
J:~’{$-~ 5D//~//J$1fiY))L~t data be (Xt,Yt), t = 1

assume throughout that T is "large’).

~’ : c’a:~’C’~e ahd Effect be Distinguished by Simple Regression?

, 2,...,T.     We

We try to evolve

statistical tests for identifying whether X.or Y is the

cause, the other variable being the effect.     If~ in fact,

X is the cause, the model is

(i) Yt = a + # Xt + ut, t = l, 2, ... , T,

the residue ut being homoskedastic, with finite variance

t’~ tmean zero and randomly ordered, i.e. E utut) = o)

We know that X is the "cause" under these conditions

because what (1) says is "knowing the values Xt, ~ and #

I calculate the Yt by multiplying the Xt by# , adding

and then adding random values ut to each".    The Xt

"precede’~ the Yt~ hence the train of causation.    We

know that ~ and # may be estimated by LS regression in

an unbiased manner (by a and b) and the estimated residue

ut = Yt - a - bXt is a consistent estimate of ut for each

to    Suppose, now, we (erroneously) set up a LS regression

of X on Y (i.e. assuming Z is the cause):-

(2)     Xt = c + dYt + Vto

m~ The LS regression values of the coefficients c and d will

be given by

(3) (i) c = x - d~

(±i) d : z xt~t~y~,

where xt = Xt - X, Yt : Yt - Y =fl xt + ut - u~ from (I).

Hence by substitution in (3)(ii)~ with u~ = ut - u ,

(4) d = gxt (# xt + u{)/ S (# xt + u{)2

= ( #S2 + w)/(# 2S2 + 2# w + s2),

where Z x     TS2, Z rUt o are= x ’ = Tw~ Z u~ = Ts2 S2 and s2
1

ordinary magnitudes while w = 0(T-")°     Hence

(5) .    S2     2S2+ s
2

S2 . 2/~. = # /(p ) = ~/(# + s2/# ) = ~/(~ +s bS~),



- 2 -

The symbol ~’~’ meaning "approximately equal tog when T is

large° From (5) we infer, at once that

(6) < I/b.

Clearly this inequality is useless for distinguishing X

from Y as causitive variable~ i.eo distinguishing b from

d, the respective estimates of the coefficients~ in fact,

(6) is equivalent to b <I/d, reversing the roles of b

and d. Nor can we see much hope in the absolute terms

a and c: in fact, from (3)(i) and (5).

(7)     c ~ (s2X / bS2 - a)/(b + s2/bS2),

which does not seem promising for distinguishing the

estimated intercepts a from c.

The last of the more obvious hopes is the yon

Neumann.    If, as already stated~ X is the cause then the

DW value of

(8)     ut = Yt - a - bXt

will be insignificantly different from 2, indicating

residual randomness.    Will this be the case if, erron-

eously, we assume that Y is the independent variable?

Then, from (2)9

(9) vt : Xt - c - dYt

= Xt - c - d (~ +~ Xt + ut)

Xt - c - d (a + bXt + ut)

The coefficients of Xt is approximately equal to (I - bd),

calculable from the data°    Now~ from (5),

(10)    1 - bd ~ s2/(b2S2 + s2)

± 1     R2~

where R is the coefficient of correlation between Xt and Yt"

If R2 = 1 exactly then ut in (I) is zero for all values

of t~ the relationship between Xt and Yt is exact~ (I)

and (2) become absolutley consistent statements, with bd

: I~ the X% term vanishes from the right side of (9)~
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there is no possibility of distinguishing X from Y as the

cause~ by this or perhaps any approach.    The case of R2=

I is however~ trivial.    It is mentioned merely to indicate

the ultimate logic of the yon Neumann approach.    In general

the coefficient of Xt in vt given by (9) is non-zero.

Without loss of generality the Xt can be regarded as arranged

in order of magnitude so that the Xt exhibit the phenomenon

of serial correlation in marked degree°    If follows from

(9) that~ for a value of T >~ the residues v should exhibit

significant serial correlation~ e.g. a value of DW (vt) at

most equal to the .05 probability critical value.    Of course,

T, in a particular case may not be large enough to determine

significance°    If T is large enough the procedure then is

as follows.    Calculate the two LS regressions.    If the

residual DW is not significantly different from the first,

say of Y on X but significant for X on Y then X is the

cause and Y the effect.

The following analysis shows the prospect of

distinguishing cause from effect by this DW method as

promising.    For one thing~ one likes to get a large R2

(since then the calculated relationship is more firm) but

clearly the larger the value of R2 found the larger the value

of T required to establish significance.    &t least there

seems to be a good case for calculating both regressions

with their residual DWs.    Perhaps empirically we may decide

on direction of causation from the relative magnitudes of the

DWs.    With economic time series (eogo money and income) we

are prone to find very large R2 (sometimes of the order of

.99) on the raw d~t~.    In these cases the common device

of using insteadA X and AY has the effect of reducing R2

very considerably (one of ten finds R2 of only .3 or .4).

The A operation does not change direction of causation,

however.    So~ even if one has only a limited number of pairs

of observations~ the low value of R2 found for the A data
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may not be such an in.mixed evil after all as it renders

possible identification of the causal variable by DW

process.    However~ we do not pursue this A aspect here°

What relation must obtain between S and p

(or G’) for the DW procedure proposed to be successful?

Let the DW ratio be Do    Without loss of generality let

X and Y in ,’I) be regarded as measured from their means

so that    is exactly.~ and a and c are approximately

zero°    Furthermore~ let p = I, without loss of gener-

ality (since the X.b in (I) can be altered proportionately).

9hen~ from (9)7

(11)

~Tow

(12)

R2
vt ’--’ kxt - dut9 k A I -    .

D : r,(AVt)2 /Zv2

k2Z (Axt)2 + d2Z (Aut)2 /T(k2S2 + d2s2)o

AIn fact the numerator of (12) contains a term inzAxt A ut,
.t

which can easily be shown to be O(’~’) hence of lower order

than the terms retained~ which are O(T).    Now, without loss

of generality~ let the DW ratios of xt and Aut be respect-

i?ely e =~. (Axt)2/TS2 and m = ~ (A~t)2/Ts2

Then

(13)     D ~ (ek2S2 + md2s2)/(k2S2 + d2s2)o

Now k : I - R2 --: s2/(S2 + s2) and d = ~xy/Z y2 ~ 82/(S2 + s2),

recalling that # = 1o    Hence~on substitution of these

values in (13) and reducing,

es2 + mS2
(14) D

s2 + S2

If, given T, D ~ Do~ where Do is the lower 5% critical value

of D on the null-hypothesis, tabled by J. Durbin and

.
Go So Watson o    The lower limits dL range from Io08 for

~Testing for serial correlation in least squares regression.
II’~ Biometrika~ volo 38~ parts I and 2 (1951).
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T = 15 to Io65 for T = 100.    For T = 50~ dL 
= 1.50~ which

is convenient.    Now for economic time series in the recent

period e is very small: for instance~ using annua~ figures

for Ireland 1947-1967~ the values for log GN~ and log

money are respectively 0.037 and 0.035.    Neglecting therefore

the term es2 in (14) we can identify rest ual serial corr-

elation when

(15)    mS2

or when

(16)

1.5 (s2 + s2)

R2    S2.... (s-~+ ~2~ ~ 1.5m

Since m ~ 2~the condition is approximately R2 ~ . g5.

Hence if T = 50 we are able to distinguish the causal

variable when the correlation coefficient R ~ .87~ always

assuming that one variable deemed causitive or independent

has yielded insignificant residual serial correlation.

As the DW table may not always be readily available

the following approximate formula for the author’s dL ( in our

notation Do) the lower limit of the 5% probability on the

null-hypothesis for simple regression.

(17)    Do 
= 0.914029 + 0.016350T - 0.00009296T2

The approximation is quite good~ especially when regard is

had to the imprecision of the critical points: thus for T = 15

the values are 1.08 (tabled) 1.14 (17)~ for T = 50 both are

the same at Io50~ for T = 100 the values s re 1.65 and 1.62

(17).    The formula applies only to the authorgs range

T = 15 1o 1OOo    It seems quite likely that DW analysis will

also identify the direction also in the case of multivariate

LS regression (e.g. we may be interested in identifying

causally X and Y as above but have our regression contain

additional variables indubitably independent in character)~

this aspect has not been as yet examined.    A particular

case of considerable interest is that in which we concern
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ourselves with lagged as well as current variables.    In fact,

this research originated in the question "Is money the cause

or the effect of income?"    In statistical terms~ which of

these two models do we prefer:-

Y = ~ + PoX +PIX_I + P2X_2 + o.. + ut

Y ~ ~IY    + g2Y 2 + °’° + vt~
X = + g oY ~     -I

-

or

X..andY being momey-and income.~ ~or%hei~h"s?- We~ propose

to examine this pro.blem.-using Irish data for 1947--1967

annual and quarterly (seasonally corrected).

June 1968

Revised August 1968

R. C. Geary


