THE ECOLOMIC RESEARCH I U.S. TE MEMOLANUUT SERIES NO. 39

The Effect on R² of Adding an Independent Variate in Multivariate Regression

Let the (k+1)th independent variate be x_t , the k other variates being x_{ti} , t=1,2,..., T, i=1,2,...,k. Without loss of generality the x_{ti} are assumed to be orthogonal. Also w.l.g. the dependent variate y_t and all the independents are assumed to be standardized, i.e. their means are zero and their sum squares equal T. Let R_k^2 and R_{k+1}^2 be the values for the k and (k+1) regressions respectively. The full (k+1) regression is then

(1)
$$y_{tc} = cx_t + \sum_{i=1}^{k} x_{ti} b_i$$

Let

(2)
$$\frac{1}{T} \sum_{t}^{\Sigma} y_t x_t = p; \quad \frac{1}{T} \sum_{t}^{\Sigma} y_t x_{ti} = q_i; \quad \frac{1}{T} \sum_{t}^{\Sigma} x_t x_{ti} = r_i, \quad i=1,2,\ldots,k$$

Obviously p and the q_i and t_i are correlation coefficients. They are, in fact, all the simple c.c.'s in the system since, by hypothesis, $\sum_{i=1}^{k} x_{i}$ (i,j=1,2,.,k, i≠j) is zero. Then (3) $R_k^2 = \sum_{i=1}^{k} q_i^2$

From (1) and (2),

(4)
$$R_{k+1}^2 = c^2 + 2c \Sigma b_i r_i + \Sigma b_i^2$$
,

the normal equations being

(5) $p = c + \Sigma r_{i} b_{i}$ $q_{i} = r_{i}c + b_{i}, i = 1, 2, ..., k.$

On substitution for i and the b_i from (5) into (4), and on reduction,

(6) $R_{k+1}^2 = [(p - \Sigma q_i r_i)^2 + (1 - \Sigma r_i^2) \Sigma q_i^2] / (1 - \Sigma r_i^2),$ or, using (3),

(7)
$$\mathbb{R}_{k+1}^2 = \mathbb{R}_k^2 + (p - \sum q_i r_i)^2 / (1 - \sum r_i^2)$$

The second term on the right of (7) has all the look of the square of a partial c.c. This turns out to be nearly the case. In fact, let

$$(8) z_t = \sum_i x_{ti}r_i$$

After some simple reduction we find (9) $\mathbb{R}_{k+1}^2 = \mathbb{R}_k^2 + (1-r_{yz}^2) r^2(x,y/z)$ with (see (2)) (10) $r_{xy} = p; r_{xz} = \sqrt{\Sigma r_i^2}; r_{yz} = \Sigma q_i r_i / \sqrt{\Sigma r_i^2}.$

of course, $\mathbb{R}_{k+1}^2 \ge \mathbb{R}_k^2$.

No novelty is claimed for (7) or (9). The object of this note is to show a particular aspect of the fundamental role of orthogonization of independent variates in multivariate analysis, to say nothing of the simplification in exposition of standardization of all variates. Of course, a result like (7) can be produced using the raw data, but the apparent simplicity in that case of the second term on the right is spurious as consisting of a complicated matrix expression.

5 April 1967

R. C. Geary

- 2 -