Comparative Efficiency of Maximum Likelihood and Ex Ante Reduced Form Methods of Solution of Behaviouristic Equations for Forecasting and Policy waking

by
R. C: Goary

The famovs issuo of maximun likelihood (NL) verstis least squares ($\mathrm{W} S$) in the solution of a behaviourisuse equation system flares up from time to time but seems as yet unresolved. Accordingly, as the writer is about to embark on a posaibiy large model for his own country based on time series, he himself hae to face the issue now The present investigation leaves him convinced that ex ante reduced form (RF) with individual equation LS is the better ways

Of coureg, "tt all depends on shat.one. wants the-nodel forir to guote the too erainjathmiliché, One objective the writer has not in mind is individur I coefficiont estimation. We was vehement some zears ago in the assertior that in mitivatiate regression (and, a fortiori, in equation systems) individual coefficients are meaningless: the only coefficients possibly economicaly significant are those of simple regression [t].The writer is not aware of any serious attempt to rebut his views; nonetheless, economjc interpretations of individual coefficients (usually interpreted as "elasticities" or such like), with their implicit untenable ceteris paribus assumption, are still rife.

The only use the writer can find in solving large or small equation systems is forecasting (of the endogenows variables) and policy-making; for what follows, however; it will suffice to assume that forecasting is an objective. This objective nequires the calculation of. y_{c}, the vector for some specified time tof endogenous values, given
the values of the piedetermined variables. of course the estimation of the coefficients is involved, but to be used only as a set and not individually.

Original and Reduced Form

Let to original form (OF) of the model (in matrix notation) be
(1) $J_{i}^{f}=x a+u$

There are T sets of observations, p endogenous variables y, q exogenous variables x and an error matrix u about which the usual assunptions are made, including nonautoregression and a population var-covar matrix, the same for all times t, β and are the population coefficient population matrices. The dimensions of the five matrices involved are accordingly as follows:-y: $T \mathrm{x}$ p, $\beta: \mathrm{p} \cdot \mathrm{x} \mathrm{p}$, $x: T x . q, q: q x p, u: T x p o i s$ a square matrix, usually with primoipal diagunat mitiog. Wo oesume for simplicity that x is pure exogenous, i.e. it contains no lagged endogenous variables, not an issue here. Of course, x need not be linear, though y must. In accordance with the usual convention, the stochastic properties of the model enter solely through u, x being the same for each realisation, of which we have, in practice, only one. The expected value E is the mean of a hypothetically indefinitely large number of realisations. For the comparative efficiency purpose of the present paper, the population values, x, and the var-covar matrix are supposed known。

We shall concern ourselves with ex ante R. We assume that (1) has been set up on theoretical considerations: usually one equation is designed to explain each endogenous variable, the explanatory, or causal; variables in each equation being other endogenous and exogenous variables. These explanatory variables are customarily few in number, at most four or five. The coefficients and α are still in the form of symbols,
unestimated. From this form we may derive ex ante RF as follows

$$
\begin{equation*}
y=x_{a \beta}^{-1}+v \beta^{-1}, \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
y=x \Upsilon+v \tag{3}
\end{equation*}
$$

where $\gamma=a \beta^{-1}$ and $v=u \rho^{-1}$. The object of this transformation is to pick out, on the right side, the exogenous variables with non-zero coefficients, which theory, enshrined in (1), ordains. One hopes that, as in the case of $O F$, the right side exogenous variables will be few in each equation. As the var-covar matrix of u is $B u$ 'u/T, the corresponding matrix for v is $E\left(\beta^{\prime}\right)^{-1} u u^{\prime} u / T$, a fact of considerable importance for what follows.

We do not consider $L S$ applied to the individual equations in of in non-recursive models as, following the well-known work of Haavelmo [2], we regard this method as invalid. In fact, asymptotically it yields inconsistent estimates of y.

Suppose, now, that it is possible to estimate, by ML or otherwise, the coefficients ρ and $a b y b$ and a respectively and residual u by \hat{u} in a consistent way, i.e. so that each element tends in probability (as T increases) towards its population value, a property which may be written
(4) buß; a~a; ${ }^{\Delta}$ u.

It is necessary to have recourse to ex post $\mathbb{R F}$ to estimate
y by y_{c};

$$
\begin{equation*}
y_{c}=\operatorname{xab}^{-1} \sim x_{a \beta}^{-1}=\eta ; y=y_{c}+\frac{\Lambda}{v} ; \hat{v} u u \beta^{-1} \tag{5}
\end{equation*}
$$

It is quite clear that the var-covar matrix of

$$
\begin{aligned}
& \left(y-y_{c}\right) \sim E\left(\beta^{\prime}\right)^{-1} u: u \rho^{-1} / T \\
& \quad \text { We can also estimate a calculated value of } y,
\end{aligned}
$$

call it $\mathbb{Y}_{\mathbb{1}}$, from the ex ante $\mathbb{R F}$ version of the model (3):-

$$
\begin{equation*}
y_{1 c}=x \operatorname{siny}=\eta ; y=y_{1 c}+\frac{\Lambda}{W}, \quad \frac{\Lambda}{w} \sim u \rho^{-1} \tag{6}
\end{equation*}
$$

Obviously the var-covar matrix of $\left(y-y_{1 c}\right) \sim B(\rho!)^{-1} u^{\prime} u \beta^{-1} / T$, as in the case of OF. It is to be noted for comparative
purposes, that, at (5) (OF) and.(6) (RF), y(involved in the estimation of y_{c} and $y_{1 c}$), x and η are identical, y anc x because they are data and m is the value of y, given x whis u is zero, so that $\pi \beta=x \alpha$ implies $\pi=x a \beta^{-1}$.

Given our criterion based on the difference between the actual and calculated value of the endogenous variables $\left(y-y_{c}\right)$ or $\left(y-y_{i c}\right)$ and our objective (forecasting and policy-making), the identity of the population var-covar matrices means that there is no asymptotic ($T \rightarrow \infty$) difference in efficiency between oF (with ME) and RF (with LS).

Desiring to examine the issue to a closer approximation, we decided to compare the values (from now on using non-matrix notation) of $E\left(y_{t}-y_{t c}\right)^{2}$ and $E\left(y_{t}-y_{t \perp c}\right)^{2}$, the mean square of an indefinitely large number of replications of the deviations for given values of x_{t}, for a particular simple model. We prefer the criterion we have adopted to, say, $E\left(y_{t c}-n_{t}\right)^{2}$, mainly because, in any relization, the latter is not estimable, whereas the former is. Our method is to expand the criteria to terms in T^{-1}, the terms in T° being the same in both cases, as we have seen in the general case.

The Simple Recursive Model

As our object is measurement, we have recourse
to the only case in which the OF (ML) solution is algebraically manageable, which is the recursive system of equations. In this case, as is well-known, the $M L$ solution is found by individual equation $L S$ in $O F$, when u in (1) is normally distributed, now assumed. We select the simplest possible recursive model, as follows
$\left.\begin{array}{l}\text { (i) } y_{t 1}=a_{1} x_{t 1}+u_{t 1} \\ \text { (ii) } y_{t 2}=\rho_{1} y_{t 1}+a_{2} x_{t 2}+u_{t 2}\end{array}\right\} t=1,2, \ldots, T$ The estimates of α_{1}, α_{2}, and ρ_{1} are a_{1}, a_{2} and b_{1} respectively. There is no issue with regard to 7 (i): the OF
and RF estimates of a_{1} (by a_{1}) and of $y_{t \mathbb{1}}\left(b y y_{t 1 c}\right)$ are identical. Investigation will therefore be confined to (iil) of which the ME solution is found by ordinary
L. : ielaing the equations:-
(8) $\left(b_{1}-\rho_{1}\right) \Sigma\left(a_{1} x_{t 1}+u_{t 1}\right)^{2}+\left(a_{2}-a_{2}\right) \Sigma\left(a_{i 1}+u_{t 1}\right) x_{t 2}$

$$
=\Sigma u_{t 2}\left(c x_{t 1}+u_{t 1}\right)
$$

$$
\left(b_{1}-\beta 1_{1}\right) \sum\left(a_{1} x_{t 1}+u_{t 1}\right) x_{12}+\left(a_{2}-a_{2}\right) \sum x_{t 2}^{2}
$$

$$
=u_{t 2} x_{t 2}
$$

The e inaicateg summation with regard to t. It will now be convenient to deem (without loss of generality) x_{1} and x_{2} as standardized, i.e.,
(9) $\Sigma x_{t 1}=0 ; \pi x_{t 2}=0 ; \Sigma x_{t 1}^{2}=T ; \Sigma x_{t 2}^{2}=T ;$

$$
\sum_{t 1} x_{t 2}=T p
$$

Then (0) becomes
(10) $\left(b_{1}-\beta_{1}\right)\left(a_{1}^{2}+2 a_{1} e_{1}+e_{5}\right)+\left(a_{2}-a_{2}\right)\left(a_{1} p+e_{2}\right)$

$$
=a_{1} e_{3}+e_{6}
$$

$$
\left(b_{1}-\beta_{1}\right)\left(a_{1} p+e_{2}\right) \quad+\left(a_{2}-a_{2}\right)=e_{4},
$$

with

$$
\begin{aligned}
T e_{1}=\Sigma u_{t 1} x_{t 1} ; T e_{2} & =\Sigma u_{t 1} x_{t 2} ; T e_{2}=\Sigma u_{t 2} x_{t 1} ; \\
T e_{4} & =\Sigma u_{t 2} x_{t 2} ;
\end{aligned}
$$

(11)

$$
T e_{5}=\Sigma u_{t i}^{2} ; \quad \operatorname{Te}_{6}=\pi \dot{u}_{t 1} u_{t a}
$$

As, for the purpose of comparison of efficiency, we are entitled to assume knowledge of $\sigma_{1}, a_{2}, \beta_{1}$ and the variances of the error terms $u_{t 1}$ and $u_{t 2}$, namely \mathcal{H}_{1} and $\sigma_{2}{ }^{2}$, we can go further and ascume, without loss of generality, that and σ_{2} are both ${ }_{2}$ unity and $u_{t \pm}$ and ${ }^{\prime}$ eg independent. Then the variances of all the e's (except e_{6}) at (11) are $\mathbb{1} / T$, while it. will suffice to note that $E e_{5}=1$.

[^0](12)
$$
y_{t 2 c}=a_{1} b_{1} x_{t 1}+a_{2} x_{t 2}
$$
.here a_{1} is found by LS from (7) (i) as
(13; $\quad q_{1}=a_{1}+\Sigma u_{t 1} / T=a_{1}+e_{1}$.
The cecision iunction is
(14) $X_{t}=E\left(y_{t 2}-y_{t 2 c}\right)^{2}$.

It is to be noted that in the hypothetically indefinitely
large number of replications implicit in (14), t, $x_{t 1}$
and $x_{t 2}$ are the same in all. From (7) and (12),
(15) $y_{t 2}-y_{t 2 c}=\left(u_{t 2}+\beta_{1} u_{t 1}\right)-\left(a_{1} b_{1}-\alpha_{1} \beta_{1}\right) x_{t 1}-\left(a_{2}-\alpha_{2}\right) x_{t 2}{ }^{2}$

From which it is evident that the leading term in (14) is
(16) $E\left(u_{t 2}+\beta_{1} u_{i 1}\right)^{2}=1+\beta_{1}^{2}$.

Two Cases
Two views may be taken about the explicit error term, $\left(u_{t 2}+\beta_{1} u_{t 1}\right)$, in (15), according to whether one is concerned with (i) measuring goodness-of-fit of estimate $y_{t 2 c}$ to observation $y_{t 2}$ or (ii) using the formula for forecasting and policy-making. In case (i) only the T sets of observations are involved: u_{1} and $u_{t 2}$ in (15) are the error terms involved in the estimation of α_{1}, ψ_{2} and β_{1} so that the error term is not statistically independent of the estimates of the coefficients of $x_{i d}$ and $x_{t 2}$, In case (ii) we are concerned with future time, actual as regards forecasting and hypothetical as regards policy-making; the $u_{t 1}$ and $u_{t 2}$, being errors pertaining to future time, are independent of the errors in the estimated coefficients of $x_{t 1}$ and $x_{t 2}$ which are functions of the errors in past time. The result is different values of X_{t}, given by (14), in cases (i) and (ii). We consider approximations to both.

Case (i): Goodness-of-fit
For the present purpose expansion of (1\&) to the
term in $1 / T$ only is required: the right side of (15) is squared after substitution of a_{1} from (13) and a_{2} and b_{1} Prom (10):- $b_{1}-\rho_{1}=\left[\left(a_{1} e_{3}+e_{6}\right)-\left(a 1_{1} p_{2}+e_{2}\right)\right] e_{4} / d$

where d is given by
(18) $d=\left(a_{1}^{2}+2 a_{1} e_{1}+e_{5}\right)-\left(a_{1}^{2} p^{2}+a_{1} e_{2}+e_{2,}^{2}\right.$
so that (using (11)),
(19) $\vdots \doteq \Delta=a_{1}^{2}\left(1-p^{2}\right)+1$
and
(20) $E d^{2}: \Delta^{2}$.

The symbol ":" means "equals, to the approximation required". The actual or approximate values of the six terms (\mathbb{T}_{i})* in the expansion of the right side of $X(\mathbb{1} 4)$ using (15) are, after much algebra, given by:-

$$
\begin{aligned}
T_{1} & =1+\rho_{1}^{2} \\
-\Delta \cdot T_{2} & \doteq 2\left(a_{1}^{2} x^{2} t_{2}+x^{2}{ }_{t 2}-a_{1}^{2} \rho x_{t 1} x_{t 2}\right) \\
-\Delta \cdot T_{3} & \doteq 2\left(a_{1}^{2} x^{2}{ }_{t 1}-\alpha_{1}^{2} \rho x_{t 1} x_{t 2}\right)+2 \Delta \beta_{1}^{2} x_{t 1}^{2}
\end{aligned}
$$

(21) $\Delta T_{1} \cdot T_{4} \doteq x_{t 2}^{2}\left(a_{1}^{2}+1\right)$
$-\Delta \mathrm{T} \cdot \mathrm{T}_{5} \doteq 2 a^{2}{ }_{1} \rho \mathrm{x}_{\mathrm{t} 1} \mathrm{x}_{\mathrm{t} 2}$
$\Delta T \cdot T_{6} \doteq\left(c_{1}^{2}{ }_{1}+\Delta \rho_{1}^{2}\right) x_{t 1}^{2}$
whence
(22)

$$
\begin{align*}
x_{t} \doteq\left(1+\beta_{1}^{2}\right)- & \frac{2}{T \Delta}\left\{\left(a_{1}^{2}+\beta_{1}^{2} \angle\right) x_{t 1}^{2}-2 p a_{1}^{2} x_{t 1} x_{t 2}\right. \\
& \left.+\left(1+a_{1}^{2}\right) x_{t 2}^{2}\right\} \tag{23}
\end{align*}
$$

The ex ante $n F$ model of the system is
(i) $y_{t 1}=a_{1} x_{t 1}+u_{1}$
(ii) $y_{t 2}=\Upsilon_{1} x_{t 1}+\alpha_{\delta_{2}} x_{t 2}+v_{t 2}$,
where

$$
\begin{equation*}
r_{1}=c_{1} \rho_{1} ; v_{t_{2}}=u_{t 2}+\rho_{1} u_{t 1} \tag{24}
\end{equation*}
$$

The RF (LS) expression corresponding to (22) is found to be
(25) $X_{t}^{\prime}=E\left(y_{t 2}-y_{t 2 c}^{\prime}\right)^{2}$

$$
=\left(1+\rho_{1}^{2}\right)-\frac{\left(1+\beta_{1}^{2}\right)}{T\left(1-p^{2}\right)}\left(x_{t 1}^{2}-2 p x_{t 1} x_{t 2}+x_{t 2}^{2}\right)
$$

[^1]From (22) and (25),

$$
\begin{equation*}
\operatorname{DT}\left(x_{t}-x_{t}^{\prime}\right) \doteq\left(1+p^{2} \phi\right) x_{t 1}^{2}-2 p(1+\phi) x_{t 1} x_{t 2}+\left(p^{2}+\phi\right) x^{2} t \varepsilon \tag{26}
\end{equation*}
$$

where
(2, $\Delta=a^{2}{ }_{1}\left(1-p^{2}\right)+1 ; D=\Delta\left(1-j^{2}\right) ; \phi=\rho^{2} \Delta$.
As the discriminant of the right side of (26),

$$
=-t p_{1}^{2}\left(1-p^{2}\right)^{2}, \text { is negative, this right side }
$$

is always positive Eence $X_{t} \geqslant X_{t}$ 。 Hence, as regards goodness of fit, RF with LS is at least as efficient as OF with $N L$. It is surely remarkable that this property holas for each set of the exogenous variables and not merely for the sum squares differences $E \mathbb{N}\left(X_{t}-X_{t}^{\prime}\right)$ 。

Case (ii) - Porecasting and Policy-making

As already remarked, the error term in (15), $\left(u_{t 2}+\beta_{1} u_{t 1}\right)$ is now indepencent of the coefficients of $x_{t 1}$ and $x_{t 2}$, which means that $B\left(y_{t 2}-y_{t 2 c}\right)^{2}$ is the sum $T_{1}+T_{4}+T_{5}+T_{6}(\sec (2 \mathbb{1})$ in the $O F(M L)$ situation:(28) $y_{t}=E\left(y_{t 2}-y_{t 2 c}\right)^{2}=\left(1+\beta_{1}^{2}\right)+\frac{1}{2 T}\left(\alpha_{1}^{2}+\beta_{1}^{2} 1_{1}\right) x_{t 1}^{2}$

$$
\left.-2 p a_{1}^{2} x_{t 1} x_{t 2}+\left(1+u_{1}^{2}\right)\right\} x^{2}{ }_{t 2}
$$

The corresponding $R F$ (LS) impression is
(29)

$$
\begin{aligned}
& Y_{t}^{\prime}=B\left(y_{t 2}-y_{t 2 c}\right)^{2} \doteq\left(1+\rho_{1}^{2}\right) \\
& \left.+\frac{1+\rho_{1}^{2}}{T(1-\rho} 2\right)\left(x_{t 1}^{2}-2 \rho x_{t 1} x_{t 2}+x_{t 2}^{2}\right)
\end{aligned}
$$

We now see that the expressions for Y and Y^{\prime} at (28) and (29) differ respectively from X and X ' given by (22) and (25) only in the sign following $\left(1+\beta_{1}^{(2}\right)$. Hence

$$
\begin{equation*}
X_{t}-X_{t}^{\prime} \doteq Y_{t}^{\prime}-Y_{t} \tag{30}
\end{equation*}
$$

The situation is therefore now reversed: OF with ME is now more efficient than RF with LS. In both cases the relative superiority arises only in the term in T^{-1}. The T° term is identical throughout, namely $\left(1+\beta_{1}^{2}\right)$, so that asymptotically the two approaches are equally efficient.

The Value of $B\left(y_{t 2 c}-\text { m }_{t}\right)^{2}$
(31) $m_{t}=a_{1} \rho_{1} x_{t 1}+a_{2} x_{t_{2}}=\Upsilon_{1} x_{t_{1}}+a_{2} a_{t_{2}}$. We have rejected $E\left(y_{t a c}-\eta_{t}\right)^{2}$ as a valid criterion as assessing the relative merits of $M L$ and LS. Nevertheless it may be intercsting to observe that if \mathbb{Z}_{t} and \mathbb{Z}_{t} be the respective values of this expression under mL and LS conditions $\left(Z_{t}-Z_{t}^{\prime}\right)$ is Cound to be approximate 1_{y} $-\left(X_{i}-X_{t}^{\prime}\right)$ given by (26). Fincen $\left(\mathbb{Z}_{t}-\mathbb{Z}_{t}^{\prime}\right)$ is a non-positive quantity for all values of the exogenous set $\left(x_{t \mathbb{1}}, x_{t \mathcal{L}}\right)$. This result is a consequence of ML being asymptotically more efficient for estimating the coefficients which alone enter the calculation: the residual errors $u_{t 1}$ and $u_{t 2}$ as explicit terms are eliminated. Therefore, to complete (30),

$$
\begin{equation*}
X_{t}-X_{t}^{\prime} \doteq Y_{t}^{\prime}-X_{t} \doteq Z_{t}^{\prime}-Z_{t} \tag{32}
\end{equation*}
$$

A Constructed Examp1e

Unsure, at the start, that we would be able to cope with the algebra of even the simple recursive model, we set up a constructed illustration using the following population values (see (7)):- $\alpha_{1}=2, \rho_{1}=5, \alpha_{2}=3$, $T=30 . \quad x_{t 1}$ axd $x_{t 2}$ were found from fairly highly correlated $(\rho-.83)$ annual time serios; $u_{t 1}$, and $u_{t 2}$ were independent random samples $\operatorname{from} \mathbb{N}(0,1)$. So $y_{t \mathbb{1}}$ and $y_{t \mathbb{R}^{\prime}}$ were built up, constituting, with $x_{t 1}$ and $x_{t g}$, the "data".

We need not give the details. Following are the estimated values of the coefficients using the two systems:-

Coofficient	Estimation	Population
	Original form (OF)	
${ }^{*} 1$	2.20	2
β_{1}	4.92	5
${ }_{2}$	3.17	3
${ }_{1} 1$	$\text { Reduced } \underset{2}{ } \begin{array}{r} \text { Eorm } \\ 2.20 \end{array}$	2
$\alpha_{1}{ }_{1}{ }_{1}=r_{1}$	12.10	10
ρ_{t}	5.54	5
${ }_{2}$	1.57	3

Heace, on the showing of these figures, there can be no question about the superiority of $O F(M L)$ as regards individual coefficient estimation, in which, however, we are not interested. The ex ante RF (with LS) yields bizarre values. Yet all the errors of estimate of the coefficients lie within the .95 probability limits. The main reason for the greater accuracy of the OF (ML) estimatec is that the residual (population) variance is 1 , whereas it is $1+\beta_{2}^{1}=26$ in the $R F$ (LS) case. Yet the latter affords the better goodness-of-fit to the data for we find:-

OF: $\mathbb{Z}\left(y_{t 2}-y_{t 2 c}\right)^{2} / T=21.3$ $R F: \Sigma\left(y_{t 2}-y^{2}{ }_{t 2 c}\right)^{2} / T=20.9$

As we have but one realization there is no possibility of calculating the E values of the text. Comparison of the deviations in each of the $T=30$ sets of data shows that $\therefore 17$ cases $\left(y_{t 2}-y_{t 2 c}\right)^{2}(i . e . \operatorname{RF})$ is the smalle. and in the remaining 13 cases $\left(y_{t 2}-y_{t a c}\right)^{2}$. (i.e. $O F$) is the smaller. If we had the E values the RF (IS) value would be smaller in every case. In truth, as far as results go in any single realisation, there seems little to choose between $O F$ (ML) and RF (LS). As stated in the text all the advantage comes from computational simplicity in the genoral case.

Conclusion

 there is but little difference in efficiency between the OF (with ML) and ex ante RF (with individual equation LS) approaches. For forecasting and policy-making, OF (ML) is the more efficient by our criterion; on the goodness-of-fit test, RF (LS) is the more efficient. It is true that these comparisons are based on an examination of the simplest possible recursive system: the writer would be greatly surprised, however, if investigation by algebra or Monte Carlo on a general
system yielded a different assessment, for then the problem would remain of explaining away the recursive саве.

Even in this simple case (and only to terms in $1 / T$ the elementary algebra was formidable, but the outcome pleasing in that quite definite conclusions emerged. That most of the paper is devoted to this special case must not blind us to the fact that these conclusions are far less important than the fact, very easily established at the start, that asymptotically the two approaches are equally efficient, statistically speaking.

Computationally, the argument overwhelmingly favours RF (with LS). In adopting RF we bypass all the problems associated with identification etc. Even as regards theory: in [1] the writer has seriously raised the problem as to whether ex ante RF (see (2)) does or does not represent a more valid cause-effect economic statement than does OF (1).

The first term $\left(\left(X+\beta_{1}^{2}\right)\right.$ of the error variance in the special and $E\left(\beta^{\prime}\right)^{-1} u \prime u \theta^{-1} / T$ in the goncral ccie) is the incubus. It goes far towards showing why forecasts of year-to-year changes are generally so poor (even with impressive $R^{2} s$ and reassuring DWs). No effort should be spared to make all residual error variances as small as possible. 6 October 1967 Revised 24 November 1967 R. C. Geary

References

[1] R. C. Geary, "Some Remarks about Relations between Stochastic Variables: A discussion Document", Review of the International Statistical Institute, Volume 31: 2, 1963.
[2] T. Haavelmo, "The Statistical Implications of a Set of Simultaneous Equations.

[^0]: *If the original values $+n$ (7) E. A-Aifatrab by prined symbole, (except $x_{t y}$ and $x_{t 2}$ unchanged) transin nn ta the form with residuai variancte unity is effected by: $u_{t 1}=u_{t 1}^{\prime} / \sigma_{1}: u_{t_{2}}=u^{\prime}{ }_{t 2} / \sigma_{2} ; a_{1}=a_{1} / \sigma_{1} ; y_{t_{1}}=y_{t 1}^{\prime} / \sigma_{1} ;$ $y_{t 2}=y_{t_{2}}{/ \sigma_{2}} ; \beta_{1}=\beta_{1}{ }_{1} \sigma_{1} / \sigma_{2}{ }^{\circ}$

[^1]: ${ }^{*}$ If the coefficients on the right of (15) are A_{1}, A_{2} and
 A_{3}, then $T_{1}=E A_{1}^{2}, T_{2}=2 B A_{1} A_{2}, T_{3}=2 E A_{1} A_{3}, T_{4} E A_{2}^{2}$, $T_{5}=2 E A_{2} A_{3}, T_{6}=E A_{3}{ }^{2}$.

