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Identification of Individual Abnormalities in Least Squares Regression

L

by R. C. Gécry

In single equation LS regression the comﬁon
practice is to test goodness—qf~fit by the standard error
of estimate s and probable absence of residual autow~
regression by the Durbin-~Watson d@ [2], [3 i, or the more
recent count of sign changes 7 [ 6] With a wide choice of
causitive (Or~independent) variables (indvars) and with

~gccess to a computer, several roegressions can be producéd,
one for each sét cf indvars selected. We usually pick
the regression with the lowest s and a safisfactgry d or
as the "best', unless there are very compelling a grioéi
reasons for picking some Oother set. Truth to say,.there
is still much empiricism in regression practice; in it

art has a place as well as science.

In setting up the model y = x £ + u; u regular,
we are saying that (considering time series for convenience)
throughout the period certgin causes (which need not be
independent) regularly affected the level of the dependent
variable, the difference between the calculated vector X g
and the observed y vector, namely u, summarizing a vast
number of unidentified causes, operating p?fhaps in some
"years" but not in others, as well as plaiﬁ errors of
obserQatioﬂ. Ve customarily regard our table of data
as a single rgalization from a theoretically possible
infinity of states (with x constant throughout), the
minor pauses.gperating in such a random way‘that the

. elements of u can be assumed to be hbmoskedastic throughe
out and independent of one another, i.e. u is regular,

by definition,




It is_custqmary (indeed a practice tQ be
recommended) to graph the calculéted dependent variable
x.b égainst the original vector y,. Inévitably some of
the calculated disturbances, elements of v, ¥y = x b + v,

are comparatively large. Are they abnormally so? The

-statistics s, d and 7 tell us little or nothing about

such abnormality. Clearly we have something to gain by

studying the individual disturbances. Our knowledge of

the data will be deepened thereby. Such exercises may

even bring to light causative variables then~to~fore

.unsuspected, When, and only when, abnormality has been

stochastically determined are we justifiod in using the
devi.ce of dummy variables thergby mitigating the effect
of abnormality. This paper deals with the problem of

the identification of such abnormalities.

Order Statistics

We do so by recourse to order.statistiqé. The
elements of u in the model are, by definition, indepéndent.
The vector v is an unbiased estimate of u, It may be
assumed that number of sets of opservations T is so large
that the caldulatéd elements of v are also independent;

?

they cannot be so, in general, since v 21, = o, ip the

unit vector.

We deal throughout with absolute values of the
disturbances an$<that each of these (positive) values has

the cumulative frequency (c.f.) F, O<F <1, The c.f. of

s

the absolute value of order n, on the null~hypothesis, is

.
(1) ¢, = T(Eii)f ax (1-x)"t TR

as is well-known, For any order n the value of Gn as a
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polynomial in F can easily be found by expanding (1 - x).
in the integral., = The formulae for the first three orders
are
T
= F
Gl
T—-
(2) 6, = TF 1o (Twa)F
Gy = T (T-1)(Tw2) 2 281, p
2 T = 2 T = 1 T
The practical problem is : given Gn to find F,
The solution is obvious in the case of Gl' In general G

will have values like .95, ,99 etc depending on the
probability used for determining significance. Now for

these earligr orders it is evident that, if Gn =1~8,

and F = 1 - £, f£2gqg g,» in fact £ is very small, On

making these substitutions we find from (2)

(1) g, = (I) £ - (g) e2 . (;) £ - ..
(9)  (14) sy = (3)e% -2 (7)€
T

3 ™Y .4
(iii) g4 =(3)f -3.(4)6 + 6

In general :

- n . ) .
. i foo 4+ i - 1 T n+i
(4) g, = E (=) (- n - 1. ) <; +_i) £ .

+
(]
P N
e
\._/
L]
=N
L |

Now, taking a line from the obvious advantage
of such a course in the case of n = 1 we make such a

transformation as to ensure that the first coefficient

on the right of (4) is always unity, For this we set :
. T n n

(5) (n) £ = X

or ¢

(6) Y (E)ﬁ’“‘. Xe




L 4 -~

On so substituting for £ in (4), the typical term contains

the following factor in T :

An_+ i)

T) n

~ n + i

<
o=
il
SN
8o
{+
P-
N
X

(7) -

easily seen to be O(To) in T so that as T—> « each trans-—

n+i

formed coefficient (ije. of x ) tends to a constant

value, which on combining factors is easily seen to be

' _ n+i
noo_ _yi o fn o+ i -1} vy} -1 yy 8
(8) c; (=) ( M ) [(n + i)t] (nl)

As the factors in T alone tend to unity when T e Cz is

the coefficient of x"*' in transformed (4). For all

values of n, Cg = 1, from (8), As an example, for the

third term of &y at (3), i = 2, n = 3, Then, from (8) :

i

g = (-1% [3) (st (5058

IN
&

6 x (120)°Y x (1.817121)°
= 0.990579.

This is the value of the coefficient of x5 in &g when

number of sets of observations is indefinitely large.

'In (7) the factors independent of T have been
transferred to C:’ given by (8). The rest of (7) (i.€.

the part in T alone) may be written, with w = 1/T

(9) wz = (1 =W (1=2w 00 (1-mw)
[(1 - W)(1 = 2 W) voe (1 -1 w)] P,
m=n4+3i~1; »=1ne—1; p = (n + i)/n

n+i

The full.coefficient of x in the x~transformed version

of (4) will then be C, W..
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Loge wg is expanded in powers of w. No special interest
attaches here to the general expansion so we proceed to
particular cases. Again we take i = 2, n = 3, as an

illustration. Recalling that, when O xwg 1, loge (1 - w)

= W ~w2/2 - w3/3 ~ sees ad inf we find

W 65 2 35 3 977 4 5
loge Rg 5 W — g W - .

'When T = 100, w = 10”2 and the Pirst Pour terms of the
expansion give 1oge Wg = =,051116. Whence Wg = ,95016.
The full coefficient of x5 in the expansion of g is

cg wg = 0.990579 x 0.95016 = 0.9412.

The object of the x—transformation is to ensure

that the coefficients of xn+l remain small as T incrcases,
in the transformed version of (4). Given T, they also
diminish as i increases, The fact that in the expansion

of loge Wg the coefficient of wk tend to increase sharply
with k is really no embarrassment, since wk becdmes very
small as k increases when T 310, so that only the first
few terms are required for a close approximation, The
x-transformed equations were used tﬁroughout for the

computation of Table 1.

THE HIGHUST DEVIATE

On transformation (6) the x-equation version
of (3)(i) is :
N M € ... 1) x? 4 (L= 1)(T = 2) x% = ... T terms.

g _
"1 1.2 T2 1.2.3 19

(10)

When T = w, (10)becomes :

. -X
{11) By = 1 -6




yYielding the solution

(12) x

il

2 3 .
P
gl +g1/2 +81/3 + see ad int,

At the other extreme when T = 1, x = gl.' It is obvious

that when_g1 is emall the universal solution (i.e. for

all values of T) is. approximately x = g_. If x.. be the

1 T
exact solution the corresponding f-probability is found

from (8) :

(13) £ = xp/T.

The normal theory gl-probability null hypothesis critical
point is that found from the standard normal table [1]

corresponding to probabiiity (1 -IET/Q).

The Critical Probability Points Table

While the derivation of probabilities f corres~
ponding to any initial probability g can easily be derived
by the foregoing x-tfénsformation, the derivation of
critical points corresponding to probability £ presents
certain difficulties when T is not large. We use normal
theory throughout this paper but such a procedure is not
strictly valid. In the first place, even if model residue
u,_ is normally distributed, the statistic we use, namely

t

Vi divided by its estimated standard error, is not dis-
tributed hormally, but as the Student-Fisher statistic t.
The hypothesis of normality is - -strictly true only as

T o . Iﬁ practice, howcver, Student-Fisher critical
points,:givén probability (.05, .01 etc) are close to
normal theory points and the values given in Table i can
be uséd with the mental reservation that the actual null

hypothesis probabilities are slightly greater than the

.05 and ,01 indicated, This is really an unimportant




point since we make only formal use of these probabilities
in making inferences: ﬁe_are content to state merely that
some calculated value is "significant', It is enough

that the null hypothesis probabilify is "small™,

Another difficulty is that while the sample of T
may be random and drawn from a normal population the
statistics of given 'order are not normally distributed.

The critical‘points of the statistic X1 = (x1 -~ ul)/ oy
where p and o pertain to the normal population sampled and.
x, the highest value in the sample, are given in Table 24
of [11], fbr T < 30, presumably using the exact frequency
‘distribution of Xl. It remarkably happens, hoﬁever, that
our ,05 and .01 probability critical values for sample
sizes T = 10, 20, 30 (six values in all), though computed
on tﬁe assumption that the largest value was normally
disfributed, exaétly (to two decimal places) equal the [1]‘
values. SoAmdch for Smallish values of T, As T
incréases, the Erequency,distributioﬁs of statistics of

all orders tend towards normaiity so that, for ail values
of T shown in Table 1, considerably confidence may be
reposed, ' They are, hbwever, described
as "approximate'" because the populations involved are

really not normally distributed, but only approximately

80, as explained above.

Table 1 is fundamental fof the present research.
As already stated, the values shown were derived using
the x~equatibns. It was usually possible to make a good
guess of'a near approximation Xq to the root x required,
beginniné the iterative process, Then x, = X + 99 where

1

t
3 = e = e tc.
% B (xg) /€ (xg), X, = X, + © etc In fact, two

iterations were required in only a few cases; mostly one

sufficed since, as T increased, the x~solutions became
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@ Table 1.

Approximate Critical .05 and .01 Probability Points
of Deviates of Orders 1, 2, 3 (Absolute Values), for
Certain Values of Sample Size T,

Normal Theory Assumed Throughout.

A T P S Y S P G ST G P e WD B GTE T B et B G B AR WU DR St SO IS S A G G U G AU et e S WD Rl OO G G D e S AP G R Gt N SO S

Order 1 : Order 2 .Order 3
T .
.05 = .01 .05 .01 .05 .01
10 2,80 | 3.29 2,09 | 2.42 1.71 | 1.98
40 J3.22 3.66 2,61 | 2,90 2.31 2,54
60 3.33 3.76 2,75 3.02 2,46 2.69
80 .41 3.84 2,84 J.11 2.56 2.78
100 3.48 3.89 2,91 3.18 2,64 | 2.85
nearly identical for each of the three orders., . Critical

points for only & few values of T are given since in the
range 10 '« T < 100 critical points for any T can .easily be

interpolated.

Application to Regression

The . factors. If the model is y = x B+ u,

u. regular, the LS estimate is y = Yo ¥ Vs V. = x b, Now,
0
while E ui = Ug for all elements of u, the value of E v; is

not 02 but Xi ¢2, where @

2—.. t t ,__1
(14) Ap =1 - x, (x x) X

~ The second term on the right of (14) is 0(T~1) s0 that

2 .

7%-)1 and E.vi~arv2 only as T - o, This A ~correction
should be used when T is not large, as in the exercise

that follows. In simple regression (14) assumes the

form

A , . T
(15) AL = (T = 1)/T = (x, = x)7/ 2 (x




The null hypothesis here is that all the elements

in the residual vector u have the regular properties E u, = o,
: L ) L C
B uz = 02 (with E u, ULt = 0; t +# t}., We establish the

regression on these assumptioné about our model (or popul-

ation), estimating 02 by 62 = (y - yc)2/(T - K), where K

is the number of indvars, including the constant, But if

some of the values of the observed Y contain abnormalities
which we hope to discern from an examination of the higher
values of ’th.’ we contemplate the possibility of a model

in which a few of the disturbances are not, say, u

ul, 2, s

but u, + a u,_ + « eve 50 that all the disturbances are

1 1’ 2 2!
no longer regular. as defined above, Here we assume that
these disturbances are few, say two or three: general

residual heterovuriance is another matter (sece, for example,

[4 e

If we use the larger v to this end, we cannot

safely use the classical formula in the previous paragraph,
pace the null hypothesis, to estimate 82 unless T is very
‘1arge, which it rarely is. As the following exercise
clearly shows, such an estimate, when T is not large, can
seriously overestimate G? and underestimate the test
statistic, namely vt/(s.e. vt), used for identifying
abnormalities, thereby concealing these when they are
possibly present. Nor, if, say, the first and second
highest absolute values of the residuals are under test,
simply to eliminate from sum squares (and reducing d.f.

by 2) is 4invalid, for, even if there were no abnormalities

. . 2
present, this procedure would underestimate o .

The correct treatment is given in [ 5§ ] . This

El,-s2 B, etc for the
actual contributions of the highest, second highest etc

2 . 2 .
(yt - ytc) in sum squares, where En = E x, z. being the

involves substituting statistics 32




ith order value for a random sample of T from N_ (O, 1).

We¢ then estimate ¢2 by-s2 from

: 2 2 ’ ¢ 2
(16) (T - K) 8" =8 n 5 En + % (yt - ytc) )

By x

[ C
where ¥ indicates the onmission of the ¢ residuals uander

test, or

(17) 8% = 5 (v, = v, )2/(T - K - 3E).

N

To make the present exposée tolerably complete, a table of

Ei’ given in [ 5] is reproduced here, for convenience, as

Tahl e 2,
TABLE 2 . .
Value of Ep= Ez} for random semples of T from N_(0, 1) for o = 1
Sample Descending order s -
Sze T .. 2 _ 2 3 4 S

6 ? 3
- 10 3799621 2:171462 1426472 0970990 0-660253 0-437538 0275135 0155712
-y 4916371 3216540 2410593 1-897855 1.528207 1-245702 1-020648 0-836765
30 | 5599340 3-867966 FO376I3. - 1502189 2112625  1-809929 - [-564854 1:360810
40 6093230 4343362 N£08G7S  2-051316  2-550458  2:23701¢ 1981502 1-767200
50 6480929 4-7{8344 3864523 3-308782 2900577 2580232 2:318119 2-057408
60 6800321 5-028251 'd-167506 3-605907 3-192432 2-867188 2600425 2-375213
70 . 1072022 S92YT 4426376  3-BE0ZTL 3442774 3113818 2843555 2615017
80 7308510 5522005 4652444 4082727 3662028 3-330132° 3-O0STIV0  2-825948
90 TSL7019 5727220 4853151 4280453 3-857122 3-522820 3-247852  3-014259
100 7705850  5-910793  5-033661 4-458440 4-032894 3696576 3419431 3184363

Effect of abnormalities on the regression, Since b - g

L | - t ) .
= (x x) 1y u, if a finite number of abnormalities are

present in u, b is no longer an unbiased estimate of £
It is, however, a consiétant estimate. For example, in
simple regression b -~ B = E(xg - X) ut/ Ex, = E)Q. The
point is that in the formula for b the biases, if any,
enter linearly (instead of their squares in estimating

2

o by the classical formula) and in practice the bias in

estimate of /4 will usually be small, so that this biased
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estimate will lie well within the confidence limits of

impeccable estimate.

An Exercise \

The regression is simple

Y = 19 + X

t +_u

t t?

xt = ’-13, "‘12, eee O' e e ey 12, 13, ﬁ = 1, T = 27 and thé

u initially a random sample of 27 from N (O, 1). Dis-
turbances of 4 were added to the Y corresponding to Xy

= =9 and to that for x = 4. The (x,(@) "observations"
are shown as dots on the chart, The problem: can we
detect these two abnormalities (clear enough to the eye)

by stochastic analysis, and correct for them? For
straightforward LS we have ¢ T = 27; Ix = 0O; 2x2 = 1,638;

5x Y =Ex y = 1,678.45; LY = 278.45; 3Y° = 4,666.9647;

by y2 =A1,795.3210. From these we find a (estimate of the
interceptof the regression) = 10.3130 and b = 1.0247,
obviously very good estimates of the population values

40 and 1 and illustrating the point in the foregoing text

that good regression coefficient estimates can be obtained

from disturbed data,

It is quite otherwise with the original estimate

of s2 (25 d.,f,) which turns out to be 3.0169, three times

the population value!l

The two largest disturbance values v_ (as we

t

- might expect) are :

5.36 for x = 4

4.14 for x = «9
We try to show that these are abnormal by the method

indicated in the text proper. We find :

2

]
5 = 75,4217 - (5.85)2 - (4.14)2 = 29.6596,
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CHART

Constructed illustration. Data, (i) simple regression and

(ii) regression with dummy variable.

Regression with dummy

-~ — Simple regression A
. ‘-/://:
= ~i20
410
3
-0
%
g
-10 --10
ST Y UURY SO Y S SN NN SN T R RN TN S O R Y N T T N
-13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 l3x
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By rough interpolation from Table 2 we find for T = 27,

Bl = 5.4, E2 = 3,7, sum 9.1, so, from (17)

62 = 29.6596/(25 - 9.1) = 1.8654
which, by chi-squared, is not significantly different

from unity. s = 1.,3658.

We theﬁ have

x Y YC v A v/A s
4 19.76 14.41 5.35 « 9763 4,01

From Table 1 the last column entries are well
above the ,01 probability points for orders 1 and 2
respectively. Abnormalities, we infer, are probably

present.,

v/As is 2.03

The third highest value of
which is clearly lower than the .05 brobability point
for order 3, T = 27, so we infer non—significancé. We
have justified the correction of elimination of the two

variables.

Let the dummy variable be X taking the values

1’
1 for x = «9 and x = 4, otherwise O. For the regression

of Y on x and X1 we require, in addition to the values

already given @

= . 2 o . 2 o 5 5 . = F
BX, = 25 IX; =25 Ix;=1.861852; §x, ¥y = 4.564080,
The regression is

*Y_ = 9.9305 + 1,0405 x + 5,1659 X, ,

(47.2)  (40.0) (6.7)

the figures in brackets being the Student-Fisher t's.
The population values of the first two coefficients, known
to be 10 and 1, lie comfortably within the ,95 probability

confidence limits of estimate, YC is graphed as the firm
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line on the chart, We find 62 = 1.1004, also near the
population value of unity. This latter result is
flattering to the theory, since we deliberately took the
two abnormal disturbances as equal. In practice this
may not be the case and,. if more than one abnormality is
present, the estimate 52 will_be inflated, However, the
52 will be lidble to be much smaller than it would have
been if the original data were reéressed uncorrected; and
a major objective of regression is the reduction of 82}
If more than one abnormality is detected, it will be

sensible in the dummy to use +1 for positive and -1 for

negative abnormality, otherwise O,

Obviously the dummy variable procedure for
correction is imperfect and other methods are conceivable,
including complete elimination, though such a course is
distasteful, We leave this aspect to others. The main'
object here is detection of abnormality, rathér'than its

elimination,

I K I KW KK

31 March 1971.
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