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Identification oF Individual Abnormal itTes in Least Squares Regression

by R. C. Geary

4

In single equation LS regression the common

practice is to test goodness-of-fit by the standard error

of estimate s and probable absence of residual auto-

regression by the Durbin-Watson d [2 ] , [ 3 ]~ or the more

recent count of sign changes T [ 63¯    With a wide choice of

causitive (Or independent) variables (indvars) and with

...... access to a computer~ several regressions can be producedt

one for each set cf indvars selected.    We usually pick

the regression with the lowest 8 and a satisfac~oPy d or T

as the "best" unless there are very compelling a priori

reasons for picking some other set.    Truth to say, thero

is still much empiricism in regression practice; in it

art has a place as well as science.

L

In setting up the model y = x ~ + u, u regular,

we are saying that (considering time series for convenience)

throughout the period certain causes (which need not be

independent) regularly affected the level of the dependent

variable, the difference between the calculated vector x

and the observed y vectorw namely u, summarizing a vast

number of unidentified causes~ operating porhaps in some

"years" but not in others~ as well as plain errors of

observation,    We customarily regard our table of data

as a single realization from a theoretically possible

infinity of states (with x constant throughout)# the

minor causes operating in such a random way that the

elements of u can be assumed to be homoskedastic through-

out and independent of one another~ i,e. u is regular,

by definition,

I



It is customary (indeed a practice to be

recommended) to graph the calculated dependent variable

X b against ~he original vector y.    Inevitably some of

the calculated disturbances, elements of v, y = x b + v,

are comparatively large.    Are they abnormally so9 The

statistics s, d and r tell us little or nothing about

such abnormality.    Clearly we have something to gain by

studying the individual disturbances.    Our knowledge of

the data will be deepened thereby.    Such exercises may

even bring to light causative variables then-to-fore

......... unsuspected.    When, and only when, abnormality has been

stochastically determined are we justified in using the

device of dummy variables thereby mitigating the effect

of abnormality.    This paper deals with the problem of

the identification of such abnormalities.

Order Statistics

We do so by recourse to order statistics. The

elements off u in the model are, by definition, independent.

The vector v is an unbiased estimate of u.    It may be

assumed that number of sets of observations T is so large

that the calculated elements of v are also independent;

T
they cannot be so~ in general, since v xT ~ 0, iT the

unit vector.

We deal throughout with absolute values of the

disturbances and~that each of these (positive) values has

the cumulative frequency (c.f.) F, 0 ~< F ~<l.    The c.f. of

the absolute value of order n, on the null-hypothesis, is ¯

(I) Gn = T (T- I)/F
T - n

- I     0 d x (l - x)n-I x

as is well-known.

For any order n the value of Gn as a



polynomial in F can easily be found by expanding (1 - x)n’’1

in the integral.

are :

G1 =

(2) O2 =

G3 =

The formulae for the first three orders

FT

T FT-i- (T- i) FT

FT-2T (T- l)(T- 21 [-------

T- 2

The practical problem is ¯ given G to find F.
n

The solution is obvious in the case of GI. In general G
n

wil-i have values like .95~ ,99 etc depending on the

probability used for determining significance.    Now for

these earlier orders it is evident that, if G
n

and F = 1 - f, f ~g gn’ in fact f is very small.

making these substitutions we find from (2) :

= 1-gn

On

(i)

(ii)

(iii)

gI    = f . + f - ,,.

g~ = ~ - 3.     f4 + 6 f - ...

In general :

T - n

(4)    gn =    z
i=0

(...)i (n" + i ~ .1) CT ) fn+in -- + i "

Now, taking a line from the obvious advantage

of such a course in the case of n = I we make such a

gransformation as to ensure that the first coefficient

on the right of (4) is always unity,

£T) n
(s) fn : x

For this we set :

1

(6) f = n x.
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On so substituting for f in (4), the typical term contains

the following factor in T :

n + i

_(n + i)
n

TT- I ... T- n - i + I

(n +1):

I TT- i ... T-n + i1

n:

easily seen to be O(To) in T so that as T-~

n+i
formed coefficient (i~e, of x    )

(n +i)
n

each trans--

tends to a constant

value, which on combining factors is easily seen to be :

(8) Cn = (_)i
I

+ ,,,,

n I
(n + i)Z] --i (n Z)

n+i

a

As the factors in T alone tend to unity when T-9 ~ Cn is
1

n+i
the coefficient of x     in transformed (4).    For all

Cn = l, from (8).    As an example, for thevalues of nt o

third term of g3 at (3), i = 9, n = 3.    Then, from (8)

,. 6 x (19.o)-i x (1.817121)5

= 0.990579.

5
This is the value of the coefficient of x in g3 when

number of sets of observations is indefinitely large.

In (7) the factors independent of T have been

transferred to C.n I’ given by (8).    The rest of (7) (i e.

~he part in T alone) may be written, with w = i/T :

(9)
I

(! - w)(1 - 2 W) ... (1 - m w)

[(1 - w)(1 - 2 w) ... (1 ,- r w)] -p

m = ~ + i - i; ~ -- n - i; p = (n + i)/n

n+i
The full~coefficient of x     in the x-transformed version

c~ ~Of (4) will then be I i°
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L°ge ~i is expanded in powers of w. No special interest

attaches here to the general expansion so we proceed to

particular cases.    Again we take i = 2, n = 3~ as an

illustration.    Recalling that, when 0 4 w ~< i~ log

2 3
= -w-w /2 - w /3 - ¯. ¯ ad inf we find

(i - w)
e

T~
65 9    85 3    977 4 5

ioge     = - 5 w -- -~ W -- -~ w -- I----~ W -- 249 w --

¢,

When T i00, w = 10-2 and the first four terms of ~he
Qxpansion give loge N~ -- --°051116     Whence WZ     95016

5The full coefficient of x in the expansion of g3 is

C2~ ~ -- 0.990579 x 0.95016 = 0.9412.

The object of the x-transformation is to ensure

n+i
that the coefficients of x remain small as T increases,

in the transformed version of (4).    Given T, they also

diminish as i increases¯    The fact that in the expansion
of loge ~i the coefficient of wk tend to increase sharply

k
with k is really no embarrassment~ since w becomes very

small as k increases when T ~>i0, so that only the first

few terms are required for a close approximation.    The

x-transformed equations were used throughout for the

computation of Table i.

THF~ HIGH,~oT D~.VIATF~

On transformation (6) the x-equation version

of (~)(i)is :

T ,(T - i)(io) .gl = x -
1.2 T2.

2 T ..(T- I)(T- 2) 3
X    + "’ X    --

1.2.3 T3

When T = ~ , (10) becomes :

T t erms.



- 6 -

yielding the solution :

el2) x -- gl ÷ + g I3 + ... ad in .

When gi = .05, x = .051299, when gi = .01, x = .010050.

At the other extreme when T = i, x = gl"    It is obvious

~hat when gl is emall the universal solution (i.e. for

all values of T) is, approximately x = g1"    If xT be the

exact solution the corresponding f-probability is found

from (8) :

fT = XT/T*

The normal theory gl-probability null hypothesis critical

point is that found from the standard normal table [l ]

corresponding to probability (l - fT/9).

The Critical Probability Points Table

~nile the derivation of probabilities f corres-

ponding to any initial¯ probability g can easily be derived

by the foregoing x-transformation~ the derivation of

critical points corresponding to probability f presents

certain difficulties when T is not large.    We use normal

~heory throughout this paper but such a procedure is not

strictly valid.    In the first place, even if model residue

ut is normally distributed~ the statistic we use, namely

vt divided by its estimated standa.rd error~ is not dis-

tributed normally, but as the Student-Fisher statistic t.

The hypothesis of normality is strictly true only as

T-~ co.     In practice, however, Student-Fisher critical

points, .~iven probability (,05, .Oi ere) are close to

normal theory points and the values given in Table i can

be used with the mental ~eservation that the actual null

hypothesis probabilities are slightly greater than the

.05 and .Of indicated°    This is really an unimportant



point since we make only formal use of these probabilities

in making inferences:¯ we are content to state merely that

some calculated value is "significantit.    It is enough

that the null hypothesis probability is "small".

Another difficulty is that while the sample of T

may be random and drawn from a normal population the

statistics of given"order are not normally distributed.

The critical points of the statistic X1 ~ (xI -~ )/ 0-,

where ~ and ~ pertain to the normal population sampled and

xI the highest value in the sample, ape given in Table 24

of [I ] , for T ~< 30, presumably using the exact frequency

distribution of XI.    It remarkably happens, however~ that

our .05 and .01 probability critical values for sample

Sizes T = i0, 20, 30 (six values in all), though computed

on the assumption that the largest value was normally

distributed, exactly (to two decimal places) equal the [i]

values.     So much for Smallish values of T.    As T

increases, the frequency distributions of statistics of

all orders tend¯ towards normality so that, for all values

of T shown in Table i, considerably confidence may be

reposed. They are, however, described

as "approximate" because the populations involved are

really not normally distributed, but only approximately

so~ as explained above.

¯ Table I is fundamental for the present research.

As already stated, the values shown were derived using

the x-equations.    It was usually possible to make a good

guess of a near approximation x0 to the root x required,

beginnin~ the iterative process.    Then xI = x0 + e0 where

!

e0 = - f (Xo)/f (Xo), x2 = xi + eI etc.    In fact, two

iterations were required in only a few cases; mostly one

sufficed since, as T increased, the x.-solutions became
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Table 1.

Approximate Critical .05 and .01 Probability Points
of Deviates of Orders I, 2, 3 (Absolute Values), for

Certain Values of Sample Size T.

Normal Theory Assumed Throughout.

Order / Order 2 Order 3
T

.O5 .01 .O5 .01 .O5 .01

1 1.96 2.58 p.

10 2.80 3.29 2,09 2.49. 1.71 1.98

90 3.02 3.48 2.36 9.,67 2.03 2.9.8

40 3.9.2 3.66 2.61 9..90 2.31 9..54

60 3.33 3.76 2.75 3.09. 2.46 9..69

80 3.41 3.84 2,84 3.11 2.56 9..78

100 3.48 3.89 2,91 3.18 2.64 2.85

nearly identical for each of the three orders. Critical

points for only a few values of T are given since in the

range I0 ".< T .< i00 critical points for any T can easily be

interpolated.

Application to Regression

Th_~e ~t factors.    If the model is y = x ;9 + u,

u regular, the LS estimate is y = Yc + v, Yc = x b. Now,

9.    9. 2
while H ut = 0- for all elements of u, the value of E vt is

not ~ but Xt    , where :

2 t
(14) Skt = 1 - xt (x x)-1 xt.

The second term on the right of (14) is O(T-I) so that

9
~t -9 1 and E V2 "--), C~2 only as T--~ ~ .    This ~ -correction

should be used when T is not large, as in the exercise

that foll6ws.    In simple regression (14) assumes the

T
2 (T - 1)/T - (xt - ~)2/ ,Z .(xt, - ~)9’(15) =

t=l"
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The null hypothesis here is that all the elements

in the residual vector U hay0 the regular properties B ut = O,

B = 0 (witht uti --o; t We establish
regression on these assumptions about our model (or popui-

2 2
)2 Where Kation), estimating ~ by s = ~’(Y- Yc /(T- K),

is the number of indvars, includinS the constant.    But if

some of the values o.f the observed Yt contain abnormalities

which we hope to discern from an examination of the higher

t Ivalues of v , we contemplate the possibility of a model

in which a few of the disturbances are n_ot, say, ul, u~, ...

but uI + al’ u2 + ~2’ ... so that all the disturbances are

no longer regular; as defined above.    Here we assume that

these disturbances are few, say two or three: general

residual heterovariance, is another matter (see, for examples

[4 ]).

If we Use the larger I vt I to this end, we canuot

safely use the classical formula in the previous paragraph,

a~ the null hypothesis, to estimate s2 unless T is very

large, which it rarely is.    As the following exercise

clearly shows, such an estimate, when T is not large, can

9
seriously overestimate ~- and underestimate the test

statistic, namely vt/(s.e, vt), used for identifying

abnormalities, thereby concealing these when they are

possibly present.     Nor, if, say, the first and second

highest absolute values of the residuals are under test,

simply to eliminate from sum squares (and reducing d.f.

by 2) is invalid, for, even i£ there were no abnormalities

9~
present, this procedure would underestimate ~.

The correct treatment is given in [ 5 ] .    This

involves substituting statistics s
2

I’
2

s E9 etc for the

actual contributions of the highest, second highest etc

2
being the

(Yt - Ytc)2 in sum squares, where En = E Zn, zn
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£Zh order value for a random sample of T from N+ (0, i),

We then estimate 0-2 by. s2 from :

(16) (T - K) s2    s2
K
r. ~ + z

(Yr ) 2
n -- 1 n - Ytc     P

!
where E indicates the omission of the ~ residuals under

testw or :

(17) s2 Z (Y - ytc)2/(T - K -- Z Ei).

To make the present expose tolerably complete, a table of

Bi, given in [ 5] is reproduced here, for convenience, as

Table 2.

T~L~ 2

Value of F_~,,~ Ez~for random samples of T from N÷(O, l) for cr~ = 1

10

3O
4O
50
60
9O
80
90
1o0

Descending’ order 11
1      2     3     4     5     6      7     8

3"799621 2"171462 1"4.26472 0"970990 0.66,3253 0"437538 0"275135 0"155713
4"916071 3:216540 , 2"410593 1.89.7~55 J "528207 1 "245702 1.020668 0"836765
5"599340 3-86796~ ~;~0~76[3~ 1"502189 2’112625 I "809929 ¯ 1’564854 | ’360810
6’093230 4’343362 ~!~98975 2,951316 2-55C458 2.237010 1.981502 1,767200
6.480929 4.718344 :,3-~64523 3.3087.82 2.~30577 2.580232 2.318119 2.097405
6.800321 $’02825Y ~.1G7506 3.605907 3.192432 2-867188 2,600425 2-375213
7.072022 $.::[~92~7 4.426376 3.860271 3.4,~2774 3.113818 2.843555 2.615017
7-308510~ 5,522905 4,652444 4-082727 3-662028 3,330132 3.057110 2-825948
7.517919 5"727220 4’853153 4’280453 3"857122 3-522820 3"247552 3"0t425q
7"705850 5"91079.3 5"033661 4-458440 4"032894 3’696576 3’419431 3"184363

t

.. . L,,

Effect of abnormalities on the regression. Since b -- fl

= (x x~    x u, if a finite number of abnormalities are

present in u~ b is no longer an unbiased estimate of /9 %

It ise howevere a consistent estimate.    For oxamplop in

-
simple regression b - ,8,= Z(xt - x) ut/ Z (xt -     . The

point is that in the formula for b the biasos~ if any,

enter I/nearly (instead of their squares in estimating

c~ by the classical formula)" and in practico the bias in

estimate of ~ will usually be smalle so that this biased



estimate will lie well within the confidence limits of

impeccable estimate.

An Exercise \

The regression is simple

Yt = i0. + xt + ut~

xt = -13t -12,

ut initially a random sample of 97 from N (0, 1). Dis-

turbances of 4 were added to the Yt corresponding to xt

... 0t ..., 12, 13, $ = I, T = 27 and the

The (x,~)) "observations"

The problem: can we

(clear enough to the eye)

= -9 and to that for x~ = 4.

are shown as dots on the chart.

detect these two abnormalities

by stochastic analysis, and correct for them? For

2
straightforward LS we have : T = 27; Zx = O; Zx = 1,638;

Zx Y = Zx y = 1,678.45; ZY = 278.45; ZY2 = ~,666.9647;

9
~ y = 1,795.39.10.    From these we find a (estimate of the

interceptor the regression) = I0.$I$0 and b - 1.0~47,

obviously very good estimates of the population values

iO and I and illustrating the point in the foregoing text

that good regression coefficient estimates can be obtained

from disturbed data.

It is quite otherwise with the original estimate

of s2 (9.5 d.f. ) which turns out to be ~.0169, three times

the population value|

The two largest disturbance values vt (as we

might expect) are :

5.35 for x = 4

4.14 for x = -9

We try to show that these are abnormal by the method

indicated in the text proper. We find :

i
z 49.17 (4.141= . - . - = 29.6596.
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Constructed-illustration.    Data, (i) simple regression and

(H} regression with dummy variable.
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By rough interpolation from Table 2 we find for T = 27,

BI = 5.4, E9 = $.7, sum 9.1, so, from (17) :

2
s = 29.6596/(25 - 9.1) = 1.8654

which, by chi-squared, is not significantly different

from unity,    s = 1.3658.

We then have :

x Y Y v ~ v/’~ s
c

4 19.76 14.41       5.35 .976~ 4.01

--9 5.23 1.09 4.14 .9558 3.17

From Table / the last column entries are well

above the .O1 probability points for orders 1 and 2

respectively.    Abnormalities, we infer, are probably

pros eilt.

I IThe third highest value of v/~ s    is ~o.03

which is clearly lower than the .O5 probability point

for order ~, T = 97, so we infer non-significance. We

have justified the correction or elimination of the two

variables.

Let ~he dummy variable be XI, taking the values

I for x = -9 and x = 4~ otherwise O.    For the regression

of Y on x and XI we require~ in addition ~o the values

already given :

:2 = 9;
Z X1 = 2; Z X1

The regression is :

9
Y xI = 1.851852; Z xI Y = 4.364080.

Y
c

= 9.9303 + 1.0405 x + 5.1659 X1 ,

(47.2) (40.0) (6.7)

the figures in brackets being the Student-Fisher t’s.

Tile population values of the first two coefficients, known

to be 10 and I, lie comfortably within the .95 probability

confidence limits of estimate. Y is graphed as the firm
o
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2
line on the chart.    We find s = 1.1004, also near the

population value of unity.     This latter result is

flatterinS to the theory, since we deliberately took the

two abnormal disturbances as equal.    In practice this

may not be the case and, if more than one abnormality is

2
present~ the estimate s will be inflated.    However, the

2
s will be liable to be much smaller than it would have

been if the original data were regressed uncorrected; and

2
a major objective of regression is the reduction of s .

If more than one abnormality is detected~ i~ will be

sensible in the dummy to use +i for positive and-i for

negative abnormality, otherwise O.

Obviously the dummy variable procedure for

correction is impe~’fect and other methods are conceivable,

including complete elimination, though such a course is

distasteful.    We leave this aspect to others.    The main

object here is detection of abnormality, rather than its

eliminatio n.

$1 March 1971.
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