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I. Introduction

A Computer Program for tile Analysis of Survey Data
!

by Brendan J. Who!an * 

¯ . ~, .

........... Sample surveys are being increasingly used in all the social

sciences,and this increase in numbers is matched by the increasing ambitious-

ness and complexity of the information eoiiected. The analysis of such large

quantities of data poses a considerable problem for social scientists. Cross-

tabulations alone are no longer sufficient to reflect the richness and depth of

the data collected. The sheer number of tables required to cross-tabulate the

results of a large surveY make it difficult and time-consuming to isolate important

relation@ips, and even when they are found it is difficult to communicate the

finding to :the reader in a lucid and succinct way. The wealth of data brings ¯

with it the temptation to ignoz’e the tiresome ritual of significance :testing. It

also encourages one to substitute bad tabulations for good theory - much of what

masquerades as theory being mere post hoe rationalization. --" /)
/

More powerful methods of analYSiS are therefore called for.

We may d~vide those which have beendeveloped to date into two groups: (i)

methods coneerned with analysing the strueLure of a set of variables, where none

of these variables is considered .more nnt,or.,anc than any other. Examples are

factor analysis, compouent analysis and multi-dhnensionat scaling. (ii) Tech-

niques which investigate the relationship between a specified, important variable,

known as the dependent, and a set of independent or "explanatory" variables.

Examples are regression, discriminant analysis, AID, MCA.[1].
Q.

The present program belongs to the second group. Its main advan-

tages are. (i) it forces the research.ev tO specify an explicit model of human

behaviour (ii) it provides a convenient method Of compressing and summarizing

the net effecks of large numbers o.[ variables (ii{) it provides tests of significance

for both the model as a whole and for the net effects of individual wn:i?t,,les.

*The autlxor wishes to thard( B.M. ,¢,.A~,I. for his constantencoma~scmco" -,.~L ancl :~,lp.
. ]lt. ,).m andThaN~s are also due to E E. Davis, R. C. Geary, 1:’. Nea[:y, N. O’ ""’

R. OtConnor for their heIsfvl advice.
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The program may be used to calculate either regressions

or discriminant functions.The nature of these techniques and the relationship

between them are more fully discussed in secLion II below. For the moment,

it is sufficient to note that both techniques involve the calculation of a set of

coefficients (we~,ghts)for the variables, and that the statistical significance of

the coefficient of a certain variable indicates Imw closely that variable is

related to the dependent. The basic difference between the two techniques is

the level at which the dependent variable is measured. If the dependent is

cardinally measurable,regression analysis is appropriate, while if the depen-

dent is dichotomous (i. e. the dependent is whether or not an individual belongs

to a certain group) discriminant analysis should be used.

One of the main factors influencing the design of the program

was the persistent problem in the social sciences of the level of measurement

r-

which is possible. Frequently, the most important social variables are categorial

in nature. For instance, it is easy to divide people into categories on the basis

of nationality, but these categories have no necessary ordinal or cardinal rela-

tionship with one another. In other words, measurement is only possible on a

nominal scale. The program aims to facilitate the inclusion of such variables by

assigning a "dummy variable" (see [2] p. 221)to each category of each variable.

This gives rise to large numbers of variables and the program is designed to

¯ deal economically with them. Although originally deve.!oped to handle dichotomons

data, the program will also process cardinally measured variables, so that any

combination Of the two types of variable may be used.

Up to now the program has proved useful in analysing female

labour force participation rarest3] and voting patterns[4] . Potential users

should consult [3] for a fairly d6tailed example of the program’s use.

This memorandum first of all discusses the nature of regression

and discriminant analysis. It then goes on to give technical details of how the

, program works, a description of the print-out and instructions as to how the data

should be set up for the program. The Appendix dcrives the basic relationship
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between regression and discriminant functions,

babilities may be incorporated in tile analysis.

and shows how a priori pro-

SectionIII and the Appendix

are somewhat technical and may be omitted by readers who want only a gen-

eral idea of what the program does and how to use it.

II. The Nature of Regression Analysis,¯ Discriminant Analysis and Linear

Probability Functions

Regressions: (See Johnstoh [2] Chapters 1 and 4)

The basic objective in regression analysis is to estimate from

a sample the relationship which is assumed to exist between a dependent var-

iable, usually designated y, and a set of independent variables, usually desig-

nated ’ XlX2a $ ¯ ¯ ¯ ¯ e.e         Xk;

It is presumed that each observed value of y is a weighted sum of the x vsriabies

plus a random: "disturbance i. e.y = bo + bl xl ÷ b2x2 ....... bk Xk + ~ where

the weights (the b’s) are known as the "regression coefficients" and ~ is a

random disturbance. The regression program provides us with the "best" *

possible estimates of these b’s, and also tells us how much of the variation in y

is "accounted for" or "explained" by variations in the x’s.

For instance, say. we were interested in explaining consumption

of beer and that we have data on the’behaviour of a sarnple of beer drinkers

over a period. We might then hypothesize that beer consumption (y) is a function

of the price of beer (XI) the price of spirits (X2) and the incomes of the individuals

(X3) i.e.:

y=b
0

+ bI X1 + b2 X2 + b3 X3

We could then feed the observed values of the four variables (y, X1, X2, X3)

into the regression program and the program will estimate the b’s, determine

!
their significance and the significance of the overall relationship. A full des-

c.ription of the information provided by t:hq’ program is given in section (Iv~.

* "Best" is used here in the technical series of Lhe linear estimate with n:"~num
.-    wriance.
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Diseriminant Function (see Kendall and Stuart [5])

Say we are given samples from each of two populations. On

the basis of the samples, we wish to set up a rule which will enable us to allot

a new individual to the correct population When we do not know which population

he belongs to. A discriminant function isa set of weights, derived from the

samples, which, when applied to the measurements of the individual to be

classified, gives hi{ discriminant function score. If this score is above a certain

level the individual is allocated to one population and if it is below this level he is

allocated to the other population.

For instance, say we have a sample of Americans and a sample

of Irishmen and we wish to set up a discriminant function based on height and

weight..That is, we wish to derivefrom the samples two discriminant function

coefficients, one for the weight variable and one for height. If we are then given

height and weight measurements for a new individual of unknown nationality and

asked to allocate him to one population or the otl~er, we would multiply his weight

by one coefficient, his height by the other and add the resu!ts. If the resulting

"discriminant function score" is above a certain "critical" value, the individual

is classified as American. If it is below that value he is classified as Irish.

In this example we have assumed that the individual to be classified

is equally likely to come from either population. This may not be realistic in

Practice: Say we know that 20 per cent of the population from which we were

sampling were Irish and 80 per cent were American. It would then be reasonable

to make it more "difficult" for a new individual to be classified as Irish. That is,

-the critical value should be adjusted downward. This is an example of the incor-

?!poration of "a priori probabilities in the discriminant. In survey work, we

frequently do not have any control over the proportions of our sample which come

from each population (i. e. the proportion of women who work; people who smoke;

people with high need achievement etc. ) and the sample proportions in the two

groups may be used as estimates of the a priori probabilities.
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The Linear Probability Functions (LPF)(see [6] )

This is a particular type of discriminant function which is

calculated by regressing a dummy variable (= 1 if the item is in population

1 and zero if it is in population 2) on a set of independent variables. It can

be shown that it isa constant multipie of thestandard discr[minant functio:n,

and it may be modified to take account of different costs of misallocation and

different a priori probabilities (see the Appendix for a mathematical derivation

of these results). : ’

Since it is essentially a regression analysis all the usual

statistics and tests of significance may be applied. These include t-tests,

analysis of variance and R2. A special feature of the present program is the

inclusion of F-tests for sets of variables (see Section V, item 9 below). These

are particularly useful with dummy variable(c ategorical) regressors, because

in this case one is interested both in the overall explanatory power of, say,

the age variable, as well as the explanatory power of i’ndividual age categories,

There are, however, threedifficulties peculiar to LPF’s.

)

(1) Heterovariance: Johnston [2, p. 227~ shows that the variance of the random

disturbance is not constant, in contradiction of the usual regression assumptions.

Goldberger ~7] suggests a two step procedure using generalized least squares for

dealing with this problem.

(2) .~ ~ 1 or ~ ~ 0: i.e. estimated values of the dependent above 1 or below zero.

This is possible, l)ut the actual y value (=the probability of ~)eing in population 1)

must be between zero and one. Goldberger [7] suggests the use of probit analysis

to solve this problem.

(3) Evaluation of Goodness of Fit: The conventional measure of goodness of fit in

regression is the adjusted coefficient of determination, I~.2 However, LPF’s

’ --2

, usually seem to give low values of R; low, that is, by comparison with conventional
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regression analysis. This is not surpris’ing wi~en one considers that I~2 depends

essentially on the unexplained sum Of squares, i.e. the sum of the squares of

the errors ohe would make when using the LPF to predict the values of y for

the individuals in the sample. Thus, even a prediction of y = 0.9 for a certain

individual who is in population 1 still makes a contribution of (1 - 0.9)2 =. 01 to

the unexplained sum of squares. This hardly seems appropriate in the present

case when we know that the true value must be either zero or one i.e. we are

considering an "either-or" situationwhere an item either is or is not a member

The observed values of I~2 must thus be interpreted with someof population 1.

caution.

An alternative method of assessing goodness of fit is to use the

estimated discriminant function t(~ allocate the members of the two samples and to

examine the proportion of correct assignments achieved [8, p. 132]. Theprogram

provides this information since it gives the total number of correct allocations,

the total number of incorrect allocations and the number of correct allocations in the

"unit group" (i. e. the category of the dependent which is scored one). These figures

- allow the following type of tabulation to be drawn up:

ACTUAL

Unit Zero Total
Group Grou0

A Unit 179 135 ¯ 314

S
S

Group

I
G

N Zero
E
D Group 332 1805 2137

Total I 511 1940 ! 2451

These illustrative figures are taken from [3, Table 5]. Here the unit group

represented membership of the labour force while the zero group denoted non-

membership. This table allows one to compute the overall percentage of correct

assignments ( = (1984/2451) X 100 = 81% in the above example) and also to compute

r
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the percentage of correct assignments in each group. (= (179/511) x 100 = 35%

in the unit group and (1805/1940) x 100 = 93 % in the zero group). In this way,

one can get a clear idea of the effectiveness of the estimated discriminant function

i~ allocating to one group or the other.

An even more rigorous test of the quality of an estimated

LPF is provided by estimating the function on one sample and testing it on a

different one. This-ensures that the coefficients are stable over different samples,

and so are unlikely to be the result of purely random fluctuations in the original

sample. It is advisable, if sample size permits, to divide one’s sample into two

randomly chosen half samples, and to estimate the LPF on one half sample and

test its predictive ’power on the other half (see~3, Table 6] ).

i

III. How t:he Program Works

(i) As a Regression Program                  .

Let X be an n x p data matrix whose first column consists
r

entirely of units and p be the total number of (different) variables which will be

required in all selections. The program first forms the matrix X’X. Say that k

independent variables (including the intercept) are to be included in the first selec-

tion. A sub-matrix of X’X which we shall call XPX is then formed containing the

(k +1 ) rows and (k + 1) columns of X’X (i. e. k independents + the dependent) which

are required for the first selection. The order of the rows and columns of XPX

corresponds to the order in which it is desired to enter the variables into the

regression. The row containing the cross-products of the dependent and indepen-

dents is put on the bottom and the column containing these elements is put on the

extreme right. This gives the form of XPX shown in Figure 1.

By "pivoting"* successively on the diagonal elements of

XPX, the regression of y on all the variables which have been pivoted on up to that

point is obtained. For instance, if we pivot successively on the first m diagonal

elemenl:s, the first m elements of the last column of XPX will give b and b1 to O

b and the lower right-hand element of XPX will give the residual sum of
1’

* The pivoting    method used is a variant of the Gauss-Doolittlc method of matrix
"~~l,)cd i~, 9, p. 192~-19G’]..
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squares. (See Figure 2) If. we pivot on all diagonal elements down to the k-th

we will obtain the regresssion of y on all the variables included (See Figure 3).

/

.....

This procedure is utilized so that a whole set of equations

can be obtained from what is, essentially, a single inversion of the X’X matrix.

Thus, for instance, the program will provide the regression of y on X7, X10, Xll;

then the regression of y on X7, XlffXil, X8, X9; then the regression of y on

XT, X8, X9, X10, Xll, Xl, X2 .....
X6. The user has merely to specify the order

in which he wants the equation printed out. The order .in which the variables appear.

on the data cards is immaterial, and any number of new variables from 1 to

(k - km) (where k = the total number of variables and k = the number already¯ m

included) may be added at each stage. Any of the input variables may be specified

as the dependent.

(ii) As a Discriminant Program.

The procedure used is identical with that described above, except

that the dependent variable must be a dummy variable i.e. a variable which has the.

value zero if an individual is in one group and one if he is in the other. The program
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calculates the Discriminant function coefficients and, if desired, it will then

go on to calculate the mean of the discriminant function in each group, and the

critical value (for details see Appendix below). By means of the critical yalue, it

will then allocate each member of the sample to one or other group. Finally,

it will print out the number of correct allocations and tl~e number of incorrect

allocations as an indication of the quality of the diseriminant function.

The. program has two main advantages over the standard IBM

[103 and BIOMED [11] diseriminant funet~.on programs: (i)it can accommodate

¯ up to 9999 observations and (ii) it allows "a priori probabilities" to be incorpor-

ated in the discriminant function. The program can deal with upto 50 variables,

and can be easily modified to include even more. However, users should bear

in mind that .a considerable amouhtofcomputer time is required to handle very

large numbers of coefficients.                    ~

IV. Print-Out

This section describes the program’s print,out.

.
(Optional) "Transformation": This indicates that the user has specified that

the variables listed are to be added. The. resulting sum is to be given the number

of the first variable in the sum.

Format: "TRANSFORMATION

VARNN REPRESENTS NN + MM + II etc. ,t

2. (Optional) "Interaction" This indicates that the user has specified that the

variables listed are to be multiplied and will be stored as indicated.

Format: "INTERACTION OF VARS NN AND MM STORED AS VAR KKt’.

3. "Expanded XPX matrix bordered by Dependent". This is the XPX matrix

described in IIi above. The totals of each variable will be given by the first

row and the sums of squares by the diagonal elements.

tt ¯ 1!4. Co~ relation Matrix . The dependent variable will always appear in the last row.

5. "Explai!led XPX Matrix after Inversion". The right--most column Of this matrix

gives the regression coefficients, the bottom row gives minus tlfe regression
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coefficients and the element in the lo~er righthand corner gives the residual

sum of squares.
-1

The remainder of the matrix is the (X’X)
i .

matrix for this

selection.

6. The regression coefficients, their variances, F-values and t-values.

...... . ............, ~,, ...... 7.... Analysis of Variance for the regression.

8. Coefficient of Determination R2, unadjusted and adjusted.

9. Addition to explained sum of squares achieved by the most recently introduced

set of variables. F-value for tlhs Addition.

10. Determinant of Correlation matrix.
.....

11. Farrar-Glauber.test for Multieol!inearity (see [1,4] ).

[1 312. Haitovsky test for Multicollinefirity (see ).
,-,

e

13. ’ .(For Diseriminant Analyses only) Means of Variables in each group,

14.

15.- (For Discriminant Analys~s only)
...’ .     ’.." ~,~-t"

(For Discriminant Analyses on!y) A Priori Probabilities (see Appendix)

Value of LPF (Linear Probability

Function) in each group.

16. (For Discriminant Analyses only) Critical Value.

17. Optional: Residual analysis: Actual value of dependent

Predicted value of dependent

(For Diseriminant Analyses)

tlesidua!

Allocation on basis of Discriminant Function

(= "Disc. Group")

(For Discriminant Analyses)¯ Whether allocation was right (R)or wrong (W).

(For Discriminant Analyses)

Durbin Watson Statistic

No. of Sign Changes

Total Number of Correct Allocations

Total Number of Incorrect "

Number of Correct Allocations

of individuals belong to the unit group.
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V. How to Set Up Data for the Program

I

The appropriate JCL cards are available from

" B. Whelan or J. O’Meara, ESRI. Only the cards which vary from

"~ :" ~ .......~’~’~ ......~ .....~: .....~pi:o]Jl’~m:t0 ~obi:emare described here. A i’field’;ma~/]Je~ clefined as the

set of columns on a card allocated to a certain variable.

.1.1 Control Card

Col. 1-4=

558:

9-10:

11-12:

13-14:

15-16:

17-18i

(Format (A4, I4, 512))

4 charact.ers to name tl~e problem.

Number of observations.

Total Number of (different) variables being used

in all ~selections.

Number of Variables being read in on cards.

Number of selections.

(Optional) Number of addition transformations

required. If none leave blank.

(Optional) Number of interactions (multiplications)

desired. If none leave blank.

2.1

3.1

Card Giving List of Field Numbers of all Variables (Format (4012~)

The number of these should be the same as that punched in Cds.

9-10 of the control card. If there are k interactions (k ¯punched in

cols. 15-16 of card 1) the last kvariables listed should be the field

numbers which it is desired to give to these interactions.,.

Format Card (Format (20A4))

Specifies FORMAT in which data is read in.



4. (Optional) Addition Transformations

.o

4.1 Card giving number of variables in each set to be added (FORMAT.

(4012))

There should be as many numbers listed on this card as there

are addition transformations required (cols. 13-14 of Card 1).

4.2

5.

5.1

Cards listing the Field numbers of the variables which comprise

eachset (FORI~T (4012))

There s}muld be one card for each transformation. Note that

the sum is stored under the field number of the first variable in

the transformation, so that the first variable in a transformation

cannot be included separately in sn equation which also contains

the transformation.

(Optional) Interaction Transforrnations

Card. listing the pairs of variables whose interactions are required

(FORMAT (4012))

The number of fields punched on the card should be twice the

number which appears in cols 15-16 of the control card.

6.1

Selection Cards Each selection requires 3 cards

Parameter Card for Selection/FORMAT (512, F4.0)).

Cols. 1-2

3:4

5-6

Field Number of the dependent for this selection

Number of independent variables in this selectior~

Number of separate equations required in this selection

7-8 Residuals Option:
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Blank or zero:

-1 :

k:

Residuals not required

Ilesiduals required for final equation only

Residuals:required for first k equations.

If residuals are required for all equations

s.et k equal ~o the number in cols. 5-6.

Cols. 9-10 Discriminant Option

01 if this is discriminant analysis, zero if regression.

11-14 A priori probability of unit group. Punch the decimal

point.

6.2:.

6.3"

t _

.Independent Variable List Card (FORMAT (4012~

Containing the field nmnbers of the independent variables for

this selection, in ~he order in which it is desired to enter them.

Card listing the namber of w,.riables to be’included in each eg,mt~on

of this selection. (FOlih, L~kT (4012))~

This gives the number of independent variables to be inclu~ded in

each equal:ion. There should be

which it is de,’red to estimate.

one number fol’ each equation

Each number ¯punched should

.be larger than the previous number, and the’last number should

be equal to that in cols. 3-4 of card 6.1

Cards 6.1, 6.2 and 6.3 should be repeated for each selection.
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A Note on the Relationship between Discriminant Functions and

Linear Probability Functions

This note presents the following: (i) a derivation

of the standard discriminant function (ii) a derivation of the linear

probability function (i. e. a discriminant function derived from a

dummy variable regression) (iii) a demonstration that these functions

are proportional (iv) a method of including a priori probabilities in

the L. P F formulation. The following discussion draws heavily on

Anderson []2] and Kendall and Stuart [5]. .

(i) The Standard (Two-population) Discriminant Function

Say that there are two populations containing

individuals each of which is measured on p variables. An example

would be two types of flower, each flower being measured on four

variables (p = 4), sepal length, sepal width, petal length and petal width.

We wish to derive a set of weights ("coefficients") for these variables

such that for any new individual a score can be calculated and the new indivi-

dual allocated to one population on the other according as this score is

above or below a certain critical level. To continue the flower example,

we would measure the sepal length, sepal width, petal length and petal

width of a new flower of unknown origin, then multiply each of these

measurements by the appropriate discriminant function coefficient, sum

the results and allocate the new flower to one population or the other

depending on the magnitude of the resulting number.

Let the population be represented by two (partially
0

overlapping) clusters of points in a p-dimensional space, (a simple case,

p = 2, is shown in Figure 4). Each point represents an individual.

Our objective is to set up a boundary in the space such that as many as

possible of population 1 lie on one side and as many as possible of population
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Figure 4: ,A simple discriminant function (p = 2)

2 on the other. In the case shown in Figure 4 the

boundary is a line. In general, it is a (hyper-,) plane. The new indivi-

dual to be classified is represented by a p-dimensional vector, x.

Two further complicatiot~s may now be introduced:

(1) We may know that members of population 1 halve ~/different chance

of occurrence from those of population 2. Such "a priori probabilities"

are designated fF1 and fr~2. In our flower example, if it is known that

type 1 is four times more common than type 2, then 77"1 = .8 and ~K"2 = . 2.

(ii) The consequences (cost) of misallocation may be different. In a

medical application, it is much less dangerous to diagnose a healthy person

as unhealthy (because the error is likely to be discovered by subsequent

tests) than an unhealthy person as healthy. The cost of misallocating’ a

member of population 2 to population I is denoted by C(1/2) and of misallocating
q
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a member of population 1 to population 2 bY c(2/1).

Letting fl and f2 be the frequency function3 of

populations 1 and 2 respectively, the expected cost of misallocation is

where R is the region in the p-space

to population 1.

in which individuals are allocated

- dx

In order to determine the boundary, we must minimize M. This will

be achieved by taking into R all those points, and only those points where

c(1/2) ~ f2-c (2/1)~."i flLo

¯ C(2/1) 77"1 fl

C(1/2) 7r"2 f2
will determine the boundary.

Let us assume that fl and f2 are multivariate normal distributions with

common variance-covariance matrix ~ .

where/~(i) is the vector of means from population i and ~ is the m~{trix

’ of variances and covariance of each population,

Let

e_. (:~-/,’) ~r, .~,
c Ol,-] ~,. 4",.

C(2/1) #-7,1
= K

c(1/2) ~’2

’
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¯ $

Since log is a monotonically increasing function, this inequality

can be written in terms of logs -

must be greater than or equal to log (l/K).

Expanding,    -

This gives, by rearrangement of terms

/    4-

If this inequality h61ds ¯then the new item is allocated to population 1 and

if it docs not h0id it is allocated to population 2. The "discriminant function"

-1
coefficients are given by the vector .~. The first term on

the left is the discriminant function, evaiuated for the individual to be classified.

The second term is tke discriminant function evaluated at a point mid-way

between the population means.

If C(1/2) = C(2/1) (i.e. the costs of misallocation

are equal) and ~1 = ~2 {i. e. the a priori probabilities are equal, or

unknown) then K = 1 and log (I/K)=O. Hence, in this Case, the second
on the leftt

term/is the critical value of the discriminant function i.e. the value above

which items are allocated to population .1. Thus, the effect of introducing

(differential) costs of misallocation and (differential)a priori probabilities

is to displace the critical value by a constant, equal to log /C(1/2) rf2 \

The above is the parental form of the diseriminant.

In practice, we must replaee each term by its sample eounterpar~ i. e.]2(i)

by x(i) and ~ by the matrix of pooled variances and eovariances of the



variables. In a survey where the sample of N was chosen without

reference to which population an item belonged, then fr’. may be
N.

1

where N. isthe number of the items found toestimated by N
1

.... ’-: ........................’~"."~ .......................bei~~ the i-,th--poputatiom- ¯ (Note.. that-N-i..+ ..N2-== N. the.total.., sample)-~ ......... . .......¯ ........~.:-- .....

This gives

where

The. Linear Probability Function

The following is an alternative derivation of the

discriminant function (see Fisher [i3]).

= 1 if the item .is in population 1
Let y be a dummy variabie =. 6 if the item is in population 2

Then find the. regression of y on the x variates by choosing b

minimize
2.

to

where the first element ofxis equal to ] fori= 1, 2 and

=      (N1     x
(I)x +N2(x(2~) / (NI+N2) i.e. the overall mean of x

.)
J

/

The"normal " "’equahons are

®



Sincey = 0foralli=2, the right hand side of (A) reduces to
N,

0)
- Nl :~=     X :)(" ~-

oL~-I

N I÷,N~-

°

the
The matrix multiplying b on/left-hand side of (A) simplifies as follows

C~

(A) can therefore be re-written as

~,_Cd_~"~ _     ~, ~ (£c’~

C

where

¯ .(.’-( . d-~t

But (x(1) - x (2)~ b is a scalar,

I

. Hence, b is proportional to S-1 (x(1)- x(2))

¯ and the constant of proportiona!ity is

A .

where ~/0) is the predicted value of y at the mean of population i.
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Since the functions are proportional, it is clear that their.discrimin-

atory power will be the same. Tlius, as Ladd . [6 ] points out

"Discriminant analysis and linear probability analysis start from

quite different places but end up at nearly the same place".

............ - ................ .-~,.: : ........ " ............... ~,,~: ........... - ~ ~7-.,= " =7~’ ...... -...:~.~..,,., ~i ............ . ........... .o.._:.,,. :? .... . ............. ~ ....................... :.

.The Inclusion of Costs of Misallocation and A Priori Probabilities

in the Linear Probability Function (LPF).

Morrison [8 ] shows that the inclusion of a priori

probabilities often substantially improves the discriminatory power of

estimated discriminant functions. The aut!lor of the present note has

been unable to find a case where such a ¯priori probabilities were in-

cluded in an L PF analysis. The LPF formulation has several advan-

tages over the standard discriminant, notably its similarity to regress--

ion and the possibility of interpreting the coefficients as conditional

probabilities. In order to include a priori probabilities in the estimated

LPF, a modified version of the critical value was derived and this is

presented below. To achieve greater ¯generality, both costs of misalloca-

tion and a priori probabilities are assumed unequal.

Let b1 be the vector of coefficients derived from a standard discriminant

function, and b2 be the vector of coefficients derived from an LPF

analysis. We have shown above that

.-J
/

/

= bI P

We have also shown that the optimum

allowing for W’l~’/f2 and C(1/2)

classificatory rule when using bl,

C(2/1) is:

;3,’) % (’I’<>

allocate to population 1 and otherwise allocate to population 2.
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If we express this rule in teiVns of b2 we obtain

where y is the value of the L P F for trm individual to be allocated.

The latter is the rule which the program uses to allocate individuals.

o
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