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The remarks which follow were inspired by the

well-known illustration in Statistical Tables for Bio-

!o.g.ica..l, A..~ri~cultural hnd ~’edical Research by R.A. ~Fisher

and F, Yates r(p_y)~l    The d at~ in this illustration are

the difference in yields (bushels per acre) on two plots

of wheat which differ only in manurial treatment, in the

thirty years i855-1884.    To these data the authors fit

the first 5 o.rthogona~, polynomials, i.~, a polynomial of

the 5th degree in t, time (in years). The analysis of
-

variance, given by tile authors, is summarized in Table 1,

Table .I., Analysis of Variance For F-Y Illustration

. .... ~ ¯    , .     , ,., ,,

Term
Degrees of Sum of

¯ freedom Squares

" I " ’ ’ " ’

1

1

!

2

29

3 i~

4 ~ ’~ 1

5 1

Remainder 24

Total

157.94

267.56

S.60

6.01

2,44

579.44

1,016,99

Mean
FSqua/’e

m . " e" ¯
, .... i ..... .. , ,, .

.15~.94 7.21
%

IS.60

9.1,91 ,, 6;O1
2.44

9-4.14

12.21

1 Fifth Bdition (Oliver and Boyd Ltd~ Bdinburgh and
London~ 1957).
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The final column in Table i is mine.    Reference tO the
L.,! ,.- v-,:

’    27) degrees ofauthors’ Table V show.s t hat~::,Wft[h (/i,

freedom (d.f.) tlle fifistterm<F is significant at the .05

probability level and the second term F is significant

at the Ol probability level:. Though the point .is, not
¯     .     ,r ." -- "": ~:" ..~.

important, I do not quite agree~ with the authors’

version of the analysis of variance in their, combining

the first five terms’ contribution lfDir the purpose of

establishing mean square with 5 d.f., because the con-

-~tituents are so different in value.     [~y main concern

is with the authors~- :general inference ifrbm their

exercise : ............ ..---’. ................ "
I :j ’3 .

: :" .’,/.["

"As Will be Seen,. :the first two term.s account for,
a substantial par.t ,Of the variation~ but th4 mean
squares bf the remaining three t!erms are all below
the residual.mean squa:~e.     Thus a parabola adequately
describes t’.he’ slow cha, nges". "~,                           ~,"

¯, ’.. ......

¯ i ~.,,.:- : ..On commonsensegrlo~ands.alone t.~le last sentence of the

quot. ation is o~"(1.oubtful validity. We note,¯ in fact,

...      ¯
that while the contributions of the "negligible" 3rd,

4th, 5th terms are respectively 4, 6, 2 the remainder

" : "" .... . We must, suspect - and ourmean square averages 24

suspicion w-i.i.1.-.-be proved to be correct - that the re-

. ¯ , i ’Y¯
mainder contains terms w hesse contribu~ti-o;~ to ’S:8:i’S

sizable, in..fae.t-.of t he-same order of magnitude of the

’ ,.. ¯ ,vi.i.
significant coh~ributions of the ist and 2nd terms.

The F with (24, ~) d.f. for (remainder., terms 3 - 5)

is 5.01 ~(= 3 x 24.~14/(3..5,0 + 6.01 + ~.’!4))which is Gigni-

ficant at the .Ol probabiiity l,evel. The authors.’ ~ ,..~ "

idea of "adequacy"- will not coincide with that of me s-t--+ ........................

workers in this fiel’d if Only. because’the’R~ .off the .............

first two terms regression has a value of only ,:/.~.: ..

0,4!84(=(15-7,.94~ + 267~,’56)/i016,.99),. ........ :;
. ~’_:~ ..;: ;, . ~i.

~2 Op. cir., p.3!                                           ...



While it is easy to criticise the authors’

treatment it is much more difficult to suggest a

remedy which is satisfactory in stochastic terms, or

even, indeed, to propound the problem at all     We
!

shall try.to do so by continuing"to study the F-Y illu-

stration. In the first place, it may be remarked that,

using 29 orth0g0nal polynomials~ i.e. deri"ving a poly-

¯ . . , .

nomial of degree 29 in t a function may be derived which

will pass through all the observed points.    A glance at

the appended diagram showing the vast dispersion of the

:.T-

observations indicates that this would not be a useful
exercise,, if what we have fh mind is the derivation of

a law of relationship between the oDservations and time

t.    It would, however, be revealing to set out the

contributions of each of the 29 orthogonal polynomials

to the aggregate sum of squares     Twenty of these with a
¯ ,.’ . !     .     . .’    .

" ~    7
a remainder are shown in Table 2    .

Table 2.. Contribution to Sum Squares of Each of Twenty
Orthogonal Polynomial Terms to To tal~Sum
Squares in F’Y Illustration.                      . ~.

. .. . ,, .       .    .    .

Term No. Contr~- Contri"
¯ ution tO $S ¯ ’TeFm No.

ution to SS

158.0: 11 14.1
2 267.5 12 17.5
3 3.6 lS 1.5
4 6.0 14 O ,’2
5 2.5 15 73.2
6 3.5 ¯ 16 124.0
7 0.I 17 48.8
8 1.9 ’ 3.1
9 C

2,6 19 ~5.1
iO 46..9 2O 14.5

i92.4~emainder (9 d.f.) <, ::
Total Sum, Squares (29 d.f.) 1,017.O

¯ i3

r. ,

3These ’
~ere produced on the ~lli0tt 803 Computer

of the Agri~q!tural Institutei by courtesy of the
Director, Dr T. Walsh, and with the cooperation of
Mr D. Harrington.
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~ach of the terms has one d.f The term number repres

ents the degre, e in t of the polynomial so tha~, in
.: .... ,                  , ,. . .. .     .

effect, a polynomial of degree 20 in t has been fitted

to the 30 observations.    :Apart f~rom rounding-off

deviations the first 5 terms of Table 2 are, of course,

identical with those of F--Y given .in Table I.     As

anticlPated, .the c0.n.tributions of some .of the subsequent

terms are large, .the .largest being that of term no 16,.

namely. 124.0.

Stochastic Interlude
. .. b "¯) j    .: " : "-

this .point it .may be appropriate to make ..a

few gener.al remarks on testing, for significance in curve
"" I.. ,i. : ’" " .. C.C.    /’. Y ~’" "      "~ " ¯ " :.~            ’ ....., ,.’ ’. ¯ :. . . ~"" :" :L

fitting to time series using the regression method The

whole exercise is based o~ the assumption..tllat there is

an inherent relation between the sequence of observations

and time t,.;.distui’bed in-gt~eater o,r ;le.’sser d~egre~:, by an
. .. ,. :.. .~.... ..;: :.-

error term which initiaily or ultimately (i.e. after

certain.transformations) is~,assumed to~ be .a random
.... ¯     .. : .’~i~. . -..- .... ¯ .

varia..bl-e-.-,(.i:..e .. random .as--.~e.ga.rd.~..t ),.- :wi..t.h ce.r-tai.n ......

stochast),c" ~characterist±c.s, e..g; that,the sequence is
:0 .                                 ..

a normal .e;"ample with mean zero and estimable variance,.

In an ear.lier paper      the writer has..given his opinion

that the .whole object of r.egression is to enable one ,to

estimate/ithe value of theLdependent V~riable from giv.en

values off th’e independent variable’a,~,in t)he present
...... ,....~ .i;                        : ~ ..... ’. :<. . . ....... " .-: .

case the:.k.no.wn, values of the orthogonal polynomials

adjudged ..si~nig.io.an~t . : we ~:may for in-s~.ance ,: ,.be .....

4"Sol’ae ~Remark~. "~xbdU:~,’ Relatio:ns Bbt~,e)en":StO’chfiS:ti’,C" .......... ’ ’"
- -, -~ ;. -,. ,.,

, .......

Variables : A Discussion Document" by R. O. Gei’r~y’," "/ ’:’!
Review of The International S~atistical Institute,
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interested in forecasting by extrapolation. The

pra~ical value of the operation will, therefore, depend

on th’e magni’tude of the residual, or error, standard

deviat~"0n in relation to the changes which one is trying

to forecast; and experience has shown that values of R2

of even the .99 variety may resuit in confidence limits

}. . L"

Of uselessly wide range.    Of course, a’S an exercise in

anal’ysis for its own sake there may be some theoretical

interest in being able to state that a given time series

is e.g. a "(2, 8, 16; .96)" meaning that it is signifi-

cantly and completely explained by terms 2, 8,, 15 of

a specified orthogonal series with R’~= .95 and recourse

must be had to sophisticated statistical procedures to

enable one to make. such a statement.    The whole object

of statistical science is to describe possibly very

numerous sets of figures and their relationships in
vq

% "

terms of a few estimable paramteters.

~y "adequacy" in the foregoing quotation F-Y

~     ~ : 5
.m@y mean what the author has called completeness    of

relationship, (whereby in time series analysis all the

significant independent variables have been identified

and the residuai is non-aut0regressive). Even if the

! ¯ . : ;:." .- . ,! ,.

R2 is small (say .4 as "in the Y-Y illustration), circum-

stances can be envisaged in which the result would have

some practical value.    Imagine a manufacturer of a

highlyperishable, even ephemerai, produt~ (ice-

cream ?~) working on a day-to-day basis, manufacturing

his day’s "supply in the early morning.    He cannot keep

$"Determination’ Of Linear Rela’ti:ons Between Systematic

Parts of Variables ~.Aith Brrors Of Observation The Variances
Of Which Are Unknown" by R; C. Gear:y, Bconometrica, Vol. 17
No. i (i949). .



stocks over night wi~t-hout deter.ioration’of.his’ product ~’~<-

He notices that ..de.ma~qd varies considerably ¯from day-to- ,

day.    From the su,pply side he is’reasonably satisfied

with his annual production    .. InitiallyUnable to anti-

cipate daily.sales, he produces the Same quantity Of-his

product each day,: phil, os.ophi,.cal%y acc:ept£.ng r~,is:~idsses."

He may ruefully cal.q;ulate;the difference-betwe:eh what his

profit (given total annual production.) would be if he had

been able to forecast exactl~y ~e~ach, ~dn~’s~ dema~nd and:what-

his profit actually has been.): ,. ~..~{e ce~nsu.lts a statis-’

tician who finds a s~gnificant, corre~at±on between his

actual daily sales and some factor, say ;~mperatUre’ at

the time daily manufacture starts,    This-coPrelation

need not be ~er.y hi, gh.,(:oay 5) for h±m ~0 ba, s’e ibis daily

production policy, on ,t,~he regression formula’ Wi:th imp~ove-~

ment in profits.     Of ,c, ours.e,:, .the s~ati~stician W:ili" rec~-g-

nise that sum squares of deviations is not the function

which he should minimize bu.t the"sum of t’~ae<~absolute
.... {’, C’.I:- ~ J’ ~’!- i" ," : ’ C’~    t,’: , " .....

value of the deviations.     He ~s susta~ined by,th~ con- ’~~
::, .~      ~ ~. ~      .i i:’i: ~: ....

viction that his ¯.least square..regr, essfon prScedd~Q"~ill "
.- ;... ~ , "~ .; .    .    :.

give him an answer which wi,11~-imp:rove p~rofits, even if

he does not
=know th,~,,optimal...,., , formula..

~.

.- :.- "3 ’

We must now d, istinguish between,, what, may be

termed (a) specific and ,(b) gener:al hypotheses.    All

the well-known t~eory..of reg,r,ession,, including estim-

. I C,ation of testing for s ig.nificance ,of. coe~,fiCie~ts, ,xs

based on specific hypothes~s...    ,T:his i.s the ,s~,t~uatron,~
.... :;’ ! ~. ~’,’ ,[: , , :.’.~ , . .-
I

in which on past experience) the results of other

- ’t ~’.~ ’, ~ : :
resear:c~.h~es~:., :plain~ �ommon~ens,e,. or ~kno,w.ledge, ’, :. "~’-

,    ~ ..... ~    ,. ~,    ;; 1/2 ;I ~ .’, ~t}~?~.~ ’~ " " " .,
-’.~’.’::~.<’--.~.’ ,. e~,c,’~or~f..~O~m.

""a’n
"’~’ ’" :"~>: ’’~we. ma~.>,~wr.i,t-ei ,d:,o~w,n:~a-,:~a~s~18 r-el~’tib’hs~hip d ,:-. ,.~ ’, ,",..



estimate and discuss the estimates of the parameters

involved.    With general hypotheses we have no such

guide; here we set out to discover the terms (or series)

which are significant with no prior knowledge of the

forces at work, painfully’aware of the hazards of non-

5sense correlation    ~ especially rife in, time series :

for example any two economic series increasing in time

will, on crude analysis, be found to be highly correlated,

It goes without saying that general hypotheses are:far

more difficult to deal with than are special hypotheses.

,.

Continuation of 8tud~ of F~Y IllustratiWn :.

We note at once from Table 2 that the residual

..mean square after 20 terms is 21.38 almost identical with

the 21:91 (= 192.4/9) after the removal of 2 ter.ms .t We

begin to suspect that t,he inherent error variance of

the system may be of about this magnitude¯ despi.te the

pr0iiferati0n Of quite small.¯ numbers : not fewer than 9

of the 20 terms ha.v.e.a contribUt~’on less than 4.    The

problem confro, nting us appears to be this ¯ can we

discover any clear break in the sepies which’ will enable

,, ¯                                                                ¯ ".

us to State confidently that certain specified terms

should be included in the regression while the rest are

to be ,deemed included in the error .term ?

The foregoing remarks as to the remainder

after $ terms applies to the remainder after.¯ 20/terms,
.,..

namely that, if ,only w4 ~new them , we might find one or

more sizable contributions to sum squares for terms

21 - 29~     In default of.~his information - the computer :

¯ . L ...... . .

t

"Why Do We ,Sometimes Get Nonsense-correlation Between Time
Series - A Study in Samping And the Nature of Time Series"
By G. U. Yule, Journal o,~ the Royal:Statistical Society
c..~J .: J_ (19~.~)
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./

: :’"!..’" , , :. ¯ " .:,; .,.,¯    ¯ . .     , ¯ . :. ¯, . . , ,. ~ ~ . ’..,, .. ¯ ~ . .

had a pr0ggamm~ fo"r:oniy’20 terms - thebest �our6e’

app’ear;d"t0 be: topr’etend tha’t we are dealing with a

problem "o’f 20 (and not: 29)’termS.    SO t"otal SUm

squares~ £s fiow"deemed t’o be 82h’,"5(=i,O17.O ’ i92..4) an-

stead bf: t~e ...... i)    .origlnal    0i70. " "

¯ In Table 4 the 20 contributions are arrayed i.n

descending order of magnitude with term number indi,cation,

% ¯

Table 3.    Data,of Table 2 ’in Descending¯ Order of

¯ Magnitude .with .Standard. Deviations .(itD) ;:,    .

Te#m I~o

2

1
.---;.

16

15

17

10
--#

19

2O

11 ’:

Contri-

bution to

S3
V- = $D Term No.

4
",..

8

5

18

9

5

14

7

¯ ,.. .,..

158 .o
124.0 11..14

78.2 8,56

48 ..8 6.99

’:46 :.9 >6.8 5
$5.1 5’,.. 92

17 ..5 4.18

14.5 3.81

iz~:..1 5.’75

To al sum squares 20 d._f.

Contri-

bution to

SS

6.0
[ ¯ .

8.6

3 .: 5

3..i

2.6

1¯.9 ~:

.1.5

0.2

O’e"1"

824.5

~= SD

2.45

1 .~90

’ 1;.’87

... i.,7~...
1.61

" ~, ,’, ’. ., _." : :". ,;

.1.58

~".. 38

1 .-22 - ,

0 ..45

0 ..32

In the null-hypot.~eses case).when,.the ~0 ori ....

ginal observations are arrayed in random order, each

of the 20 terms is an estimate of the population

.. ¯ .. -.

variance,, the population mean being zero.     The ~ "s

. . . :..    .,... . .

(with + sign) wo’uld,/ therefore,., be a random sample of 20

from the positive side of the population frequency

distribution..    As is usual we make the assumption for

, ., ,~ ..      : :    : ,: , - [ : : .’: .      . :                      . ¯ . :.’; " .....

what follows that the populations from which samples

are drawn are normal an aspect dealt with later .... ,:

. . .: .    . . ¯ . . . ; ..

:. -’, ~, - <, :’ ", ...... ).....,,.L:::.. _:’."

., ,, .,; ..’,
,’_ ’Z,. ......

,, .-~. ¯ . . ¯



We shall now try systematically to find a

break in t~he sequence of ~able 3 enabling us t.o identify

stochastically the :termsW~i’hh are significant,    The

[                                           i
method will be to s’tudy points in the sequence starting

at the bottom at which the jumps are &mprobabl.e on the .....

null-hypotheseo. We shall first have to study the

Distribution of the Highest Value in a Normal Sample.

We are concerned only with the posit.lye side of

the standard normal distribution table 7.       "If the

cumulative frequency from 0 to x of any continuous dis-

tribution is F(x) the cumulative frequency of .the largest

member - we deal ’0nly with non-negative measures - of

a sample of n is [F(x) ]n.      A particular probability

level is e01ected, say .95~ and the following,equation is

solved ~or x :-
¯ . o

[P(x) ] n --o. 9s.

If the top sample value at any stage is greater than the

solution x we Shall infer significance for this term and

all terms with greater values : at:the ~95 probability

level we shall have succeeded in breakiflg th~ sequence of

~Oterms into %Wo~pa~ts~ a significant part and a

residual error part. : : ¯ /

Th@ .95 normal probability point~ (population

SD unity) for top sample values Xhn for a certain range

of values of n are shown in Table 4. _ : .’...__ :.~

7"Biometrika ’Fables for Statisticians" (~d. 3.S. Pearson
and ~.0. Hart!ey) Vol..!, Second ~dition, 1958. "
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n

Table 4 ..... Values o£ Normal .95 Probability Points

x~ and 51edian Valuoo x    for Top
nn mn

Elements in Samples of n.

2

3

4

°" 5

::6

7

8

9

10

11

12

13

14

x
inn

1.05

1.26 ..

1.41

1.52

1.61

1.67

1.73

i. 83
1.87

1.91

¯ 1.94

I

n

I’"

15 2.63
16 .......- . :~.295

17

18

19

2,o - ,:1

~5

30

35

40

45

’50

.,-,, ..,

Xhn    I    Xmn

2.97

2.98

3. O0

3~02

3.09

3.
3.18

3.22,

3.25

3.~8

2.01 ~

2 .i.03 .... " .....’

2.05

-2.08

2.10

2.12 ,

: , ; "’, .’, ~ 1~’~

2.28

2.34

2 38

2.42

2.46
i ’ 2

Attention is now directed to the arrows in Table

3.    These mark the suspect breaks in the sequencer ao

indicated by the jumps between consecutive values of the

variances (or $.D.’o) : the arrow~ are placed above

the suspect values.     Thus the problem poses itself : in

a-normal sample of 3, consisting of 0~32~ 0.45 and i.~2~

is the top value of 1.2~ stocha~tically acceptable ? An

analogous problem pre~ents itoelf in the variance jump

from 3.5 to 6.©, the ~ample size now being i0.

Nstimate of Population Variance

We are now confronted with the difficulty

that, to ap~ly norma!,~heory, we re quir’e ~t0 know tile



population variance’which, of course, will be differ.ent

at each arrow stage.     Having selected the break points

from observation dr the oample values themselves the

appropriate variance at the first teat break cannot be

estimated as

2
2]s3

[(o.~2)~ 2= + (o.~:~) + (1.2~) /3 = 1.8/3 = 0.6.

Since the top value.¯ is suspect of being.-too high this

es.timate is biassed up~ards.,     ’Neither canthe variance

be estimated as the sum of the last two. values divided by

2 since this wo.u&d~/be an-under-estimate’ :.    one cannot leave

out the top value’Of a sampl@ and estimate the variance

from the remaining values simply by omitting it’.t    The

simplest course would appear .to be to subst’itute for the

top suspect value ’the median top to be expected froi~ a

normal sample of~ given size.

t

Let s2 be the estimate of the population
n

variance for sample size n and x
’mn

to be estimated as the solution of

¯ p I"i

(2) [,.F(~)i~ = :.so,’

the median rob value

¯ , ~,    :                ,

where F(x) is, as before, t.he cumulatlveone-sided

normal frequency~ population variance unity.

Then set ’ ’..~

n-1
¯ 4" X     S    ---- I3. S

1 iTln n 11
i=1
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or

n - 1     :’~
2’ 2(4) s2 = ×i! /(n- x ),n

\i= 1    :
mn

2wl~ere the x. are the actual values shown in Table 3.
x

The values of x    are ~ ..shown in Table
mn .. :

The final stages of the calculation are shown

in Table 5.

t ¯ ¯ :

Table 5. Test of Significance of Apparent
Breaks in Sequence in the
F-Y Illustration

I

-3

I0

14

17

18

19.,

2O

Col. 2 :

Coi.3 :

Col. 5 r

I
S

n

",    . , .

2¸

0.461

1.69s
..!. 80~

2.555

x
n

3

i.~2

2.45

3.75

5.99

Xn/S n

4

2.65

’1.45

2.08

2.23

a

5

0.977

o.898
0.s9 o
0.848

5.972 8.56

4.486 11.14

5.230 12.57

5,994 16.36

2.16

2.48

2~’. 40

2.75

0. 802

0.792

0.772

0.759

!

Notes

From formula (4); e.g. n = 10;    Z = 19.0
(count of last 9 items in SS column, Table 4)

E.g. n = IO, Xl~ = 2.45 is IOth value from
end of SD columN, Table 4.

78’
a is test of norma!ity     (or ratio mean
deviation to standard deviation) applied to
"residuals" at each :n stage; e.g. n=lO, sample
is last 9 items in SD column of Table ~ together

with x (=1.83) from Table 5.mn

8Tests of Normality by R. ~;’~ Geat’y and ~, S. Pearson,

.& ;,,...

(1938).      ~
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o? .~ Comparison of the column4 figur.esin Table 5

’s in Table a shows that, at thewith the appropriate Xhn

95% probability level only the value, ~,65~ is signi-

ficant for n = 3 while Xhn = 2.39; and this f~nding i~

more than dubious since the estimate of the varialnce ,for

the application of normal theory is based on a sample of

2.,’’     in any case, no interest attaches to a regression

which allegedly contains 17 significant terms.     In the

discussion that follows, no reference is made tO the

n = 3 entries in Table 5.

At the other end of Table 5 for n. = ~20’ we are

testing whether the single quadratic orthogonal.poly-

nomial affords a complete representation of relationship,

the remaining 19 terms being collectively a random

residual,     While the column 4 value of 2.73 fialls’sh-ort

of the .95 probability value of ~.O2 it is"t~he~.~hi~hest

in the table and, if a break is to be identified in the

sequence, this is it. There is no good reason for

making a break after .the second (or linear term in t)

(as F-Y do) than there is in including also the third

term, in the orthogonal polynomial of degree 16 in t

(see Table .~), however repugnant to our habits of thought

and procedure in time series regression.    .Of course no

claim can be made that the technique developed here is

in any sense the most efficient for logically dividing

the sequence of terms into the two classes significant

and residual.     A technique of greater sensitivity

might identify the second term as significant; but in

such case one might fairly Gurmise ~katI it would also

include ~he .third term, howev.~r a ..pr~ior’~i unlikely
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Normality.     Throughout aN attempt has been

made to play the game according to the rules and one of

these is that, if a. break is made, the constituent items
f

in the residual are not only: random but normally distri-

buted.    From chart A 9 it will be’ observed that...none of

the value shown in column 5 of Table 5 are significant

of non-normality as the valdes all lie between the upper

and lower i0~ probability limits Of a, on the hypotheses

of universal normality.

Auto-regression.     According to the systematic

procedure outlined i.n. Memorandum No. 15 time series

regression should start with esta’blishing that, in

probability, tl~e original series was auto-regressive.

The Von Neumann test Q (defined in formula (i) o~

~emorandum No. 15) affords no such assurance.     The

original value of Q is 1.46 which, while less than the

mean value 2 is not significantly so, since the 95~

¯ :lO"probability value is about 1.30 for n = 30. There-
" t "’

fore auto-regression cannot be inferred and there, is no

justification fief starting the regression process at all.

After remowing the principal term (i.e. the quadratic

orthogonal polynomial) the value of Q is 1.96) hot signi-

ficant.    On removal of the two principal terms the value

of Q is 2.47.     It is true thai’arithmetically there is

90p" cit’8’’

lOThis value is based on randomization procedure (or

non-parametric, whereby inferences ma.y be.i~de
without the assumption of universal normality).
The neces.sary formula are as follows :- ~

Vat Q = ~/i(Q2) -’M2(Q) = 2(2n-~2-3)/n.:(n-l),

." ’ ..~ :;. ..-. ... . : .... (;, ."
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effected a regular trend towards the hypotheses of non-

, autoregression in these three values (1.46, 1.96.,.2.47)

but none is significantly different in the stochastic

sense from the mean value 2. , The Von Neumann analysis

, ,. ,

repe’ats what is virtually the conclusion of the earlier

analysis, namely that there is little but randomness in

this material. It is hoped, however, that the technique

expounded here for the ex post derivation of significant

terms in regression analysis may prove more useful with

less recalcitrant material.

Footnote ~o. 10 continued

where ’,% = ~.~ /~’.~, ~ being the kth moment from the mean
’4 "~. "k

of the original sara.     These formulae were derived from

formulae in ’The Co’ntiguityRatio And Statistical r~apping’"

By R. G, Geary,lncor.Porated Sta’tistician, Vol. 5 : bIo. 3,

(ft95~).     it ~s extre~,~ely int~.~rgsting ¯that the coe’fficient
of ~ is O(n-~).     When n is not too small .~ can safely
be glven its normal value 3 so that ’~

Var QA~4(n-3)/n(n-1)

the value used in the test.     There would, however°, be
no difficulty about using the exact value if meticulous-¯

heSS were deemed necessary

t

t
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Conclusion

Undeniably ex post identification of signi-

ficant independent variables in time series orthogonal

regression,pre’sents;iZs particuiar problems, towards

the @o.~ution of which the,’~imple techniques outlined in

the paper may seemworth trying out.     If the writerls

submission!!,.,namely that the object of regression is

estimation ofthe dependent variables, then no effort

must be ,spared :in reducing the residual variances.

This, .in turn, will entail inclusion of a far more

numerous Get Of independent variables in the future than

, hin the past, experimentally to star’t with Thoug we

may not realise it,- the sparsity .’of independents h’as

probably been influenced by (a) the amount for.compu-

ration involved with only desk machines available and

(b) our preconceived ideas of the identity of th~ in.~

dependen£s.    As to (a), let us realise.that the elec-

troni~c Computer ~. with its subroutines, has.,arrived.
¯ . [ -,,- . ............ ’ . ..

to"(b), let us realise, ’"i.p humility,..that at.the start

we did not know as much as we thought we knew. .At the

same time if a significant independent turns up rather

unexpectedly in the analysis it will be prudent .to try

As

to rationalize its ¯inclusion.

in ordinary regression an indefinitely large

series of independents will not be available, in this

respect differing from the kind of time series dealt

with in this paper~    Ne can, however, be more expan-

sive than we have ~been prone to be, .even if many of .the

independents are to be rejected later, as insignificant.

iN 0Po cit 4,
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They will have served their purpose in helping to

establish an estimate of the true residual variance.

There, will, therefore, be two hypothetical elements

in the hypothetical residual 8S (each with its DF) (a)

the contribution of the experimental but rejected in-

dependents and (b) the final residual.     Only when the

ratio of the two M$’s is indubitably insignificant

should the analysis be regarded as completed.






