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Abs tract

This paper describes and illustrates with examples the use of
the Ho and Lee model for valuing znterest rate contingent
claims. Some difficulties with the model are pointed out and
its application in the Irish context is discussed.
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Valuing Interest Rate Contingent Claims

A Review of the Ho and Lee Model in the Irish Context

Approaches

Introduction

Interest Rate Contingent Claims are any financial securities
whose payoff depends upon future interest rates. For
example:

Options on Government Gilts: an option on a government gilt

is a contract which gives the purchaser either the right to

buy (a call option) or to sell (a put option) a quantity of a

specified government gilt at a fixed price on or before a

particular date.     The payoff to this option depends upon the

price of the gilt when (if at all) the option is exercised.

Futures on Interest Rates= The IFOX 3 month DIBOR and Long

Gilt contracts are examples of interest rate contingent

claims. The settlement price of both these contracts depends

upon prevailing interest rates.

Swaps: The value of an interest rate swap (floating/fixed) is

given by the discounted sum of the swap payments, which in

turn will be a function of prevailing interest rates and the

past history of interest rates at the time of each swap
payment [I].

SecurJtJzed Assets: The value of a securitized asset is the
discounted sum of its payments.     However its value is

contingent on interest rates in at least two ways.     If the

assets which are securitized are fixed int@rest loans then

there is the possibility of early loan redemption if future

interest rates fall.     In addition there Js the possibility

that, if the securitized assets are floating rate loans, a

rise in interest rates in the future will lead to increasing

levels of default.

Other examples of interest rate contingent claims    are
interest rate caps and collars, swaptions, options on
interest rate futures (for example, an option on, say, the

IFOX 3 month DIBOR contract), and so on.

Valuing Interest Rate Contingent Claims

Because the value of an IRCC today depends upon interest
rates in the future we require, in order to value an IRCC,

some beliefs about future interest rates.     The models which

are used in this context assume that the future is uncertain

and thus in valuing IRCC we do not try to predict exactly

what interest rates will hold in the future: rather, we set

up a probability distribution of interest rates (or the path

of interest rates).     In other words, we assign a probability
of occurence to each of a set of possible specific values of
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the interest rate(s) in question.     Technically

that we model the change in interest rates as a

process.

this means

stochastic

In genera] in modelling interest rates, it is usually assumed

that they follow what is called a diffusion process.     The

implication here is that we cannot predict interest rates.

If the market had any knowledge of the likely future

direction of interest rates this would already be absorbed in

the rates themselves.     Rates change because new informatlon

is received.     But this new information is, by definition,

unpredictable, and thus its arrival imparts a random shock to
the time path of interest rates. Hence interest rates evolve

as a stochastlc process through time.     Typlcally this is

modelled by what is known, variously, as Brownian motion or a

Wiener process. Interest rates may display some sort of long
run drift: most often the assumption here is that the process

is mean reverting.     If interest rates get very high, they

will tend to drift back down, and vlce versa.

The Term Structure of Interest Rates

Thus far we have referred to interest rates in a general

sense.     In fact models used for valuing IRCC focus on a

specific set of interest rates called the term structure.

The yield curve for gilts relates the yield on a gilt to its

maturity.      The    term structure is    something    slightly

different: it is the yield curve for a set of pure discount

bonds with varying maturities.     That is to say, it is the

yields to maturity on gilts which only repay their face value

and do not pay any coupon during their life. In other words,

the term structure is a set of interest rates or discount

factors stretching all the way out to the maturity of the

longest gilt in the market. This term structure is implicit

in the set of prices in the gilts market at any particular

time and can be derived from them.     Figure I, for example,
shows the term structure derived (using a model we are in the

process of developing at The Economic and Social Research

Institute) from the prices of gilts at the close of business

on Friday 13 October last and on Monday ISth October.

The term structure can be written as a set of rates, as shown
here, or as a set of prices.     The two are related vla the
simple expression:

r(T) =- -in P(T)/T

i.e. today’s continuously compounded spot rate for T years is
equal to minus the log of the price of a T year pure discount

bond divided by its maturity.     Hence the term structure
expressed in terms of prices of a £I bond has a very simple

form, bein~ a (weak) monotonlcally declining curve starting

at the value 1 for zero maturity bonds.     The market price of

gilts can be reassembled from the term structure of rates or

prices since a gilt can be Viewed as a set Of pure discount

bonds havlng different face values and maturities (i.e. each
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coupon payment is a separate discount bond and so is the

principal repayment).     A third way of depicting the term
structure is in terms of forward rates or prices. The latter

are defined as

F(t,T) = P(T)/P(t)

For example, the current forward price of a 3 month pure

discount bond in three months time is the current price of a

8 month pure discount bond divided by the current price of a

3 month pure discount bond.     The forward rate can be derived

analogously.

Modelling the Evolution of the Term Structure

In analysing interest rate changes, models focus on how the

term structure so defined evolves over time, since this term
structure is the most primitive representation of interest

rates that we have.     Broadly speaking there have been two

approaches to modelling the term structure.     One takes

today’s term structure to be endogenous: i.e. it is something

which the model should explain. The other takes today’s term

structure to be exogenous, as the starting point of the

analysis. It is the latter approach which we ddeal with

here.     But briefly, the other approach runs along the

following sort of lines.    Movements of all the rates in the

term structure are held to be functions of changes in at most

two of the rates.     Typically these would be a. very short and

very long rate. In the simplest case, one interest rate (say
the very shortest interest rate,     sometimes called the

instantaneous rate) is held to follow a diffusion process

with drift, and all other (i.e. longer) rates are then viewed

as a function of this very short rate p].us some form of
liquidity or risk premium that at%aches to committing money

for" longer periods. [2]

The    problems    with this approach are    various.      Most

importantly, perhaps, it may by no means be easy to get the

model to generate a current term structure which is the same

as the currently observed term structure.     If it does not do

this then, in theory at least, arbitrage will be possible

between the model based rates or prices and those existing in
the market.     On the other hand, to get the model to agree

with present reality requires the correct choice of both the

parameters of the diffusion process characterising the short

rate and the various liquidity premia.

The Ho and Lee Model of the Term Structure

The alternative approach is to take the current    term

structure as given and to develop a stochastic model which

explains the evolution of the whole structure into the
future. The first model to seek to do this was developed by

Thomas Ho and Sang-Bin Lee and was published in The Journal

of Finance in 1986.     This paper has proved enormously

influential in redirecting the whole approach to    term
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structure modelling and has been widely used among market

practitioners in the United States. At present no commercial

package Incorporating what has come to be known as the Ho and
Lee model is available, but programmln~ the model is not of

itself difficult.     The remainder of this paper outlines the

Ho and Lee mode], illustrates it with some simple examples,

and discusses some of its strengths and shortcomings and how

these mlght be overcome.

No Arbitrage Pricing Condition

A common, feature of models of the term structure is that they

are ali based on what is called the ’no arbitrage condition"

This is an extreme]y powerful condition since it allows us to
develop term structure and pricing models which do not have

to take account of individual differences in attitudes

towards the trade off between risk and return.    What thls

condition says is the following.     If we can form a portfolio
of any two bonds which have different maturities such that

this portfolio always yields a certain return over one perlod

of time no matter what happens, then the return which thls

portfolio yields must be equal to the return on a bond whose

maturity is one period. In other words, if we can construct

a portfolio which yields a riskless return over a given

period of time it must be worth exactly the same as a bond
which matures at the end of that period of time. This
assumption imposes limits on the admissable term structure

movements in term structure models.

Ho and Lee’s model begins by assuming that the whole term

structure fluctuates over time according to a binomial

process.     This means that, if we think of time as being made

up of discrete periods and that trading takes place only at
the end of each period, then during each period the whole

term structure can either move up or it can move down. Ho
and Lee work with prices, so if the term structure moves up
in their mode] rates are falling, and conversely if the
structure moves down.     Their mode] of the term structure’s

movement, then, has a very simple form. Given today’s term

structure, the possible term structures which will prevail at

the end of next period are two    prices wil] either have gone
up or down.    At the end of two periods there are four

possibilities - prices can have gone up then down, up then up

again, down and up or down and down again. This is shown in

Figure 2.

The Parameters of the Ho and Lee Model

At first sight this seems a highly implausible model, but on
closer inspection this proves not to be the so.     This is

because the binomial evolution is what’s termed a discrete

time approximation to the Brownian motion process that was

mentioned earlier.     If the time intervals between movements

(the periods of the model) are suitably short, then a
binomial process of the Ho and Lee type will be a very good

approximation to a term structure which is evolving randomly
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through time driven by a single Brownian motion.

If we agree that the idea of a binomial process for the term
structure is reasonable, we can then progress to the stage of
determining the parameters of the process.     This is another
way of saying: first, by how much does the term structure
move up or down each time it jumps; and, second, what is the
probability that, in a ~iven period, it will move up rather
than down?    Ho and Lee derive the answers to these questions
directly by virtue of the constraints they impose on the
possible term structure movements. That is, given certain
conditions or assumptions, the magnitudes and probabilities
of the term structure’s jumps follow automatically.     One
condition that Ho and Lee (in common with everyone else)
impose is the no arbitrage condition, which we discussed
earlier.     A second condition is path independence.     This
means that, if the term structure over two periods moves up
in the first period and down in the second, the result will
be the same as if it had moved down in the first period and
up in the second. This means that in the resulting binomial
tree, as it is c~lled, there are only three, rather four,
possible outcomes after two periods, as shown in Figure 3.
The tree shown in Figure 3 summarises the whole idea of the
Ho and Lee model: today - at node zero - we can envisage the
term structure taking any one of a number of possible paths
in the future.     Valuing interest rate contingent claims
requires that we assign a probability of occurence to each
possible    path (each possible outcome) and    value    our
contingent claim as some loosely defined ’average’ of these
possible outcomes.

The magnitudes of the up or down jumps in prices are given as
follows.     Suppose that there was no uncertainty attached to
the future path of interest rates: in that case today’s
forward rates would be tomorrow’s spot rates. Thus Ho and
Lee model tomorrow’s spot prices as equal to today’s forward
prices multiplied by a ’disturbance term’ to model the
uncertainty attached to future rates and prices. That is

P(t+I,T) = P(t,T) h(T-t-l)
P(t,t+l)

or

P(t+I,T) = P(t,T)      h*(T-t-l)
P(t,t+l)

These    two    correspond to upward    or    downward    jumps,
respectively.     These expressions say that the price tomorrow
of a discount bond which matures at T is equal to today’s one
period forward price for a bond which matures at T multiplied
by a disturbance factor which pushes the price up (h) or by a
disturbance factor which pushes the price down (h*).     The
specific value taken by h and hw depends on the maturity of
the bond.    Ho and Lee provide only a cursory discussion of
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how one might estimate h and h~, but it is easy to
demonstrate that they are functions of the    historical
varlance of forward prices (see appendix for details).
Typically, for a bond of one period maturity in the Ho and
Lee model, h will be very marginally greater than one, and h~

will be marginally less than one.     For bonds of greater

maturity h and h~ will move correspondingly further away from
unity.

The    other paramater which must be estimated is    the
probability of an upward movement, p. Here a subtle
distinction has to be made. If we assume that the binomial
model is a good depiction of the real world, then there w111
exlst real world values of p which will directly reflect the

rate of return offered by a discount bond.     But we cannot

know these in advance. What Ho and Lee demonstrate, however,

is the applicability of a standard argument in the pricing of

contingent claims, which goes as follows. Although the true
probability of an up and down movement cannot be known, in

order to value contingent claims in an arbitrage free

environment we must set p equal to the so-called ’risk

neutral’ probability. One way of expressing thls constraint

is that p must be such as to satisfy the equation:

p h(T-t) ÷ (l-p)h*(T-t) = 1

for all values of t and T (i.e. at all times and for

disturbance terms applicable to bonds of all maturities).

A Very Simple Term Structure Example

To make this discussion a little more concrete, assume that,

from our term structure model, we have ~ Set of interest
rates for 1 year, 2 years, out to 5 years, and that all
trading takes place once a year. This means that we are
calling one period of the Ho and Lee model one year. OF
course, fn reality we should set one period of the model to
be a very much shorter length of time.

Let’s suppose that the rates for our small term structure are

as shown in Table i. The rates are low by today’s standards,

but that is of no consequence.     From these we can estimate

the prices (per pound nominal) of pure discount bonds

maturing at the end of each year. Note that the bond with
zero time to maturity is worth its face value, £i.

In Figure 4 we show the evolution of the term structure of

prices over two years.    We have set the slze of the up and

down jumps according to an assumed variance in the forward

rates of around .015 per cent (see appendix for details).

The whole term structure moves up or down once per year and

today’s two year bond becomes tomorrow’s one year maturity

bond, and so the number of prices in the model declines by

one each year.     In reality, of course, we would have prices

going out to the maturity date of the longest gilt in the
market.     Figure 4, then, shows the possible term structures
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As an example of how to read Figure 4 consider today’s price
of a pure discount bond with four years to maturity.     Its
price is 82 pence per pound face value.     In a year’s time if
interest rates fall (and thus prices rise) this same bond
(which will now have three years to maturity) will be worth
88.91 pence.     If prices fall (rates rise) it will be worth
82.41.     In two years time, when it is a two period bond, it
will be worth one of 85.66, 90.11 or 94.78 pence.    Another
way of using this model is to ask what happens to a
particular interest rate over this period.     From Figure 4 we
can calculate the possible future values of, say, the one
year interest rate, and these are shown in Figure 5.

Note that we have kept Figure 5 the same way up as Figure 4,
so that increases in the rate arise from downward moves in
the term structure.

Using the Model to Value Contingent Claims: 4 examples.

The risk neutral probability for use with
model is p=.6.

this particular

(a) A two year European call option on a five year pure
dfscount bond w/th an exercise pr/ce of 85 pence per pound
nominal.

From Figure 4 we can immediately read off the possible prices
of the five year bond at the end of two years (remember that
at the end of two years this will have become a three year
bond).     These prices are .9075, .8411, and .7796.     For each
of the three possible prices the value of the option will be

max (bond price-exercise price;O) (I)

This will be zero for two of the three possible bond prices.
We then take the single non-zero value, multiply it by its
risk neutral probability of being realised (in this case .36)
and discount its value by the shortest rate in the market In
our case this is the one year rate whose schedules are given
in Figure 5. The result is

.0575 x .36 x exp (-.0441-.0513) = .01882

Thus the price of the option is £1.88 per £I00 nominal.

(b) A two year European call option on a five .wear gilt
paying an annual coupon of 6 per cent wz’th an exercfse prfce
of par.

The only differences between this example and the previous
one are, first, that the set of possible values of the five
year gilt in two years’ time will be different because of the
annual coupon payments, and, second, the exercise price is
now set at i00. The set of possible values of the gilt (in
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pounds per £iO0 nominal) in this case are:     £107.731;

£100.266; £93.337. Applying equation (I) and discountin~ the
resulting two positive values by thei~ probability    of

occurence and by the short term interest pates ~ives a va~ue

for this option of £2.B5 pep £100 nominal.

(c) Futures price �op a contract on a notional three year

pure dYscount bond wYth Contract c]oslng date ]n two .wears

time.

In this case, whereas the optlons we valued were assumed to

be written on specific bonds (whose maturity shortened as
tlme passed) here we assume a notional bond whose maturity

does not change. Hence the terminal values which we use here
are the values of a three year discount bond - which are in

fact the same set of values we used in example one.     But

since this is a different type of contingent claim, we use a

different function (different from equation (I)) to value the

future. Without going into the details, the current fair
futures price should be .9046 according to the model. This
differs from the forward prlce which we calculate as .9111.

The difference arises, of course, because of the marking to

market of the futures contract.

Having valued the future it is, of course, very easy to value

an option on the future.

(d) Valuing a securl tized asset al]owinE for early repayment.

Securitized assets are generally bundles of debt to which t:he

rights to the interest streams are sold.     In general these

are debts, such as house mortgages, which, individually,

would not find a ready market. Equally, high risk debt, such

as junk bonds, can be secupitized by forming a portfolio of
such bonds. Investors then purchase rights to a shape in the

coupon payments which accrue to the portfolio. To illustrate

how securitized assets" values are contingent on interest
rates, and how the Ho and Lee model might be used to value

them, consider the followin~ exampleL Suppose that we have a
portfolio of i00 bonds which pay annual coupons as follows:

25 pay interest at 3 pep cent; 25 at 4 pep cent; and 50 at 5

per cent, each on a debt of £I000 principal.     Any borrower

has the option to .repay his loan at any time and issue new

debt with a coupon fixed equal to the current one year rate

of interest plus one quarter of one per cent [3]. Finally we

assume that the bonds have just gone ex-dividend and they

have two more years to live.     Given the term structure model

we have already developed we can estimate the remainlng value

of the debt portfollo.

Suppose that the possibility of prepayment of the debt were

not an issue: then the securitized portfolio would pay an
aggregate coupon of £4250 each year for the next two years.

Using today’s term structure (given in Table I). this is

currently worth £7863.     But clearly, prepayment is an issue:

it will be profitable for our bond issuers to repay their-
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debt under certain circumstances.     And if we turn again to
Figure 5 - which shows the time path of the one year rate,
which is the benchmark for the debt issuers" cost of
borrowing - we can see that in a year’s time, if rates fall,
those 50 individuals who have issued debt at 5 per cent will
repay their debt (and replace it with debt paying a coupon of
4.75 per cent). The value of our portfolio will, under these
circumstances be less, though how much less will depend on
the treatment of early prepayment in the securitization
agreement.     If we suppose that parties to the agreement
receive the present value of the early -prepayment (i.e.
interest on £i000 for one year at the prevailing one year
rate)     then the value of the portfolio,     under    these
circumstances, would fall to £7678. Thus under the Ho and
Lee    model     (in other words,     taking account    of    the
"probability’ of early prepayment) the value of the portfolio
of securitized assets today is £7728.      Note that the
difference between this value and the value if no prepayment
were possible is the sum of the values of (a) the option to
prepay which was retained by the issuers of the debt; plus
(b) the risk premium that the issuers must pay over the
market rate of interest should they exercise their option to
refinance.     The former is worth £I.36, the latter £1.32.
Multiplying these by 50 gives the difference between the
uncorrected and corrected estimates of the portfolio’s value.

Summary and Conclusions

The Ho and Lee model is nowadays quite widely used to value
contingent claims, and we have given four very simple
examples of how this might be done.     Clearly, however, the
potential applications of a model of this kind are very
numerous indeed. Not least is the possibility of integrating
this model with conventional valuation models (of, say,
equity options) which rest upon the assumption of unchanging
interest rates (at least in the short term).    We might also
extend this model to examine the question of default¯ risk.
Here we would need to model both the time path of interest
rates and the time path of the net wealth of the possible
defaulting party: hence we would need some estimate of the
covariance between these two in order to complete our model.

The Ho and Lee model, in the basic form in which it has been
presented here, has a number of technical problems associated
with it.     First, the model makes assumptions about the
variance - or variability - of interest rates that may not be
correct. These assumptions are that this variance is
constant across time for any particular rate, and that the
variance of different rates are related in a very simple
fashion (see appendix for details). Neither of these
assumptions are necessarily correct. In particular the
variability of interest rates may very well fluctuate quite
markedly over time.     Secondly, the model can yield estimates
of negative forward interest rates. Technically this follows
from the assumptions about the variance of rates. This is an
obviously undesirable feature of the model.     Thirdly,     the
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model only allows for one source of random variation in the

evolution of the term structure. This means that a
diversified portfolio of gilts is no less risky than a
portfolio made up of just one gilt - which again is a
counter-intuitive result which is an undesirable feature of
any term structure model.

Against thls, however, is the flexibility of the Ho and Lee

framework.     Thls is such that it is quite easy to make
adjustments to the basic model in order to overcome these

difficulties.     Different assumptions about the variances of

rates can overcome some of these problems, while it is a

straightforward matter to generaiise the model to permit two
or more sources of random variation to enter the term

structure’s evolutlon.     In practice this means moving from a
binomial to a multinomial process which is computationally
more burdensome but theoretically tractable.

What about the Ho and Lee model in the Irish context?    In

order to apply this sort of model - or, indeed, any of the

formal term structure models in the literature - one needs

estimates of the term structure of the kind I showed earlier.

The ability to estimate such term structures is, in itself,

immensely valuable.     Among other uses it permits the pricing

of new debt issue - by government or companies - of any form

whatsoever (e.g. semi-annual or annual coupons, zero coupons,

term repayments, etc.) and it prices conventional debt issue

much more accurately than the more famillar yield curve

methods.

Given estimates of the term structure, the next step would be

to decide on the appropriate form of Ho and Lee model to use.

In particular how should one Eo about modelling the future

variance of interest rates; and how many random disturbance

factors should be in the model - Should it be one, as in t~e

basic Ho and Lee model, or more?

What might be the applications of such a model in the Irish

context? The market for derivative instruments in Ireland is

in its infancy: so far as I am aware only one bank Is writing

options for customers, for example, and IFOX (the Irish

Futures and Options Exchange) has been in operation for less

than a year.    However, there are a number of areas where the

Ho and Lee model might be used. Obvious examples are for the

valuing of futures and swaps.      Less obvious would be

applications of the model to value callable gilts, of which a
number currently trade in themarket, and to value company

debt which has complex call and/or conversion provisions. In

the longer term it might be applied to value interest rate
options on the part of, say, banks who wished to write such

options over the counter, and on the part of IFOX members,

assuming that the exchange will, at some point, begin to

trade options on either gilts or on its existing interest
rate futures contracts, or both. And finally, of course, it

is a useful tool In valuing securitised assets.
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FOOTNOTES

[I] This is because the floating rate is often defined as
some form of weighted sum of previous interest rates.

[2] For example, Vasicek (1976) writes the T period interest
rate as equal to the expectation of the mean value of    the
integral of the instantaneous rate over the period 0 to T,
plus a risk premium term.

[3] More precisely, we assume that borrowers can issue new
debt at a rate of one quarter of a per cent over the annually
compounded equivalent of the continuously compounded rate
shown in Figure 5. So, if rates fall, those issuers of debt
with a 5 per cent annual coupon will refinance at an annual
coupon of

exp(.0441) - 1 + .0025 = .04759
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Appendix: The Parameters of the Ho and Lee Model

The Ho and Lee model depends on two parameters: ~, the risk
neutrai probability of an upward jump in prices;    and 8,
which determines the magnitude of the up (h) and down {h*)
jump parameters,    In this appendix we show that 8 is a
function of the variance of rates.    This is significant
insofar as it means that the parameter can be estimated from
historical data, in contrast to Ho and Lee, who suggest that
8 and ~ should be determined from the value of contingent
claims already in the market, in a manner analogous to that
in which the implicit variance of the underlying asset can be
extracted from a sample of option prices.    In the Irish
context this is particularly relevant given the dearth of
marketed contingent claims.

Consider the price for a one period bond in one period’s time
under the Ho and Lee model.    Its expected value is the
current one period forward price, F (see equation 6 of Ho and
Lee), The variance of the price is

~(I-~) [F(h-h*)]z

The variance of the equivalent rate is:

.(1-~) I-In [Fh] - (-In [Fh*])]z
= .(I-~) [In (h*/h)]Z

From and Ho and Lee equations 19 and Zg, 8 = h*/h.
variance of the one period rate one period hence is

So the

~(1-~) [In (8)]z

In order to calculate 6, then, we require the historical
variance of the one period forward rates or prices: i.e. the
variance estimated from the realised rate at period n
compared with the forward rate at n-1 over a sample of
periods. Call this @z on an annualised basis. If A is the
number of model periods per year then define

vZ = ~Z[A

and thus

8 = exp [-(vZl~(l-~)) I/z ]

In the example in the text the annualised variance of the one
period forward rate has been set at .g15 per cent.    This
yields (given that ~ = .6)

= exp [-(.ggglS].24)I/z] = ,975

The variance of the one period rate n periods forward is

n~(1-~) [In (@)]z



So far we have discussed the case of the one period rate.
However, the variances of all rates one period forward are
the same as for the one period rate.    Let F2 be the one
period forward price for the two period bond.    Then the
variance of the forward price is:

~ (1-Tg) [F2(h(2)-h*(2} 12

For rates the variance is

~(1-~)112 [-ln [F2h(2}] - (-In [F2h*(2)]}]2

and since h(2) is as given by Ho and Lee equations 19 and 2e
this reduces to equation (1) above. Thus under the Ho and
Lee model all n period forward rates have the same variance
regardless of their maturity.



TABLES

Table 1." Samp]e Term Structure ]n Rates and Prices

Year Rate
%

0 0
1 5.13
2 5.27
3 5.03
4 4.96
5 5.23

.Pr,ice of Pure Discount Bond
per £1 face value in £s

1
,95
.90
86

.82
,77
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Figure 4: Evolution of the Term Structure in Prices
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Figure 5: The Evolution of the One Year Interest Rate
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