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This problem may be regarded as solved when the

regressors are mutually orthogonal [ 2].    The more general

case will be considered here. The approach will be to

try to transform the general c~se of not necessarily

orthogonal regressors into orthogonal, or near orthogonal,

fo rm

~The formulation is identical with that of the ortho-

gonal case : given a regressand Yt and a series, of K

regressors xit, i = I, 2, ..., K, t = I, 2, ..., T, to

identify the k ~ K regressors from the full series in sign-

ificant regression relationship with the regressand.

We shall assume, without 10ss of generality, that all

regressors are standarized, i.e.

(1) T T
t~ixit = o ; t=Zixi2t = T, i = i, 9,..., K.

We also assume that Yt is measured from its mean, i.e.

(2)
Zy~ = o.

The full regression in matrix form is

(3) y = PX + u,

wherep, the coefficient row vector is IxK and the residual

vector u (like y IxT) is assumed a random sample from

N)o,2).    The least squares estimate vector b is given by

_1
(h) b = yX’ (XX’)

which,, on substitution for y in (3), gives

(6) b =P+ uX’(xx’)"l



The var-covar matrix Of b is ~XX’)"i.    In. the ortho-

regressor case (XX’) = TI which, from (5), means that b-#

is a random sample from N(o, ~/T). In turn, this means

that the significant regressors, k in number, are those

with the largest absolute value. : a special technique has

been evolved (in [2]) where, in the descending order of

/b/, one stops so as to be able to state that stochastic-

qlly the’top k are significant and the remaining K-k not

significant.

The general case is quite different. The regressors

which individually are most ~ghly correlated with y are

not necessarily in the significant set of k. From (5)

it is evident that b-# is distributed on a normal Surface

of error, of so highly complicated a form, however) that

~ny method of assessing significant single variablewise

seems doomed to failure. The use of normal order statis-

tics, effective in the orthogonal case, applied to re-

gressors in their original form, seems unlikely to yield

a solution in the general case.

The writer has insisted elsewhere [i] that, in general

multivariate regression, the individual regressors are

Gignificant only as members of the set of all regressors

included. Mathematically, multivariate least square

regression is really simple regression in which the single

regressor is the linear form of several variables. Ideally,

therefore, significance should be tested by examining the

relation of y to all 2K linear forms (or sets of variables

derivable from the K potential regressors). As K may be

large, perhaps of the same order of magnitude as T,

though, of course, less, mere mention of this number of

regressions, even having regard to the speed and

efficiency of the modern computer, rules this approach

out as impracticable. Nonetheless, it is an interesting

theoretical problem to consider briefly how we would

recognise the right k set when we had found it using this

~uethod.

We may perhaps envisage a statistical game with two

players A and B~ to both of whom are available the X (K×T) matrix.

A makes a selection of k variables and constructs the T



values of Yt from the formula

k
(6) Yt = i~iPixit + ut~ t = i, 2, ~..~ T~

where the ut are random from N(O,I) and the Pi (positive

or negative) are so large that B will have a sporting

chance of identification. The set of Yt are handed to B

and he is challenged to identify the set of k variables.

Of course A~ in setting up (6)~ has renumbered the variables

and B has no knowledge of what A has done. B does not even

know the number k but he is aware that the residuals are

normal with mean zero though he does not know the variance.

Even if the procedure of the second last paragraph

were contemplated~ what standards could one apply to

determine choice? One feels instinctively that no great

harm would be done to one’s regression if the choice were

such that it included all of the correct set but also some

variables with zero coefficients~ in fact. Set

k

(7) y = i=Zlbixit + v,

where the k selection now includes all the significant

regressors and some others~ i.e. with true coefficients

(i.e. S) zero. From (6) and (7),

(8) v = -(b-S) X + u,

The row vector v is observable. It can easily be shown

that the sum squares population mean is

(9) Evv’ = Euu’ - Bu X’(XX’)-Ixu’.

The last term on the right is the sum of the trace elements
2of Xt(XX’)-Ix’" multiplied by ~ . The trace sum i

(lO) ZiZjEkaji Ajkaki,

where a±j., is an element of X and Ajk

But Ziakiaji is the (jk) element of (XX’). Hence (10)

equals the sum of all ements in Ik~ the product of a

an element Of (XX’i-I.



matrix by its inverse, i.e. k.

of the sum squares

Hence, from (9), the mean

(11) EVV’ = (T-l--k)~2o

This result is~ of course~ classical° l.t is included here

for the sake of completeness~ in the proof~ it will be

noted~ it was not necessary to assume normality in the

residual vector U o

Starting with the full regression~ i0e. with K

regressors~ B, in the game, could probably eliminate with

safety all varisbles with coefficients less than twice SD,

i.e. approximately the °05 normal probability level. It

is evident that the standard for acceptance of a regressor

-s significant on a given probability level must be more

stringent than in the classical case. B would then set

up a new regression with the ~maining k variables : he

might find some additional variables with coefficients

less than their new SDo These latter are eliminated. 8o

far, he has had only two regressions° If the number k

surviving (using an unchanged symbol for simplicity) is now

reasonably small~ Gay~ not exceeding !O, he sets up k re-

gressors~ as found by leaving out each of the k in turn.

For each he calculates the residual s2 (i.e. the estimate

of 2)~ Zf the s2 for a particular elimination seems

significantly larger than the lowest in the set and than

2
the s for the second regression above, the likelihood

is that it is significant and should be retained. By the

procedure outlined B may succeed in identifying with

confidence a small set of regressors which contain the

true set, known only to A. Unless A has been very gener-

ous in according large coefficient values to his selection~

it seems unlikely that B will have succeeded in finding

the true set, no more nor no less.

In work of this kind, however, and apart from the

game, if the object be interpolation or extrapolation, it

seems preferable~ in cases of doubtful significance, to

include the variables concerned.     Bven if~ in fact,

theyare~ in truth, not significant~ accuracy is not

impaired by thei.r inclusion° And they might be found
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significant if a larger number, (i.e. T) of sets were

available.

From the foregoing paragraphs evidently some

interest attaches to the estimation of s2 when some

significant variables have not been included in the

regression. The regression is now

y = Plxl + P2X2 + u,

where the matrix X~ pertains to the significant variables

included in the residue. The estimated regression is

(Is)

with

Y = blXI + v,

(14)

Using (12),

bI -- (yXl)(xlx~)-l.

From (i2) and (13),

v =-(bi-Pi)xi + p2x~ + u.

Using (15),

(17) v = -p2(X2X~)(XiXl)Uixi + #2Xe

’ --IXl
-uX~(XlXi) + u.

In each pair of terms on the right appears the fascinating

symmetrical matrix

: I- Xl(XiX~)-IXl,

which is like the unit matrix in that its every power is

equal to itself. From this it follows (cf. (9)) that



(19)

where ki is the number of variables in Xi. The first term

on the right is, of courser positive. Its dimension in T,

when divided by T-kl-1, is zero. It is an ordinary number,

therefore of the same dimension as the population variance

,~.2.    Therefore, so long as the regressor solution does not

contain all significant variables the residual mean square

will be significantly, inflated.

All that can be claimed for the straightforward

approach outlined so far is that it may make some con-

tribution to the solution of the problem and might be

used in conjunction with more efficient methods.

property of orthogonality would be attained.

The writer hoped that transformation of the K original

regressor variables into a new set of K orthogonal re-

gressors would help towards solution. At least the helpful

It,is im-

mediately evident, however, that the ensuing change of

variables means loss of identity. If, as we shall presently

do, operate with a regressor matrix Z (inetead of X) so that

ZZ’ = TI and use the orthogonal theory [X] to distinguish

the significant z variables, how, if at all possible, do

we infer therefrom the, say kl, significant x variables?

As others may wish to pursue this line to greater length

and effect than the writer, he will set down some algebra

bearing on this approach.

Let the matrix equations in the scalar k be

(20) (XX’)c = Ac,

where (XX’) is KxK and symmetrical and c is Kxi.

to find c. A solution is possible only if

Required

where~J indicates the determinant of the matrix. In every

actual application the K roots in k of (21) will be positive

and distinct, say ~, i = X, 2, .,,~ K. On substitution



in (20) each root Ai will yield proportionately a vector c. I

as a solution of (20), with the well-known (and most

’c.=o,j~i. Toelegant) property of orthogonality, i.e. ci ]

determine the absolute values of the K vectors it may be

assumed that c!c. = i, i=i, 2, ...~ K. The required
I l

linear transformation is then

where C is the orthogonal square matrix of which the ith

row is c!. We shall now show that the transformed te-
l

gressor matrix Z is orthogonal.

From (22),

ZZ’ = CXX’C’.

But, from (20),

(24) XX’C’ = C’L,

where L is the diagonal matrix of the A .
i

(~4),

From (23) and

ZZ’ = CC’L = L,

proving the property. There is an infinity of trans-

formations of X into orthogonal form but (22) is unique

in that it utilises the original regressors symmetrically.

As it does not involve the regressand y it has no stoch-

astic implications. In its regression properties Z is

mathematically equivalent to X. Unfortunately, as stated

above, the writer does not see how it can be utilised for

the present purpose. He has tried other orthogonal

transformations equally with lack of success using this

approach.

A more promising method seems to be the following.

A characteristic feature of the foregoing transformation

of the xit was that it pertained to the i and was the

same for all t :: we may therefore term this a ro___~w trans-

formation. As noted above, it had the disadvantage of

loss of identity of the original regressors. In this



section we consider column transformations.

The simplest of these is the finite differencing

procedure. Model (3), in non-matrix form, is

K

(26)
Yt = i--ZiPixit + ut’ t = I, 2, ..., T.

Hence

(27) APyt = Z~iAPxit +         APut, t = p+l,                     ...,          T,

where, by definition, Azt = zt-zt_I. One contemplates~

in the first instance, the application of the method to

time series in which the regressors are mutually cor-

related because they have the form

(28)
xit = fi(t) + uit,

where fi(t) is a polynomial in t of degree Piand the uit

are completely random residuals. It is evident that the

Ap operator applied to the xit, where p is equal to the

largest of the Pi will ensure that the new regressors lack

significant intercorrelation. It iG, however, by no

means certain that this method will be effective with econ-

omic time series. For instance, the accompanying table

of initially highly correlated data exhibits a dramatic

decline after one difference but, in several cases, there

seems to be a tendency towards a limiting non-zero cor-

relation with increasing p. However~ the method seems

worth trying out.

If the problem is not one in time series one could

adopt the following procedure; indeed, it might effect-

ively be used even with time series. In the first place~

one would calculate the correlation coefficient between y

and each of the K regressors. Select the regressor with

the largest correlation coefficient and reorder the T

equations in descending order of the magnitude of the

selected variable. Then apply the differencing process.

~ven if the process results at some stage p in near-

zero intercorrelation between regressors, an obvious ob-

jection to the application of orthogonal theory to



assessment of significant regressors is that auto-correlation

has been imparted to the residuals by the differencing pro-

cess. Now, to apply ortho-theoryt it is necessary to assume

the residuals random, i.e. non,autocorrelated, so that the

least squares estimation can be applied. We shall~ in

fact, pretend residual non-autocorrelation. In the full

K-regression the new estimates of the coefficients will

differ from the true estimates b. which tend in probability
l

to the ~i"    But the object of the exercise is not to

estimate the coefficients - this has been done by the

original K, regression - but to identify the k significant

regressors. Adverting to the A-B game the proposition

scarcely requires formal proof that the regressors sig-

nificant in the original series will be identical with

those in the differentiated series. This seems to be all

that is required of them.

The differencing process of degree p involves the loss

of p degrees of freedom in the system - see (27). The

writer came across tile following Helmert-type transforma-

tion with the full T DF, applicable to time series. The

T×T transformation matrix D applicable to the Yt’ the xit

and the ut is as follows:-

(29) D=..

ala2    ~..    ap    o o ... o o ... o
o ai     ...     ap,iap o ... o o ... o

O O         , , ,       O        O    O ¯ , ¯ a~ aM . , . a

............................ ~__£ ...... £

ibllbl2 ......

Ib~bei21 ~2 ..... ’

I

bplbp2 ... ... ooe     co@

,., b
i"

,,, b
2T

i T-p rows

I p row.~

The a-part are those from AP; e.g~ if p = 2, aI = i, a2 = -2~

a3 = i. The b-part are the orthopolynomials of successive

degrees appropriate to T given in [3] , Table XXIII e,g. the

first row is always a succession of T units; the second

row~ for T = 2w + I, is -w, -w + i, ..., -I,0,i,2, ..,, w.



Irish Macro-Economic Entities at Current Prices, 1947-196~:

Correlation Coefficients

[I: Raw Data; II: AI; Ill: A21; IV = ~I]

i i
1      2 3     4 5 6 7

, ,

1. Personal i
[

;
!

I
~xpenditure ~ I

I i .995 .887 .934 .981 .997 .996
II .57 ,43 .59 ! .16 .67 .26

III .37 ,14 .62 -.©2 o51 .24
IV ! I .35 .44 .67 .15 .56 .25

2. Public Auth-I
ority Expen-
diture

I .913 .939I °980 0990 .991
IIl ,14 .14

-.39 -.14
IV

i

.55 i.49 .15
III .34 ! .45 [-.21

i .38 ~ ~48 i-.36 -.39 -.31

3. Fixed Capital i
i

!
Formation I i

I ! i 918i .896 .905 .897
II I .45 .09 .51 .18

III .29 i
i .30 .01 -. 19

IV .19 I-.40 -.22 -.$0

i
4. Imports

i
l

I i
i " 943 .931 .924

II .32 .:35 .09
III

i
.17 .g6 .15

Iv .~ .06

5. Exports
i I

I .980 °988
II ! .f~8

ilI .22
IV .35 .40

6, Money Supply

I .995
II

III .18
IV i .~7

7. Gross Nation-~
al Product ,

i

I
II ,

III ’ i
; J

IV , I
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The a-rowe are not orthogonai; the b-rows are; and each

a-row is orthogonal to all b~rows. The transformation is

not applied in the present paper but is placed on record

because it may be useful in some other connection.

At the best~ the foregoing treatment will result K re-

gressors each pail of which are not significantly correlated,

not exactly uncorreiated as in the case of the treatment of

[2].    It is interesting to see if a transformation can be

found which will yield ideally exact zero correlations~

Let such a transformation, applied to the regressor matrix X

be

(30) Z = XD,

where D is T~T, whence Z, like X, is KxT. There are

initially T~ determinable elements, or DF, in D. Ortho-

gonality required that ZZ’ ~ XDD’X should be a diagonal

K×K matrix, to attain which requires K(K-I)/2 D.F. In

addition the means of the K new variables, like the rows

of the X matrix should be zero - K in all. Clearly, with

T2 elements to dispose of, vastly in excess, with T large,

of the number of conditions to be satisfied, it should not be

impossible to find such a transformation matrix D. $o far,

however, a method for finding it has eluded the writer. To

complete the transformation of the original T equations,

D should be applied to y and to the residual row vector u~

to give yD and uD. The elements of the latter row vector

will no longer be independent, as postulated for u. None-

theless, for the reasons given above, one can apply the

theory of [2] as if the elements of uD were independent for

the purpose of identifying the significant variables in

the original formulation.

It may be of interest to observe that, as the elements

of D satisfying the foregoing conditions are presumed de-

termined, the maximum likelihood solutions b and 2 of

the transformed equation set is identical with the

original ML solution. In fact, the original integral

element of the frequency distribution

(31) f(u)du.

For the ML solution u, in f(u), is to be regarded as a

function of the parameters ~ from (3) as well as the
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parameters ( 2 etc) of f(u)~ deemed unknown. The ML

solution consists of the values b of p and the frequency

2
parameters s etc which maximize f(u). Transform (~i)

by u = D-iv and the frequency element of v becomes

f(D-lv)/J(u,v)/dv,

where J is the Jacobian of the transformation. It equals,

in fact,J D-i~ and is therefore parameter,free. Hence

the ML solution is the parameter-set which maximizes

f(D-iv) = f(u) which proves the proposition since~ with

the presumption of normality in u, the only frequency

2
parameter is ~ .

The most promising line of those contemplated is

the Ap transformation. Its effectiveness remains to be

seen by applications preferably to actual data but, if

these are not readily available, to A-B statistical

games as indicated above.
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Addendum to Memorandum No. 28

A :::uch simpler form may be given to the first

term on the right of (19), namely

Suppose that the LS regression of X2 (k2 x T) on Xl(k1 x T) is

(sl) X2 = CXI + D,

where the coefficient matrix C(k2 x kl) is found from relation
k

($2) XID’ = O or DX~ = O.

Note that the relationship ($1) is non-stochastic.

(18) and (31)~ (30) becomes

(SS)

Using

which is made up of two terms of which the first is

(S4)

The second term. more complicated, is

= -p2cx1(xlc, + D,) ~

(SS)

Adding ($4) and ($5), (SO) becomes simply



This result is almost intuitive:    having regressed y on

any set X1 the addition to the variance Evv’ of the

remaining set X2 can depend only on the residual

contribution of X2, having allowed for Xi, already in the

regression.    Finally, from (19)

(~) ~vv’ = ~2DD~ + (T - ki - i)~

The statement in the text about dimensions in T under

(19) is, from (~7), wrong.    The first term on the right

of (~7) is of dimension 0 in T.

It may be worth noting that the matrix M, given

by (18) has the property

(aS) MX~ = 0 or XIM = 0

M does not appear to have been accorded an explicit role

in regression literature~ perhaps because, in the pre-computer

age, a T x T matrix was practically inconceivable, operationally.

By the way, the second term on the right of ($7)

is derived like (ii),




