The Effect on R^{2} of Adding an Independent Variate in Multivariate Regression

Let the $(k+1)$ th independent variate be x_{t}, the k other variates being $x_{t i}, t=1,2, \ldots, T, i=1,2, \ldots, k$. Without loss of generality the $x_{t i}$ are assumed to be orthogonal. Also w.l.g. the dependent variate y_{t} and all the indepondents aro assumed to be standardized, i.e. their means are zero and their sum squares equal T. Let \mathbb{R}_{k}^{2} and \mathbb{R}_{k+1}^{2} be the values for the k and $(k+1)$ regressions respectively. The full $(k+1)$ regression is then

Let
(2)

$$
\frac{1}{T}{\underset{t}{t}}_{y_{t}} x_{t}=p ; \quad \frac{1}{T} \sum_{t} y_{t} x_{t i}=q_{i} ; \quad \frac{1}{T} \sum_{t} x_{t} x_{t i}=r_{i}, i=1,2, \ldots, k
$$

Obviously p and the q_{i} and t_{i} are correlation coefficients. They are, in fact, all the simple c.c.'sin the oystem since, by hypothesis, $\Sigma x_{t i} x_{t j}(i, j=1,2, \ldots, k, i \neq j)$ is zero. Then (3) $\quad R_{k}^{2}=\dot{i}_{i}^{k}{ }^{k} q_{i}^{2}$

From (1) and (2),
(4) $\quad R_{k+1}^{2}=c^{2}+2 c \sum b_{i} r_{i}+\Sigma b_{i}^{2}$,
the normal equations being

$$
\begin{align*}
& p=c+\Sigma r_{i} b_{i} \\
& q_{i}=r_{i} c+b_{i}, i=1,2, \ldots, k
\end{align*}
$$

On substitution for i and the b_{i} from (5) into (4), and on reduction,

$$
\begin{equation*}
R_{k+1}^{2}=\left[\left(p-\Sigma q_{i} r_{i}\right)^{2}+\left(1-\Sigma r_{i}^{2}\right) \Sigma q_{i}^{2}\right] /\left(1-\Sigma r_{i}^{2}\right) \tag{6}
\end{equation*}
$$ or, using (3),

(7) $\quad R_{k+1}^{2}=R_{k}^{2}+\left(p-\Sigma q_{i} r_{i}\right)^{2} /\left(1-\Sigma r_{i}^{2}\right)$

The second term on the right of (7) has all the look of the square of a partial c.c. This turns out to be nearly the case. In fact, let

$$
\begin{equation*}
z_{t}=\Sigma_{i} x_{t i} r_{i} \tag{8}
\end{equation*}
$$

After some simple reduction we find
(9) $\quad R_{k \neq 1}^{2}=R_{k}^{2}+\left(1-r_{y z}^{2}\right) r^{2}(x, y / z)$
with (see (2))

of course, $R_{k+1}^{2} \geqslant R_{k}^{2}$.

No novelty is claimed for (7) or (9). The object of this note is to show a particular aspect of the fundamental role of orthogonization of independent variates in multivariate analysis, to say nothing of the simplification in exposition of standardization of all variates. Of course, a result like (7) can be produced using the raw data, but the apparent simplicity in that case of the second term on the right is spurious as consisting of a complicated matrix expression.

