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BRENDSC: A Computer Prograin for the Analysis of Survey Data

xyr

- by Brendan J. Whelan *

I . Introduction

" Sample surveys éi‘e‘being'increasingly Jsed’ in all the socisl
sciences,and this increase in nu‘mbers is matched by the increasing ambitious-
ness and compiexity of the information coliected. The analysis of such large
quantities of data poses a considefable broblem for social scientists. Cross-

tabulations alone are no loxiger sufficient to reflect the richness and depth of

the data collected. The sheer number of tables required to crbss—tabulaté the

results of a large survey make it difficult and time-consuming to isolate impoxrtant

I3

i'elations:l-xips, and even when they are found it is ditficult to comuunicate the
finding to :the reader in a lucid and succinct way. The wealth of data brings -
with it the temptation to ignore the tiresome ritual of significance ?testing; It

also encourages one to substitute bad tabulations for good theory - much of what

masquerades as theory being meyre post hoe rationalization.
: ;

More powérful methods of analysis are therefore called for}’.
We may- C’jivide those which have been developed to date into tW(.) gro/upé: (1)
methods concerned _With anélysilxg L'#le struc'tﬁre of a set of variableé, x.vher.'.e nene
of these variables is considered more important than any other. Examples are
factor analysis, cbmpqtl\ént analysis and ;x;ulti—dis_;nensi'onal scaling. (ii) Tech-
nigues which investigate the relationship between a gpecified, important variable,
.

known as the dependent, and a set of independent or "explanatory' variables.

Examples are regression, discriminant analysis, AID, MCA Ll] .

The present program belongs to the second group. Its main advan-

tages are: (i) it forces the reseaveher to specify an explicit model of human
behaviour (ii) it provides a convenient method of compressing and summarizing

the net effects of large numbers of variables {iii) it provides tests of signiticance

for both the model as a whole and for the net effects of individual variohles.

*T'he author wishes to thank B.M. Walsh for lis congtant encouragemeont and help.
Thanks are also due to B, E, Davis, R. C. Geary, P. Neary, N. O'liroin and
“R. O'Connor for their helplul advice,
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The program may be used to calculate either reg‘ressions
or discriminant functions .The naﬁure of the.s'e tecimiques and the ?elationship
between them are more fully discussed in section II below. For the moment,
~ it is sufficient to note that botl; techniques i'm;ovlve the calculation of a set of
coefficients (weights)for the variables, and that the statistical siénificance of
thecoeff101ent -. ot: a certam Qariéﬁlé in.c.llivcéaﬂt-;s 'llc;\a;‘;c:.l;)sely tilanf'variabiléa’ is
related t;) the dependent. The basic difference bet;zveen the two techniques is
the level at which the dependent variable is measured. If the dependent is
cardinally measurable,regressioh arlalysis is appropriate, while if'the depen~-
_dent is dichoto.méus (i.e. the dependent-is wh_ether or not.an individual belongs

toa certain group) discriminant analysis should be used.

z

One of the main factors influencing the design of the program
was the persistent problem in the social sciences of the level of measurement
which is possible. Frequently, the most important social variables are categorial

in nature. For instance, it is easy to divide people into categories on the basis

N

of ﬁationality, but'these categories have no ne;zessary ordinal or cardinal re‘l-»e;.'?
tionship vﬁth one another, In otﬁer words; meésurement is only possible on a
nominal scale. The program aims to facilitate the inclusion of such variableé by
~ assigning a "dummy variable" (sAee [2] p. 221) to each catego_ry of each variable.
This gives rise to large numbers of variables-and the px;ograin is designed to

' deal fzconomically_ with them. Although o.rviginally deye}oped to handle dichotomons
data, the program will also process cardijnally measured variables, so that any

combination of the two types of variable may be used.

Up to now the program has proved useful in analysing female
labour force participation rates [3] and voting patterns [4] . Potential users

should consult [3] for a fairly détailed example of the program's use.

This memorandum first of all discusses the nature of regression
and discriminant analysis. It then goes on to give technical details of how the
program works, a description of the print-out and instructions as to how the data

should be set up for the program. The Appendix derives the basic reclationship




between regression and discriminant functions, and shows how a priori pro-
babilities may be incorporated in the analysis. SectionIIl and the Appendix
are somewhat technical and may be omitted by readers who want only a gen-

eral idea of what the pi'ogram does and how to use it.

II. The Nature of Regression Analysis, Discriminant Analysis and Linear

Probability Functions

Regressions: (See Johnston [2] Chaéters 1 and 4)

The basic obje_cf-ive in regression analysis is to estimate from

a sample the relationship which is assumed to exist between a dependent var-

iable, usually designated y, and a set of independent \;ariables, usually desig-

ed X X ierieriniX , )
nated XX, o X s

It is presumed that each observed value of y is a weighted sum of the x variables

plus arandomy disturbancei.e.y = bo + b1 X

1+b2X2""_"'bkxk+£ where

the weights (the b's) are known as the "regression coefficients" and € is a
random disturbance. The regression program provi_des' us with the "best" *
possible estimates of these b's, and also tells us how much of the variaticn iny.

is ""accounted for' or "explained" by variations in the x's.

For instance, say we were intei"ested in explaining consumption
of beer and that we have data on the behaviour of a sample of beer drinkers
over a period. We might then hypothesize that beer consumption (y) is a function
of the price of beer (Xl) the price of spirits (Xz) and the incomes of the individuals
‘(Xa) i.e.:

L4

3./‘=bo+b1}\1+b2 X2+b3X3

. We could then feed the observed values of the four variables (y, Xl’ X X3) '

2,
into the regression program and the program will estimate the b's, determine
their significance and the significance of the overall relationship. A full des-
cription of the information provided bv'l‘.he program is given in section (I\".

* "Best" is used here in the technical series of the lincar cstimate with /- inum
_variance. : :




’
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Discriminant Function (Seé Kendall and Stuarf Ef;])

Say we are given samples from each of two populations. On
the basis of the samples, we wish to set up a rule which will enable us to allot

a hew individﬁal tc the correct population when we do not know which population

. he belongs to. A discriminant function is a set of weights, derived from the

samples, which, when applied to the measurements of the individual to be

~ classified, gives his discriminant function score. If this score is above a certain

level the individual is allocated to one population and if it is below this level he is

allocated to the other population.

For instance, 'sas;»we have-a.sample of Americans and a sample
of Irishmen and wé wish to set up a discriminant function based on héight and
weight. | That | is, we wish to der?ive'from the saxﬁpieé‘ two,- diécriminant functibn
cocfficients, one for the weight variable and one for height. If we are then given
height and weight measurements for a new individual of unknown nationalitﬁr yand
asked to allocate him to bhe populat'ion'or the other, we would multiply his weight.
by one coefficient, his height by t.he other and add the resuits., If the resulting |
"discriminant function score' is above a certain "criticél” value, the individual

is clagsified as American. If it is below that value he is classified as Irish.

In j:his. example we have assumed that l;he individual to be classified.
is equally likely to come from eithc;r populafion; " This may not be realistic in
pracéice; Say we. .know that 20 per c'ent of the populatibn from which we were
sarhpling were Irish and 80 per cent were Américan. It would then be reasonable

to make it more "difficult' for a new individual to be classified as Irish. That is,

"the critical valué should be adjusted downward. This is an example of the incor-

por'ativ.onv of "a priori probabilities' in the discriminant. In survey work, we
frequently do not have any control over the proportions of our sample which come
from each population (i.e. the proporti.on of women who work; people whé smoke;
people with high need achicvement ete.) anci the sample proportions in the two

groups may be used as estimates of the a priori probabilities.
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The Linear Probability Functions (LPI)(sce [G] )y

Thié is a particular type of disecriminant function which is
calculated by regressing a dummy variable (= 1 if the item is in population

1 and zero if it is in population 2) on a set of independent variables. It can

beshownthaflt 1saconstantmult1p1e of Athévs'ta'ndard diééi‘i‘ﬁﬁgéntfuﬁdtidh, '

and it may be modified to take account of diffcrent costs of misallocation and
different a priori probabilities (see the Appendix for a mathematical derivation

of these results).

Siqce it is essentially a regression analysis all the usual
statistics and tests of significance may be applied. These include t-tests,
analysis of variance and R2. A special feature of the present program is the
inclusidn‘ of F-tests for sets of variables (see Section v, item 9 beléw). These
are 'pérticulax;ly useful with dummy variable(.c ategorical)regressors, becaué_e
in this case one isA intereste.d both in the overall explanatory power of,. say,

the age Vari'able, as well as the explanatory power of individual age categories.

There are, however, three difficulties peculiar to LPF's.

S
v

(1) Heterovariance: Johnston [_2, p. 227] shows that the variance of the random’
disturbance is not constant, in contradiction of the usual regression assumptions.
- Goldberger C7] suggests a two step procedure using generalized least squares for

dealing with this problem.

(2) }Ar > 1 or § £0: i.e. estimated values of the dependent above 1 or below zero, |
This is possible, but the actual y value (=the probability of ‘being in population 1)
must be between zero and one. Goldberger [ 7] suggests the use of probit analysis

to solve this problem .

: (3) Evaluation of Goodness of Fit: The conventional measure of goodness of fit in
“regression is tile adjuste’d coefficient of determination, ﬁz However, LPI''g

_ e -2 :
usually seem to give low values of R; low, that is, by comparison with conventional
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regression analysis. This is not surpris'ing when one considers that ﬁz depends
essentially on the unexplained sum of squares, i.é; the sum of th‘e squares of
the errors one would make when using the LPF to predict the values of y for
the individuals in the sémple. Thus, even a prediction of y = 0.9 for a certain

individual who is in population 1 still makes a contribution of (1 - 0.9)2 =.01to

' the unexplained sum of squares. This hardly seems appropriate in the present
cas;e when wem that the true value must be either zero or one i.e. we are
considering an "either-or'" situation where an ilter.n either is or is not a member
of population 1. The observed vaiueé of ﬁz must thus be interpreted with some

' caution.

An alternative method .of assessing goodness of fit is to use the
estimated discriminant function to all.ocate the members of the two sampieé and to
examine the proportion of correct assignments achjeved [8, p. 132]. The*‘program
provides this information siﬁce it gives the total number of correct allocationg,
the total number of incorrect allocations and the number of correct allocations in the -
"'unit group” (i. e; the categoéry of the dependent which is scored one)., Tﬁese figures

- allow the following type of tabulation to be drawn up:

ACTVTAL
Unit | Zero | Total
Groun | Group
A TUnit 179 - 135 - 314
: Group
I
G
N Zero
IE) Group { 332 1805 2137
Total 511 1940 2451

These illustrative figures are taken from [3, Table 5]. Here the unit group
represented menﬂbership of the labour force while the zero group denoted non-
membership. This table allows one to compute the overall percentage of correct

assignments ( = (1984/2451) X 100 = 81% in the above example) and also to compute

r




-7 -

the percentage of correct assignments in each group.. (= (179/511) x 100 = 35%
in the unit group and (1805/1940) x 100 = 93 % in the zero gr(.)up)'-. In this way,
one can get a clear idea of the effectiveness of the estimated discriminant function

in allocating to one group or the other.

.. An even more rigorous test of the quality of an estimated
LPF is provided by estimating the function on one sample and testing it on a
~ different one. This ensures that the coefficients are stable over different samples,
and so are unlikely to b'e the resqlt of purely random fluctuations in the original
samble. It is advisable, if samplé size permits, to divide one’s sample into two
- randomly chosen half samples, 'aﬁd to estimate the LPF on oné half sample and

test its predictive power on the other half (see[3, Table 6] )

v

III. How the Program Works

(1) As a Regression Program

Let X be an n_>; p data matrix whose first column consists
entirely of units and p be th:; total number of (djfferent) variables which will be
requiréd in all selections. 'The program first forms the matrix X'X . Say that k
independent variables (iﬁcluding the intercept) ai"e to be incl_uded in the first seiec—
tion. A sub-matrix of X'X which we shall call XPX is then formed containiug the
(k +1 ) rows and (k + 1) columns of X'X (i.e. k independents + the dependent) which -
are required for the first selection. Thé order of' the rows and columns of XPX
cor'respdnds to the order in which it is desired to entef the variables into the
regression. The row containing the cross—-products of the dependent and indepen~

dents is put on the bottom and the column containing these elements is put on the

~extreme right. This gives the form of XPX shown in Figure 1.

By "pivoting"* successively on the diagonal elements of
}_(PX, the rggression of y on all thé variables which havé been pivoted on up to that
poivnt is obtained. TFor instance, if we pivot successively on the first m diagonal |
elements, the first m elements of the last column of XPX will give bo and bl to

b

-1’ and the lower right-hand element of XPX will give the residual sum of

* The pivoting method used is a variant of the Gauss~-Dooliltle method of matrix
inversion as deseribed in{9, p. 192-1967.




-8 -

s.quares. (See Figure 2) If we pivot on all diagonal eleii_lents down to the k-th

we will obtain the regresssion of y on all the variables included (See Figure 3).

M A~ 5/ ;
. . ~| O la
! [

. I e,

A ’ Pwvol on ™o % Puet  om RN :

, : £irst an , T 3 :

o\\afgono\\s . . da qwfbb ‘(\”l y

1 {l__»'X " | R T I~ N A W
o | o ek P
. o ‘ . ' (Restdust  Sum of Residiel Seom ..58
F e;.i: The ¥PYX waltix - nadls i S ‘.“’ff(_n -
RO o _Ef‘)g—' Tha KPX ‘W"W’"“ ‘ Fiad: Th N

Llote Auveling . g .
- I el dwwdimg v i ey en
- T R L et A A ety s M duagenels

hl

" This procedure is utilized so that a whole set of equations
_can be obtained from what is, essentially, a single inversion of the X'X matrix .

.,X

’ XlO

Thus, for instance, the program will provide the regression of y on X

7 17

then th ion of X, X X X . X. ressi .
n the regression of y on o XioFir ¥y Xy then the regression of y on

X7, X8’ Xg’ Xl()’ Xll’ Xl’ X2. ces 'XG' The user has merely to specify the order
in which he wants the equation printed out.” The order in which the variables appear.
on the data cards is immaterial, and any number of new variables from 1 to .
k ~ km) (where k = the total number of variables and km = the number alrcady

included) rnéy be added at each stage. Any of the input variables may be 'specified

as the dependent.

(ii) As a Diseriminant Program.

The procedure used is identical with that deseribed above, except
that the dependent variable must be a dummy variable i.e. a variable which has the

value zcro if an individual is in onc group and one if he is in the other. The program
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caiéulates the Discriminant function coefficients .and, if desired, it will then

go on to calculate thé mean of the discrin_ﬁﬁant function in each group, and the
critical value (for details see Appendix be'low) . By means of the critical value, it
will then all_bcate each member of the séfnf)le to one or other group. Finally,

it will print out the number of correct allocations a_nd the number of incorrect

LATEe £ LM et T R WU ek el o el SRS i ) i PR AT SR e F eI A SRR T D F T N TARITRL el aba B Bt e eqrh maTaatd et w7 E T L tETR T aadhamii am It gl ittt Lt e

allocations as an indication of the quality of the discriminant function.

The pfogram has two main advantages over the standard IBM
[10] énd BIOMED [11] discriminaqt function programs: (i) it can accommodate
- up to 9999 observations and (ii) it éllows "a p'riori probabil'ities" to be incorpor-
: ated in the discriminant functicn. The pfogram can deal with up to 50 variables,
and cén be easily modified to include even more. Howevei', users should bear

in mind that .a considerable amouht’ofoomputer time is required to handle very

/"‘/‘\/.
o b}

- large numbers of coefficients. .

IV; Print-Out

This sectibn deséribes tile prdgram's print-cut.

1. (Optional) "Tranéformation'.': This indicates that the user has spécified that
the variables listed are to be g_ggi_e_g The- resultiﬁg éum is to be given the nu;r_ﬁoer
of the first variable in the sum.

Format: "TRANSFORMATIéN . \

VAR NN REPRESENTS NN + MM + II etc.'
2. (Optional) "Inﬁeraction" This indicates that t'h'e user hés specifiéd that the

variables listed are to be multiplied and will be stored as indicéted. )

Format: "INTERACTION OF VARS NN AND MM STORED AS VAR KX'.

3; "Expanded XPX matrix bordered by Dependent'. This is the XPX matrix
d_escribed in IIT above. The totals of éach variable will be given by the first

row and the sums of squares by the diagonal elements.
4. "Correlation Matrix". The dependent variable will always appear in the last row.

5. "Explained XPX Matrix after Inversion'. The right-most column of this matrix
gives the regression coefficients, the bottom row gives minus the regression




.10.
11,
12,
13.

14.

15..

16.

17,

. Analysis of Variance for the regression.

-10 =

coefficients and the element in the lower righthand corner gives the residual -

| : ' -1
sum of squares. The remainder of the matrix is the (X'X) ., matrix for this

t

selection.

The regression coefficients, their variances, F-values and t-values.

Coefficient of Determination R™, unadjusted and adjusted.

Addition to explained sum of squares achieved by the most recently introduced
set of variables. F-value for this Addition. |

Determinant of Correlation matrix.
Farrar-Glauber.test for Multicollinearity (see Ll&] )

Haitovsky test for Multicollinearity (see [15'] ). | AN
S _ » . B

—
s

(For Discriminaht Analysées only) Means of Vz&iables in each group.
(For Discriminant Analyses only) A Priori Probabilities (see Appendix)

(For Discriminant Analysés only) Value of LPF "~ (Linear Probability
Function) in each group.

(Fof Discriminant Analyses only) Critical Value.

Optional: | Residual analysis: Actual .value of dependerit N
| Predicted value of dependent
| Residuai |
For D.iscriminant Analyses) Allocation on bas’ié of Discriminant Function
'(= "Disc. Group") :
(For Diécrifninant Analyses) Whether allocation w-as right ®R) or wrong (W). '
o l?urbin Watson Statistic

No. of Sign Changes

(For Discriminant Analyses) 7Total Number of Correct Allocations
Total Number of Incorrect "
Number of Corrcet Allocations

of individuals belong to the unit group.
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V. How to Set Up Data for the Program

The appropriate JCL cards are available from

B. Whelan or J. O'Meara, ESRI. Only the cards which vary from

“ T Broblém 6 problem are described heve. A field" may b defined a8 the

set of columns on a card allocated to a certain variable.

1.1 Control Card (Format (A4, 14, 5I2))

Col. 1-4: 4 chafac‘t.e'rs to name the problem.
5-8: Number of observations.
- 9-10; Tofal Number of (different) variables being used

in all selections.

-

11-12: . Number of Variables being read in on cards.
13-14: Number of selections. )
15-16: (Optional) Number of addition transformations

required. If none leave blank.

177-1_& (Obtiona])' Number of interactions (multiplications)

desired.If none leave blank.

2.1 éard Giving List of Field Numbers ‘of all Variables (Format (4012)') '
| The number of these shoﬁld be the same as that punched in Cois.x
9-10 of the control card. If ‘the_re aré k interactioﬁs (k punched in
. cols. 15-16 of card 1) the last k variables listed should be the field

- numbers which it is desired to give to these interactions..- .

3.1 Format Card (Format (20A4))

Specifies FORMAT in which data is read in.




4. (Optional) Addition Transformations _

4.1

4.2

Card giving number of variables in each set to be added (FORMAT
(4012))

There should be as many nunibéfs Vl‘islte.d onthls card as there o

are addition transformations required (cols. 13-14 of Card 1).

Cards listiﬁg the Field numbers of the variables which comprise

each set (FORMAT (4012))
There sh_ould be one card for each transformation. Note that

the sum is stored under the field numbér of the first variable in

' ~ the transformation, so that the first variable in a transformation

5.1

6.1

" Cols.

cannot be included separately in an equation which also contains

the transformation, -

(Optional) Interaction Tran"sformations

>

Card. listing the pairs of variables whose interactions are required

(FORMAT (4012))

The number of fields pd'nohed on _the card should be twice the

number which appears in cols 15—16 of the control card.

Selection Cards Each selection requires 3 cards

Parameter Card for Selection (FORMAT (512, F4.0)).

1-2  Field Number of the dependent for this selection
3-4 Number of independent variables in this selection

5-6 Number of separate equations required in this selection

' 7-8 Residuals Option:
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Blank or zero: Residuals not required
-1: Residuals required for final equation only
k: Residuals required for first k equations.

MR e IR R P, | et BT St § LR ST aer " [RRIPCHI e 2 e

Set k equal to Ll*e number in cols. 5-G.

Cols. 9-10 Discriminant Option

01 if this is discriminant analysis, zero if regression.

11-14 A priori probability of unit group. Punch the decimal

pomt

6.2:. Indcpendent Variable List Card (FORMAT (40I2))

~

ConLammg the field numbers of the 1ndep ndent varmbleu for

this selection, in the crder in which it is desired to enter them.

6.3: Ccrd listing Lhc num bcr of variables to be'inciuded in each egquation

If r031duals are rcqtured for 411 equatlonc‘

of this selection. (FORMAT (4012))s

This gwos the number of independent variables Lo be mcluded in
each equation. There should be one number for each equation
which it is desired to estimate.  Each number punched should

.be larger than the previcus number, and the'last number sheould

be equal to that in cols. 3-4 of card 6.1

Cards 6.1, 6.2 and 6.3 should be repeated for cach selection.
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A Note on the Relationship between Discriminant Functions and

SR AR T T ML e 1 S 1 e Sy e d R B e B 5 55 A TR v bR SR mezzme -

"Linear Probability Functions

This note presents the following: (i) a derivation

of the standard discriminant function (ii) a derivation of the linear

probab111ty functmn (i.e. a d1scr1m1nant functmn derwed from a

~ dummy variable regression) (iii) a demonstration that these functions

are proportional (iv) a method of including a priori probabilities in

the L. P F formulétion. The following discussion draws heavily on

Anderson []2] and Kendall and Stﬁart [5} .

(i) The Standard (Two-population) Discriminant Function

-

Say that there are two populatidns containing
individuals each of whith is measured on p variables. An example
would be two types of fldwver each ﬂowei‘ being measured on four
variables (p = 4), sepal leng..h sepal width, petal length and petal width.
We w1sh to deuve a set of weights (""coefficients') for these var1ables
such that for any new individual a score can be calculated and the new indivi~
dual allocated to one population on the other according as this score is
above or below a certain critiéal level. To continue the flower example,
we would measure the sepal length, sepai width, peta_l length and petal
Width of a new flower of unknown origin, then multiply each of these
measurements by the appropriate discrifninant function coefficient, sum
the results and allocate the new flower to one populaéion or the other

depending on the magnitude of the resulting number.

Let the population be repr esented by two (partially

overlqppnw) clusters of points in a p-dimensional space, (a simple case,

‘p = 2, is shown in Figure»ll). Each point represents an individual.

Our objective is to set up a boundary in the space such that as many as

possible of population 1 lie on one side and as many as possible of population

e EL T PR Ltk 8 3Tt b
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p o™

%ounda(&a = o\\;cR\m;nM‘ -Funutm:'\

X,

~ Figure 4: - A simple discriminant function (p = 2)

A

2 on the other. In the case shown in Figure 4 the
boundary is a line. In general, it is a (hyper-) plane. The new indivi-

dual to be classified is repfesented by a p~dimensional vector, X.

' Twé further complications may now be introduced:
(1) We may know that members of population 1 have a different chaﬁce
of o¢currence from those of population 2.  Such "a priori probabilities"
are designated 77’1 and 77"2 . In our flower example, if it is known that

type 1 is four times more common than type 2, then 77’1 = ,8 and 77’2 =.2.

(ii) The c‘onsequences (cost) of misallocation may be different. Ina

. medical application, if is much less dangerous to diagndse a healthy person
as unhéalthy (because the error is likely to be discovered by subsequent
tests) than an unhealthy person as healthy. The cost of misallocating a

member of population 2 to population 1 is denoted by C(1/2) and of misallocating
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a member of population 1 to population 2 by C(2/1).

Letting £, and f2 be the frequency functions of

1
populations 1 and 2 respectively, the expected cost of misallocation is

I-R

where R is the region in the p‘—space in which individuals are allocated

to population 1

M = é(ali) Mmoot L (C (1[2) 7, ﬁ - C@/'W.f,)dx

In order to determine the boundary,‘ we must minimize M. This will
. be achieved by taking into R all those points, and only those points where
f -
C(1/2) 1~/2 9 C 2/1) 4 f1

. ce/Hym, f

o e 11 1 will determine the boundary.
c@/2ym, £ :

Let us assume that f 1' and fz are mlultivariate normal distributions with

common varimce-—éovariance matrix Z .
e - > I {m[~% k-p?) 5! (x-}«mﬂ

where/({( ) is the vector of means from populationi and 2 is the matrix

" of variances and covariance of each population.

0(2/1)7,/1
.' | ot et s T e

e A 5 1 :?K[MC— (x /t)) Z-. ("/"M)J S 1
() Tdy R D A (S ]

_ Let = K
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Since log is a monotonically increasing function, this inequality

can be written in terms of logs :

must be greater than or equal to log (1/K)

Expanding, o : ' |

¢)zx+/““ Z"/“—'Zx +"Z/“ *
- . ) " (l\ :

AW sy /M‘ ] > ,[),og(_l

ThlS glves by rearrangement of terms

1 1)\ : V .
e - p) -4 (R0 /*">Z U* K) Y ey U0

hid .thi.s inequalil?y hélds then the new item is allooéteo to population 1 and

if _it docs n.ot.:no'lrii‘it is allocated to population 2. The "discriminant fnnction"
coeffic_iénts are given by.‘thé vector }:‘:1 (/,((1) —//{(2))-. The first tefm on

the left is tne oiscriniinant function, evaluated -for the individual to be classified.
‘The socond tor_zn is the discriminant function evaluated at a -point mid-way

between the population means.

i C(1/2) C(2/1) (i.e. the costs of mlsallocatlon
are equal) and TT’ = iY ('i.e.' the a priori probabilities are equal, or

unknown) then K = 1 and log (1/ K) =0. Hence, in this case, the second
on the left

term/is the critical value of the discriminant function i.e. the value above
which items are allocated to population 1. Thus, the effect of introducing
(differential) costs of m_iéallocation and (differential) a priori .p.robabil"lties

- is to displace the critical value by a constant, equal to log [ C(1/2) f7"2
- o , . C@2/1) 77’1 /

N

»

The abov_é is the parental form of the discriminant.

(i)

In practice, we must replace each term by its sample counterpart i.e./,l

=(1)

by x'’ and % by the matrix of pooled variances and covariances of the
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. !
variables. In a survey where the sample of N was chosen without

reference to which population an item belonged, then ﬁ’i may be
estimated by -ﬁl—- where Ni is the number of the items found to

~==he in the i~th:population:- (Note: that Nt N .= N-the -tetét-ls sample)s - «owo oo

1
‘This gives

< 4! ( ©_ ’(‘L)> T 4 ncm> 5 (C) Lcﬂ) > %(‘/K)

" where

/
5= (,w\h'ﬁ g

. ' . N : Y
L {E .(x(" 20 Xx e x(‘))l i (xf’ -5 -2
L=l '
=t | | __ o

The.Linear Probability Function : . c ‘

The following is an alternative derivation of the

discriminant function (see Fisher fi2] ).

1 if the item is in population 1

Let y be a dummy variable . 6 if the item is in population 2

Then find the regression of y on the x( ) var1ates by choosing b to
minimize | - < | |
. : 2
2 N ) D 5
I
>y {47 & (xS A%
o KE o .

where the first element of x is equal to 1 foris= 1, 2 and

‘% = (N, 0y N, (E(ZB_) / .(Nl +N,) i.e. the overall mean of x

' The"normal equations are

2 NC

: . o 2 }\Ja ” \1 :
57 @'t = 22y SRRCTUREOl NN ()

i

4zt
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Since y 0 for alli =2, the right haﬁd side of (A) reduces to
Ny )

> (%) -%) = ZD? - N

et
= N, "'X_C() _ N' (Nl . Q + N'L )L()> /(N +NL)

Y R R e P

) NI'L :;C(:) : 4 N, N?, i(') - N(L ;C N N X = (1)
- | N, + N2
M {50 - 2]
 tN2 . .
the

The matrix multi.plying b o.n/left—hand side of (A) simpiifiés as follows

: Ne y % N
¥ a0 EN - -

Lzt o=

. (1) o f
c Ty sy 4 N GO DER N (OO
" ) A=t d=t i
o S GV S0 5 @)
N 2 ~@y NN { T x(‘ -X ) } ’
CrE o ey 19) 1 e (@504 <
X5t L=t . . .

(A) can therefore be re-written as

SO vy RN NoNe [ 'c»)‘ 1
C & = (9(()' 0\) [Nﬂ\h. - Nﬁ;l ()L _ —.’)LA /QS

A. whe:!'e : ' ;) . ' ‘

'y A ¢ | = « —@)\ .
e FE (0o ) ey S
N g

But (;'E(l) % @) (1) @)

)

) b is a scalar, - Hence, b is proportional to S~ (

* and the constant of prop_ortionalit_y is

::f';if @ %Oy Y] /(e -2
NNy {(Q Z o —m‘ﬂ/(NwL»z)

N-H\h

4,
!

W

2(1)

where y' '’ is the predicted value of y at the mean of population i.

-
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Since the functions are proportionai, it is clear that their discrimin-
atory power will be the same. Thus, as Ladd [G] points out

"Discriminant analysis and linear probability analysis start from

quite different places but end up at nearly the same place'.

.. The Inclusion of Costs of Misallocation and A Priori Probabilities

in the Linear Probability Function (L PF)

Morrison | 8] shows tﬁat the inclusion of a priori
probabilities >often substantiaily improvés the discriminatory power of
estimated discriminant func.tions. The author of the present note has
been unable tb find a case wheré such a priori Ap_robabilities Were in—A
cluded in an LPF an’aiysis. :I'he LPF formulation has .several advan-
tages over the standard discriminant, notably its similarity to regfessi- »
ion and the possibility of interpreting the cocfficients as conditional
proba’pilitiés . Inorder to include'a pridri prob‘abilities in the estimated
LPF, a modified versioniofA Fhe critical value was derived and this is-
Vpresentéd bellow. To achieve greater _geneirality, both costs of misalloca—

tion and a priori probabilities are assumed unequal.

Let bl be the vector of coefficients derived from a standard discriminant

function, and b2 be the veétor of coefficients derived from an LPF

analysis. We have shown above that
. ~

2 b; [:.kx {‘ﬂ 9 +-%(%)§‘i I/CN\H\h*Z)

= b1P

(=2
I

"We have also shown that the optimum classificatory rule when using bl’

allowing for 71’1%‘”’2 and C(1/2) ¥ C@2/1) is:

A A R A A R

allocate to population 1 and otherwise allocate to population 2.

C N
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*

If we express this rule ih terms of b2 we obtain

|
e > b (5O A [P e B b A (Y

Cic‘)/Q,; '+ e /pn> 4 :*?,%(\ILQ

or x 'em

> 5 (y9 \3“> * G"()Q’m[ IM(N_.‘,_) >ﬂ

.. where § is the value of the L P F for the individual to be allocated.

The latter is the rule which the program uses to allocate individuals.
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