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Abstract: The R/s statistic, used for many years in hydrology, is increasingly employed in economics,
although deficiencies in knowledge about its exact distribution have inhibited progress. Harrison
and Treacy (1997) described some applications where R/s arises as a test statistic and they derived
close to exact critical values for conventional (5 per cent etc.) significance levels for a range of
sample values through Monte Carlo simulation. This paper examines two approaches. One is a
simple adjustment to the asymptotic distribution that improves its upper tail accuracy greatly and
the other is an approximation to the whole distribution, easily computed and suitable for “P-value”
calculation, which is also reasonably precise in the upper tail. The Harrison and Treacy values and
Monte Carlo simulation are used to confirm accuracy.

I  INTRODUCTION

For a sample of size n the R/s statistic is
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where   1 ≤ k ≤ n,  x = x / n and s2 = (x − x)2 / n∑∑ , with the summations taken
1 to n. Since the sum of deviations over the whole sample is zero, the maximum
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partial sum in (1) is either positive or zero and the minimum partial sum is
either negative or zero. So (1) is always positive. It was originally employed
(Hurst, 1951) in studies of reservoir storage, where the x’s were variable inflows
in successive time periods (often annual) and   x  was the constant outflow.
Naturally, much study took the x’s as normally and independently distributed,
at least as a null hypothesis, but many complications have been introduced.
Developments in the hydrological literature are described by Lloyd (1981).

The statistic (1) and others similar to it (for example, the maximum partial
sum divided by the sample standard deviation) are also employed in testing for
change points and in boundary crossing problems in sequential analysis. The
statistic was suggested for testing for long-term dependence in economic and
financial time series by Mandelbrot (1971, 1972), but only in recent years has it
begun to appear frequently in the economics literature. Harrison and Treacy
(1997) provide an account of applications and of why the R/s statistic seems
appropriate and Harrison and Treacy (1998) discuss its use in testing for
parameter instability.

It is intuitively evident from (1) that the exact, small sample, distribution of
the R/s statistic is complicated. For the case of independent x’s (not necessarily
normally distributed) Feller (1951) found the asymptotic distribution of R/s
divided by the square root of n. Using a more familiar modern terminology and
notation than he did, the asymptotic distribution is that of the range of a
Brownian Bridge and the distribution function is
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From early on, it was appreciated that the asymptotic distribution was inaccur-
ate in small samples. For example, the mean of the asymptotic distribution is
1.253 (so that means of repeated calculations of R/s with the same sample size
n should be   1.253 n ), but observations in hydrology did not seem to support
means of R/s being proportional to   n . This contradiction is called “the Hurst
effect” and one possible explanation (see, for example, Anis and Lloyd (1975)) is
that the true (or finite sample) expectation differs substantially from the
asymptotic mean.

For finite n and assuming the x’s independently drawn from the same normal
distribution with known variance σ2, Solari and Anis (1957) showed that the
expectation of the numerator of (1) is
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The expectation of (1) could easily have been deduced from this result if the
authors had appreciated the significance of a result by Geary (1933). Geary
showed that, for a normal sample, ratios with s2 as the denominator are
independent of s2 if they are homogeneous of degree zero (in polar co-ordinates,
if they are functions of the polar angles only). Then he obtained moments of
ratios by dividing the moments of the numerators by those of the denominators.
The R/s statistic (1) is homogeneous of degree zero and so, given normality, is
independent of its denominator. So the expectation of the numerator, which is
(3), is the product of the expectation of the ratio and the denominator. As is well
known (for example, exercise 17.6 of Kendall and Stuart, 1967, Vol. 2, p. 32)

E(s) = 
  
σ 2 Γ(n / 2)

nΓ (n − 1) / 2{ }
 (4)

and dividing (3) by (4) immediately gives
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In fact, discovery of the exact mean of R/s had to wait until Anis and Lloyd
(1976), who used a theorem of Spitzer (1956) and, with substantial manipulation,
showed that it is (5). The “moments of ratios equalling ratios of moments” device
is mentioned here, not only as a point of historical interest, but because it will
be employed again in the paper.

Harrison and Treacy (1997) investigated the exact finite sample distribution
of R/s by Monte Carlo simulation for a range of sample values, estimating
moments and fitting a Beta approximation. They used this to estimate (very
accurately) the critical tail points corresponding to the conventional (10 per
cent, 5 per cent, etc.) significance levels. Their critical values were much lower
than the asymptotic values for quite realistic (in economics, at least) sample
sizes and an appreciable discrepancy persisted even up to large sample sizes of
500. So for tests where the null distribution is that of R/s with the x’s a normal
iid sample, the nominal significance levels of the asymptotic points can be very
wrong. The probability of rejecting the null hypothesis when it is true may be
far lower than the nominal levels indicate. A corollary is that the power of tests
when the null is untrue may be poor.

The situation is illustrated in Table 1, which shows the tail “probabilities”
produced by formula (2) when the Harrison and Treacy critical values (from
their Table 10) for a selection of sample sizes are put equal to V.
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Table 1: Probability of >V according to Asymptotic Approximation

True α n=20 n=40 n=60 n=80 n=100

.10 .348 .248 .211 .192 .179

.05 .243 .153 .124 .110 .101

.01 .115 .052 .037 .030 .026

For n=20 formula (2) overestimates by a factor of 11 for the 1 per cent point and
nearly 5 for the 5 per cent point. Even at n=100 the overestimation factors are
still large at 2.5 and 2.

While the Harrison and Treacy critical values are very accurate for the
conventional significance levels and sample sizes they considered, there are
still inconveniences for the potential user. For other sample sizes, interpolation
from their published tabulated points is one possibility, but may be thought
inconvenient and gives scope for mistakes. Harrison and Treacy do mention
they have more detailed tabulations than presented in the paper, which they
are ready to make available. However, complete tabulation of critical point values
for a range of significance levels and all possible sample sizes up to, say, 500
would require clumsy tables. More importantly perhaps, many researchers like
to see a “P value” — the probability that the value of their test statistic would
have been exceeded under the null. This could be estimated from the Harrison
and Treacy work by calculating the mean, estimating the second, third and
fourth moments for the relevant n via their Table 8 and proceeding to estimate
the four parameters involved in their Beta approximation. Again, this could be
thought inconvenient and relatively prone to error.

This paper obtains new approximations to the exact distribution. While these
cannot improve on the virtually exact critical values found by Harrison and
Treacy for the conventional significance levels at their sample sizes, they can
easily be employed to obtain, at least approximately, “P values” for any sample
size. Two approaches are employed. The first, which will be described in Section
II, can be seen as an adjustment to the asymptotic distribution (2) that not only
simplifies it, but improves its tail accuracy greatly. The second, presented in
Section III, is a simple two moment Beta type approximation to the whole
distribution, similar to the Conniffe and Spencer (2000) approach in the case of
the maximum partial sum. Other approximations and approaches are also
possible and are discussed briefly in Section IV as are desirable directions for
further research.
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II  A LARGE DEVIATION TYPE APPROXIMATION

The distribution of a statistic z, based on a sample of finite size n of x’s, may
be complicated over most of its range, but simplify in its tail region, because
various terms may become negligible for large z. The limiting form of this tail
distribution as n becomes increasingly large then gives an “extreme value” or
“large deviation” approximation. The familiar asymptotic approximations
employed in econometrics (of the Central Limit Theorem type) first approximate
the whole distribution and then go to the tail values for critical points. Generally,
the two approaches are not equivalent and the large deviation method often
gives much more accurate approximations to tail area probabilities. On the other
hand, the approximations may be poor outside tail areas and the large deviation
probability formula can depend on the distribution of the x’s. Central Limit
Theorem type approximations are usually more robust to distributional assump-
tions.

The R/s statistic involves the largest and smallest partial sums of deviations
from the sample mean. The probability that extrema of partial sums cross boun-
daries is an important topic in several branches of statistics including quality
control, renewal theory and sequential analysis and approximations have been
based on both large deviations and on Brownian motion. See Siegmund (1985,
1986). In some cases, the large deviation approximation can appear as a straight-
forward (though dependent on sample size) adjustment to the tail points derived
from Brownian motion arguments. The adjustment can be given various interpre-
tations – as a correction for discreteness to the “continuous time” context of
Brownian motion, or as an analogue of an Edgeworth adjustment to the Central
Limit Theorem — as described in Siegmund (1985, Chapter 10). However, for
the purposes of this paper, the important point is the suggestion that a fairly
simple, but effective, correction to the asymptotic critical points may be possible.

A shortcut to a correction is suggested by considering the accurate large
deviation approximation to the probability that
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obtained by James, James and Siegmund (1987), for normal iid x’s. The
approximation was

  e
−2 b+ .583

n






2

. (7)

Now the asymptotic (Brownian Process crossing a boundary) approximation to
the probability of (6), used, for example, by Ploberger and Kramer (1992) is
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  (−1) j+1e−2 j2b2
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Just as for the asymptotic distribution (2) for the R/s statistic, (8) gives a poor
approximation to the distribution of (6). Ploberger and Kramer conducted a
Monte Carlo simulation for n = 120 and found the true probability of exceeding
a nominal 5 per cent point to be .0378. For small sample sizes the situation is
far worse, as shown in Conniffe and Spencer (2000).

For a large value of b, (8) is just equal to the first term of the infinite series,
which is

  e
−2b2

,

and “correction” of b by an amount   .583 / n , gives the good approximation (7).
Now, from (2)
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and analogy with the approximation (7) to the probability of (6) suggests
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with c a constant to be determined. An estimate of c can be obtained from any
value in Table 1 in the following way. Equate (9) to the nominal α and solve for
V. Then equate it to the true probability of exceedance and solve. The difference,
d say, between the two solutions is an estimate of c divided by root n. There is
some variation in the estimates obtained depending on choice of α and n, so a
“pooled” estimate was obtained by “regression” of d on   1 / n . This resulted in a
value of about 1.4.

Now this argument has been heuristic and, without theoretical justification
for (10) or for the estimate of c, it is not possible to make a priori assessments of
the order of accuracy of the approximation. It may seem surprising that the
single, fairly simple expression (10), with c = 1.4, can give a much better approxi-
mation to the exact tail distribution than (2) can, but it is so. Table 2 gives the
values of (10) when the Harrison and Treacy critical values, for the same range
of sample sizes as before, are substituted for V.
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Table 2: Probability of >V According to Large Deviation Approximation

True α n=20 n=40 n=60 n=80 n=100

.10 .087 .088 .089 .090 .090

.05 .052 .048 .047 .047 .047

.01 .019 .013 .011 .011 .010

Comparison of these values with those of Table 1 shows a dramatic improve-
ment. The values are close enough to the true α (with the possible exception of
the 1 per cent point with n=20) to justify the practical employment of (10) for 10
per cent, 5 per cent and 1 per cent significance tests. However, (10) could not be
expected to give accurate “P Values” outside this tail area.

Note that in all of the development it has been assumed that what is of interest
is
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for large V, that is, probabilities in the right hand tail of the distribution. The
formulae would not apply to small V, that is, to the left hand side of the
distribution. However, the hypothesis test situations in which the R/s statistic
would typically be employed imply upper tail rejection regions (as is almost
always the case with a test statistic, such as chi-squared, which must be positive).

III  AN APPROXIMATION TO THE WHOLE DISTRIBUTION

One of the most widely-used, and often the soundest (see, for example, Cox
and Hinkley (1974), pp. 462-465) approach to approximating a complicated
distribution is to fit a simpler distribution, that has much the same range and
general shape, by equating moments. This assumes some moments of the
complicated distribution are known, or can at least be adequately approximated.
The expectation of R/s is available, as given by (5). For the second moment,
using Geary (1933),

  
E

R
s







2

= E(R2)
E(s2)

= var(R) + [E(R)]2

E(s2)
(11)

and E(R) is known exactly from (3), while the denominator is (n-1)σ2/n. As regards
the variance of R, various authors, from Solari and Anis (1957) to Harrison and
Treacy (1997), have noted that the finite sample variance approaches Feller’s
(1951) asymptotic variance fairly quickly with increasing sample size, although
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the finite mean and second moments approach their corresponding asymptotic
values only slowly. Feller’s variance formula for R is .074 nσ2. Based on Monte
Carlo simulations, Phien, Arbhabhirama and Sutabutr (1979) suggested a
correction to (.074 n +.062) σ2. Although very slight unless samples are small,
the correction is so simple as to merit inclusion. Inserting in (11) gives quite a
good approximation to the second moment of R/s, as comparison with the
simulation findings in Table 1 of Harrison and Treacy (1997) can verify.

As noted by Mandelbrot (1972),   1 ≤ R / s ≤ n / 2 , and functions of bounded
variables are often approximated by Beta distributions. So the variable

  
y = 4

n2
R2

s2 = 4
n

R2

(xi − x∑ )2

appears to have the right dimensions for a Beta, with the denominator a sum of
squares and the Beta ratio property that the ratio is independent of the
denominator. The range is from 4/n2, which can be taken as effectively zero, to
unity. An exact half moment of the true distribution follows from (5) multiplied
by 2/n (call it c.5) and it can be equated to the half moment of a Beta (p, q)
distribution

  

Γ(p + q)Γ(p + 0.5)
Γ(p + q + 0.5)Γ(p)

.

An (approximate) first moment of y is (11), using the var(R) approximation,
multiplied by 4/n2 (call it c1 ) and it can be equated to the first moment p/(p + q).
Then, substituting for q in the half moment, the value of p is the solution of
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Γ(p)
= c.5 ,

(12)

giving a two moment approximation to a Beta. Nowadays, standard econometrics
packages can evaluate Gamma functions and facilitate summing series.
Otherwise solution of (12) would be tedious, as indeed would calculation of (5).
Good packages (for example, Shazam (1997)) can also integrate the density
functions of the commonly encountered probability distributions, including the
Beta. For example, for n=40 the values of p and q turn out to be 4.266 and
29.886. If R/s is 9.69, then y is .2347 and the corresponding Beta cumulative
distribution value is .95, so that there is just “significance” at 5 per cent. The



APPROXIMATING THE DISTRIBUTION OF THE R/s STATISTIC 245

immediate question is how accurate are “P Values” calculated through this Beta
approximation. As Harrison and Treacy (1997) only provided α points for the
tail area, this cannot be adequately assessed by the device, used in the previous
section, of inserting their critical values into the probability formula. Instead,
the Beta values corresponding to α = .5, .4, .3, .2, .1, .05 and .01 were computed
(by inverting the Beta integral) for the p’s and q’s corresponding to a range of
sample sizes. Then a Monte Carlo study was conducted by generating 4,000
values of R/s at each sample size and counting how often the critical points were
exceeded. The results (expressed as proportions of 4,000) are shown in Table 3.
Sampling variation is inherent in Monte Carlo estimation and with this
replication the standard errors of proportions are .008 for α = .5, .007 for α = .3,
.005 for α = .1, etc.

Table 3: Relative Frequency of Exceeding Beta Points

Nominal α n=20 n=40 n=60 n=80 n=100

.5 .477 .472 .478 .464 .487

.4 .378 .373 .379 .372 .395

.3 .280 .285 .285 .275 .298

.2 .189 .194 .194 .188 .208

.1 .104 .106 .100 .100 .115

.05 .056 .059 .053 .055 .064

.01 .014 .013 .013 .018 .021

In interpreting the figures, it needs to be remembered that the simulations
are independent between sample sizes, but all α points within a sample size are
determined from the same 4,000 simulated R/s values. So all the α points in the
n=100 column being a little higher than the corresponding figures in other
columns is, at least partly, a sampling variation effect. Overall the “true” α is a
little below the nominal for high α and a little above it for the 1 per cent tail
point, but the Beta approximation is generally quite good enough to employ in
obtaining “P values” and performing significance tests.1 There is some indication
that the overestimation at the 1 per cent point increases at high n. However,
note that Table 2 showed the large deviation approximation to be good in this
situation.

1.  Once again, upper tail rejection regions are assumed.
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IV  CONCLUDING REMARKS

The two approximations examined in this paper are simple to employ and, in
reasonably sized samples, are vastly superior to the asymptotic approximation
which, as Table 1 shows, is very poor. Neither of these new approximations is
perfect, of course, although they complement each other. Other Beta type
approximations are possible too. For example, instead of taking 2R/(ns) as the
square root of a Beta, as in the previous section,

  
y = R / s − 1

n / 2 − 1
,

which lies between zero and one and becomes 2R/(ns) for large n, could be
approximated by a Beta by equating first and second moments. This was
examined by simulation, but only at high n and the 1 per cent level did it prove
somewhat better than equating to the square root of a Beta. It was appreciably
worse at low n. This suggests a more elaborate approximation of 2R/(ns) to Beta
to the power m, with m to be determined. Then the expectation of 2R/(ns) and
the approximate expectation of its square, which will be denoted cm and c2m

respectively, would equate to the m th and 2m th moments of a Beta given by

  

Γ(p + q)Γ(p + m)
Γ(p + q + m)Γ(p)

and

  

Γ(p + q)Γ(p + 2m)
Γ(p + q + 2m)Γ(p)

,

respectively. The three parameters m, p and q cannot be estimated from the
two known cm and c2m, but an approximation to the expectation of R/s cubed
would lead to a c3m and this could be equated to

  

Γ(p + q)Γ(p + 3m)
Γ(p + q + 3m)Γ(p)

,’

giving solutions for all three parameters. Clearly an approximation to the
expectation of R/s cubed can be obtained in the same way as (11) was by working
from the asymptotic third central moment of R. A superficial examination
suggested that m increases with n and that at n=20 the value should be less
than .5, while at n=100 it should be closer to 1 than to .5, which ties in with the
previous findings.

We have not taken this further, partly because the large deviation and two
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moment Beta approximations of Sections II and III seem jointly adequate for
practical purposes, as Tables 2 and 3 show. The other reason is that, rather
than seeking finer approximations in the simple normal sample context of this
paper, future research would seem better directed to study of the robustness of
the approximations to deviations from that context. If they are not reasonably
robust, more computationally intensive approaches could perhaps be preferable.
Izzeldin and Murphy (2000) have shown that the small sample distribution of
the R/s statistic can be successfully bootstrapped using a variety of data gener-
ation processes.
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