conclusions

emerged. That most of the paper is devoted to this

special case must not blind us to the fact that these
conclusions are far less important than the fact, very
easily established at the start, that asymptotically
the two approaches are equally efficient, statistically
speaking.

Computationally, the argument overwhelmingly
favours RF (with LS). In adopting RF we bypass all
the problems associated with identification etc.
Even as regards theory: in [1] the writer‘has seriously
raised the problem as to whether ex ante RF (see (2}Y)
does or does not represent a more valid cause-effect
economic statement than does OF (1).

The first term ({31 +ﬁ21) of the error variance

1

in the special and B(8Y) “u'ug _1/T in the gencral cciie)

is the incubus, It goes far towards showing why fore- -

casts of year-to-year changes are generally so poor
(even with impressive Rgs and reassuring DWs). No
effort should be spared to make all residual error

variances as small as possible.

6 Cctober 1967

Revised 24 November 1967 R. C. Geary
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