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Abstract

We present two models of the optimal investment decision in carbon capture

and storage technology (CCS)-one where the carbon price is deterministic (based

on the newly introduced carbon floor price in Great Britain) and one where the

carbon price is stochastic (based on the ETS permit price in the rest of Europe).

A novel feature of this work is that in both models investment costs are time de-

pendent which adds an extra dimension to the decision problem. Our deterministic

model allows for quite general dependence on carbon price and consideration of

time to build and simple calculus techniques determine the optimal time to invest.

We then analyse the effect of carbon price volatility on the optimal investment de-

cision by solving a Bellman equation with an infinite planning horizon. We find

that increasing the carbon price volatility increases the critical investment threshold

and that adoption of this technology is not optimal at current prices, in agreement

with other works. However reducing carbon price volatility by switching from car-

bon permits to taxes or by introducing a carbon floor as in Great Britain would

accelerate the adoption of carbon abatement technologies such as CCS.

∗E-mail for correspondence : darraghmw@gmail.com (D.M. Walsh), Telephone : +353 1 863 2009
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Highlights: 

· Analytic solution for the critical ETS permit price for optimal investment in CCS. 

· Solution for the optimal time for investment in CCS in GB subject to Carbon Floor. 

· Time varying Investment cost included. 

· Not optimal to invest at current ETS prices. 

· ETS permit price volatility increases the optimal investment threshold. 

· Discussion of the merits of a tax based system over the current quota based ETS. 
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1 Introduction

The European Union introduced its Emission Trading Scheme (ETS), a system in which

CO2 emission permits are traded, in 2005 as a key ingredient in its plan to adhere to

the Kyoto Protocol on emission reduction. The idea was that by creating a market

for emission permits cleaner technologies would be rewarded at the expense of heavy

emitters. This measure was intended to accelerate investment in electricity generation

from renewable sources and therefore move Europe towards becoming a low carbon

emissions region. For more information on the ETS see [Abadie and Chamorro (2008)]

for example.

However, renewable sources of generation tend to be intermittent so there is still a role

for traditional fossil based generation to maintain system stability. The relative abun-

dance of coal compared to other fossil fuels makes it an attractive option for electricity

generation. However it is amongst the largest producers of CO2 per unit of electricity

generated so that if emitters are to be penalised through the need for ETS permits, coal

loses some of its appeal. One attractive approach, in theory, is to capture the carbon

released during combustion and store it permanently. There has been a huge research

effort into this technique but at present there is still no commercially operating carbon

capture and storage (CCS) unit anywhere in the world.

The goal of this paper is to analyse the investment decision in CCS, and determine an-

alytically the optimal time to invest, in a region with volatile emission costs (such as a

permit-based system like the ETS) and also the decision facing the investor in a region

where the cost of emissions evolves deterministically (such as in a tax-based system).

We will explicitly take into account decreasing investment costs as the technology ma-

tures.

The carbon floor mechanism introduced in Great Britain (GB) in April 2013 means that

electricity producers in GB are effectively subject to a deterministically evolving tax

rather than a stochastically evolving allowance price such as the ETS. The current level

of the ETS is approx. e5/tCO2. The lower bound on Carbon to be paid by generators

in GB is currently £16/tCO2 rising linearly to £30/tCO2 in 2020 and rising again to

£70/tCO2 by 2030. Since the ETS permit price is significantly less than the carbon

floor price and the fact that reforms of the ETS aimed at raising it’s level are slow,

the price of carbon emissions by fossil fuel based electricity generators in GB will be

effectively deterministic. For more information on the carbon floor mechanism in GB

see [Curtis et al. (2013)] for example.

As noted above, the carbon floor price has introduced an effectively deterministic car-

bon price into GB. Without a carbon price floor mechanism in place, power plants in

the rest of Europe are subject to the stochastically evolving ETS permit price. Despite
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the current low ETS price, a number of proposals have been put forward to raise the

ETS price and penalise heavy polluters. One such mechanism, called “back-loading”,

involves the withdrawal of a large proportion of the ETS permits in the hope that this

will increase the price of the permits in the short term before they are reintroduced at a

later date. However, the ETS permit price will still be volatile so to model the invest-

ment decision facing non-GB European Power plants more sophisticated techniques of

stochastic calculus will need to be employed.

A number of authors have addressed the question of when it is optimal to invest in CCS

given carbon price and electricity price uncertainty. In [Fuss et al. (2008)] both types

of uncertainty are included in a numerical model with a finite planning horizon of 50

years. In their model the CCS unit may be switched on and off depending on which

state is optimal. Their profit function is a linear function of electricity, heat and carbon

price and other costs. They then solve numerically a Bellman equation to determine the

optimal time to invest in CCS so that the sum of discounted expected future profits is

maximised.

Another thorough numerical analysis of the problem is given in [Abadie and Chamorro (2008)].

Again the electricity price and carbon price follow correlated stochastic processes (in

both papers the carbon prices follow geometric Brownian motion) and there is a finite

planning horizon and the problem is solved using a two-dimensional binomial lattice to

obtain the optimal investment rule.

In [Heydari et al. (2012)] an analytical model was presented in which the authors solved

a partial differential equation to determine the optimal investment boundary under fuel

price and carbon price uncertainty (electricity price was found not to affect the option

value of the retrofit of a coal fired power plant since the outputs of the plant pre and post

retrofit were taken to be the same). They also (numerically) value the option to invest

in full CCS (approx. 85-95% of carbon emissions captured) and partial CCS (approx.

45-65% of carbon emissions captured) and find that if price volatilities are low enough

the investment region is dichotomous so that for a given fuel price investment is optimal

in Full CCS (Partial CCS) if the carbon price increases (decreases) sufficiently. It was

assumed in this work that investment costs remain fixed.

The literature on CCS has identified the lowering of investment costs as crucial to the

large-scale deployment of CCS technology. In [Herzog (2011)] it was noted that the

first several CCS plants would likely be more expensive, typical of the introduction of

a new technology. In [Riahi et al. (2004)] the situation was compared to the past ex-

perience of installing scrubbers to control sulfur dioxide emissions from power plants.

A ‘learning curve’ for CCS was quantified in comparison with the sulfur dioxide case

with investment costs greatly reduced as the technology matures. The importance of

including time dependent investment costs in any model of CCS uptake is further il-
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lustrated in the two-period model in [Hoel and Jensen (2012)] where it was concluded

that cost reductions in CCS may be more desirable than cost reductions associated with

renewable energy, from a welfare perspective.

The decision the investor faces today, based on estimates of total investment cost, will

be different to the decision faced in the future if investment costs have fallen. Since

quantifying the value of waiting for more favourable conditions before investing is one

of the key strengths of the real options approach, we believe that incorporating time

dependent costs is an important advancement on other approaches that ignore this issue

and use fixed costs (see [Heydari et al. (2012)] for example).

We are not aware of any other research comparing the optimal investment decisions for

CCS retrofitting using a carbon price process that models the deterministic carbon floor

in GB and another than models the stochastic ETS price. This work is timely as reform

of the ETS is needed if it is to meet its goal of driving Europe towards becoming a

low carbon emissions region and the newly introduced carbon floor mechanism in GB

promises to provide guaranteed incentives to generators to reduce emissions.

We expect to find it optimal to invest in CCS much sooner in GB than in the rest of

Europe, which has obvious policy implications if policy makers still see a role for coal-

based electricity generation in Europe. The reason for this expectation is two-fold.

Firstly, the current ETS price is much lower than the current value of the carbon floor

price. Secondly, we expect to find that increasing the volatility of the ETS price will

increase the critical investment threshold. Modelling uncertainty is thus fundamental to

this problem.

As in all the works mentioned above, we will model the ETS permit price as geometric

Brownian motion. The volatility of the process takes into account the inherent uncer-

tainty of a tradable allowance permit and also the uncertainty in expectations over future

emissions policy.

In this work we first model the investment decision facing the investor in GB. We model

this as a deterministic problem for the reasons outlined above in connection to the carbon

floor. We obtain the optimal time to invest that maximises the net present value (NPV) of

the option taking into account a time to build of one year and assuming that no revenue

is received during this year. A numerical example for a hypothetical baseload coal plant

illustrates this result in Section 2.2. We then model the decision facing an investor in

the rest of Europe subject to a stochastically evolving ETS permit price in Section 2.3

and find the critical investment threshold of the ETS price above which it is optimal to

invest (assuming that the CCS unit may be built instantaneously). A numerical example

for a hypothetical baseload plant in Europe (excluding GB) follows in section 2.4. We

conclude this work with a summary and discussion of our results in Section 3.
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In both of our models our investment cost function varies with time and in this respect

provides a valuable addition to the literature on this topic. Our models are analytic and

compliment numerical approaches, as analytic formulae allow greater clarity about the

contribution of various factors to the investment decision.

2 When to invest in CCS - a free boundary problem

We are interested in determining analytically the optimal time for a new coal plant to

retrofit a carbon capture and storage unit with and without carbon price uncertainty. To

do this we maximize the net present value (NPV) of the investment option.

2.1 The CCS investment decision in GB: Deterministic Case

Let Po denote the profit function for the coal plant without the CCS unit upgrade and Pn

denote the profit function for the upgraded plant, both depending on the carbon price C.

If the time of investment in CCS is taken to be T (an unknown) then we can write the

NPV of the asset as

W (C) =

∫ T

0

Po(C(t))e−rtdt+

∫

40

T+1

Pn(C(t))e−rtdt− I(T )e−rT (2.1)

where I(T ) is the investment cost function, and r is the discount rate. We have assumed

that it takes one year to build the CCS unit and that during this time there is no profit

flow (hence the lower bound in the second integral is T + 1 rather than T ). Also we are

assuming that the lifetime of the plant is 40 years.

We assume that the investment cost is irreversible since, as noted in [Abadie and Chamorro (2008)],

the CCS unit has a limited range of uses and cannot be installed at another power

plant so that, as noted [Pindyck (2007)] and [Abadie and Chamorro (2008)], there is

an opportunity cost associated with the investment. We model the investment cost

as a once-off payment, for a discussion of the case of a multi-stage investment see

[Dixit and Pindyck (1994)].

We believe it is interesting to consider the case where investment costs decrease over

time. This gives an explicit value to waiting. Our intuition tells us that at current prices

the baseload plant considered in the example below will be more profitable without a

CCS unit (since it doesn’t have to store the carbon or operate and maintain the CCS

unit) but that over time as the carbon floor price increases it will become less profitable

and CCS more attractive, especially if the investment costs are decreasing over time as
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the technology matures. We determine below the optimal time to invest which balances

these competing factors not examined in other works with constant investment costs.

Assuming that C evolves deterministically, (2.1) may be differentiated with respect to

T which yields

dW

dT
(T ) =

(

Po(C(T ))− Pn(C(T + 1))e−r + rI(T )− I ′(T )
)

e−rT (2.2)

so that W is extremised1 when

Pn(C(T + 1))e−r − Po(C(T )) = rI(T )− I ′(T ). (2.3)

We now choose a functional form for Po and Pn. As in other works (see [Heydari et al. (2012)]

and [Fuss et al. (2008)] for example) we choose P to be a linear function of C and choose

it to have the same functional form before and after retrofitting. That is, we choose:

Po = αo − qoC(t)

and

Pn = αn − qnC(t).

Choosing the linear form above has the advantage that the parameters have a clear in-

terpretation as gross revenue before and after retro-fitting (αo and αn respectively) and

the cost to the plant of carbon emissions (qoC(t) and qnC(t)). We have chosen to omit

the fuel price and concentrate on the cost of carbon emissions and decreasing invest-

ment costs. ([Heydari et al. (2012)]) choose a GBM drift rate of 0.04 for the fuel price

which is not captured in our results which assume a constant fuel price. Volatility of the

coal price is typically low (([Heydari et al. (2012)]) choose it to be 0.05 compared to a

volatility of 0.47 for the carbon price) so we believe our model, with the annual constant

fuel consumption costs absorbed into αo and αn is still a good approximation with the

added benefit of realistic investment costs that decrease over time.

We choose the profit function to have the same form after retrofitting to isolate the effect

of the retrofit and for ease of interpretation of parameter choices (we choose qn < qo
since less carbon is emitted by the upgraded plant and αn < αo since there are extra

costs such as carbon storage and extra operation and maintenance costs for the upgraded

plant that will reduce its gross revenue).

1We will determine whether this extremum is a maximum or a minimum by first determining the

extremising T and then checking that other values of T give a lower value to (2.1). We do this because

the function C(t) that we use to model the carbon floor is not differentiable at t = 7 i.e. in 2020 when

the slope of the carbon floor function increases.

6



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2.2 A numerical example of the investment decision in GB

We will assume we are dealing with a baseload coal plant throughout the lifetime of the

plant.2

Suppose we have a Super Critical Pulverised Coal (SCPC) power plant with 500MW

capacity, an 80% capacity factor and an average CO2 emission rate of 800g/kWh (these

characteristics are taken from [Abadie and Chamorro (2008)]). Assuming that 5% of

the electricity output is consumed by ancillary units this gives a total annual output of

3, 328, 800MWh. Combining this with the CO2 emission rate gives 2,663,040 ton/year

of CO2 emitted per year.

It is clear that the emissions cost to the plant is then 2, 663, 040 ton/year× Average

Carbon price e/ton=qoC. Since 90% of the CO2 is captured once the plant has been

upgraded we have qn = qo/10. Following [Abadie and Chamorro (2008)] once more

we take the cost of storage and transportation of the CO2 to be e7.35/ton giving an

annual cost of 2.663×106ton/year×0.90× 7.35Euro/ton=e17.62M/year.

Operation and maintenance cost of the CCS unit are taken to be 1.348 e/MWh giving

a total annual cost of 4.49M e/year. So the total extra cost of running the CCS unit

is approximately 22M e/year. This will provide a lower bound on △α := αo − αn

since it ignores the revenue depletion from the reduction in output of the CCS unit (in

[Abadie and Chamorro (2008)] it is assumed that there’s a 20% loss of the plant’s output

due to the presence of the CCS unit). Finally we take our investment time dependent

investment cost function I(T ) =e214.5 × 106 exp(−0.0202T ) so that I(T ) decreases

by 2% per year, as in [Abadie and Chamorro (2008)].

We will choose the discount rate to be r = 0.06.

A summary of all the parameters used in this example is given in Table 1.

Table 1: Parameters used to determine the optimal time to invest in CCS in GB.

Parameter Value

Discount rate r 0.06

Carbon Floor Price (GB) in 2013 £16/tCO2=e18.82/tCO2

Carbon Floor Price (GB) in 2020 £30/tCO2=e35.29/tCO2

Carbon Floor Price (GB) in 2030 £70/tCO2=e82.35/tCO2

Investment Cost Function I(T ) e214.5× 106 exp(−0.0202T )
Difference in Plant gross revenues △α e(22 + 50)× 106/y

Difference in emission coupling Constants △q 2.397× 106tCO2/y

2For a high carbon price scenario this is unrealistic since coal plants without CCS are heavily penalised

since they emit more carbon than gas plants and may not be dispatched as baseload.
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We believe it is more meaningful to choose a value for △α := αo − αn rather than αo

and αn separately since we know that the gross revenue of the retrofitted plant will be

less, in our model, than that of the plant without the retrofit due to the costs incurred to

transport and store the carbon and also the increased operation and maintenance costs

and the revenue depletion due to the reduced output of the plant (the CCS unit uses

electricity), e50×106/y in this example. We need only choose a value for the difference

△α if we make the approximation exp(−r) ≈ .94 ≈ 1 i.e.

0 = Pn(C(T + 1))e−r − Po(C(T ))− rI(T ) + I ′(T ) (2.4)

≈ Pn(C(T + 1))− Po(C(T ))− rI(T ) + I ′(T ). (2.5)

We choose the functional form for C(t) to match the carbon floor prices (in euros)

C(t) =

{

(18.82 + 2.353t) e/tCO2, if 0 ≤ t ≤ 7

(35.29 + 4.70(t− 7))e/tCO2, if t > 7.
(2.6)

Solving (2.5) numerically using the parameters in Table 1 gives an approximate value

of 7.31 years for the optimal time to invest. That is, if one invests after 7.31 years (i.e.

during 2020) the NPV of the investment option will be maximised.

2.3 The investment decision in the rest of Europe:

Power plants in GB are still subject to the ETS, however the high level of the carbon

floor price means that it is highly unlikely that the ETS permit price will rise above the

carbon floor price, thus there is a deterministic carbon floor price in GB at present.

Without the (high level of) the carbon floor price, the carbon permit price in the rest of

Europe (the ETS permit price) has a stochastic component. It is affected by the supply

and demand for permits and also by uncertainties in European emissions policy. There

is widespread consensus that the ETS in its current form is not working efficiently to

penalise heavy polluters and a number of proposals have been discussed with the aim

of increasing the ETS permit price. This suggests modelling the ETS permit price as a

stochastic process with positive drift and significant volatility.

Following [Abadie and Chamorro (2008)] and [Heydari et al. (2012)], we model the ETS

permit price C(t) as geometric Brownian motion (GBM):

dC = µCdt+ σCdz

8
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where µ is the constant drift rate, σ is the constant volatility and z describes a Wiener/Brownian

process.

In [Pindyck (1999)] it was noted that although energy prices in the long-run tend to be

mean-reverting, the rate of mean reversion is low so that GBM may be a good approxi-

mation. Since the current low level of 5e/tCO2 is unsustainable as Europe looks to meet

its emission targets, we have chosen not to calibrate the drift and volatility parameters

of our GBM ETS permit price from historical data (since this would yield a negative

drift). Instead we choose in the numerical example that follows a high positive drift rate

(µ = 0.05) and vary the volatility parameter.

In the case of a stochastically varying carbon price we may no longer differentiate (2.1)

to obtain the optimal T, since T is now a random variable. Instead we obtain it indirectly

by computing the critical threshold C∗ above which it is optimal to invest immediately.

Our approach will be to solve a Bellman equation, sometimes called the Hamilton-

Jacobi-Bellman equation, derived from (2.7) below by application of Ito’s lemma, to

obtain the critical threshold for investment, the “free-boundary” C∗. This procedure has

been carried out, for example, in [McDonald and Siegel (1986)], [Dixit and Pindyck (1994)]

and [Pindyck (2002)].

The introduction of volatility into the optimal investment problem considerably compli-

cates the solution process. For this reason we make two further simplifying assumptions.

Firstly, we assume that the CCS unit may be built instantaneously, once the decision to

invest has been made,with no loss of revenue. The plant’s profit functions are thus

integrated over the continuous lifetime of the plant (unlike in the deterministic model

above where the interval (T,T+1) was omitted as it represented the time during which

the CCS unit was being built). For a stochastic model with time to build included see

[Majd and Pindyck (1987)].

Secondly, we now assume that the plant has an infinite lifetime and consequently that the

option to invest doesn’t expire (this assumption was also made in [Heydari et al. (2012)]).

It is not unusual for a coal plant to have a lifetime of 60 years by which time the dis-

counting of future profit flows in (2.1) dramatically reduces their contribution to the

NPV integral. As t → ∞ this contribution tends to zero and the NPV integral, (2.7) be-

low, will converge to a finite value (provided Po and Pn take the same functional linear

forms as above and also that with C following GBM that we also have µ < r so that the

integral converges).

This assumption simplifies the resulting Bellman equation by removing the time deriva-

tive that would be present if the integral for W had a finite time horizon or there was

explicit calender time dependence. Whilst it is often possible to solve the Partial dif-

ferential equation that results from the Bellman equation with two GBM processes in

this framework (see [Heydari et al. (2012)]), it is more challenging to solve problems

9
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with a finite time horizon where numerical approaches tend to be used (even standard

numerical approaches such as shooting, Runge-Kutta and finite difference schemes are

problematic for Bellman equations for the reasons outlined in [Dangl and Wirl (2004)]).

In our time-independent Bellman equation we are modelling the decision to invest or

wait which is the same in every period except that the state variable C(t) and I(T ) have

changed.

So, in the case where C follows GBM we have

W (C) = E0

(
∫ T

0

Po(C(t))e−rtdt+

∫

∞

T

Pn(C(t))e−rtdt− I(T )e−rT

)

(2.7)

where E0 denotes the expected value based on information available at time t = 0.

The presence of a T dependent investment cost I(T ) prevents us from simply applying

a Bellman equation derived from the integral. However, this term may be taken inside

the integral. Then we have

W (C) = E0

(
∫ T

0

Po(C(t))e−rtdt+

∫

∞

T

[Pn(C(t)) + I ′(t)− rI(t)] e−rtdt

)

(2.8)

since

−I(T )e−rT =

∫

∞

T

d

dt
(I(t)e−rt)dt =

∫

∞

T

(I ′ − rI)e−rtdt.

To avoid the explicit introduction of calendar time into the integral we define

d

dt
I := I ′(t) := −ξI (2.9)

where ξ > 0 measures the rate at which investment costs decrease, so now the problem

depends on I and C only and not explicitly on t (i.e. T = T (I, C)). Now we can apply

a standard Bellman equation to the regions before and after investment to determine the

‘free-boundary’ C∗, the trigger price above which it is optimal to invest. The general

Bellman equation reads

rW (C) = P̂ (C) +
1

dt
E0[dW (C)], (2.10)

where P̂ denotes the profit flow in the interval dt in the pre and post investment regions

in (2.7) above, E0[dW (C] denotes the expected capital gain and r is the discount rate.

Once more we assume that the profit function of the coal plant without CCS, Po, may

be written as

Po = αo − qoC(t)

10
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and that the profit function of the coal plant with CCS retrofitted is given by

Pn = αn − qnC(t),

where αo,n and qo,n are constants throughout the lifetime of the plant.

Substituting this choice of profit function into the general Bellman equation (2.10) in

the pre-investment region and expanding E0[dW (C)] according to Ito’s Lemma gives

rW o = Po +
σ2C2

2
Wcc + µCWc (2.11)

which, choosing Po = αo − qoC, has the solution

W o = A1C
m + A2C

m′

+
αo

r
−

qoC

r − µ
,

where m and m′ are the roots of m̂(m̂ − 1)σ
2

2
+ µm̂ − r = 0. If r > µ > 0 then

we know that one root is positive, m say, whilst the other, m′, is negative. The first two

terms in this solution represent the value of the option to wait before investing whilst the

last two terms are particular solutions of the integral defining W , (2.7), (of course the

integral must be a solution of the Bellman equation derived from it). Since we require

W o(C = 0) to be finite we can set A2=0. So the value of the option to invest is given

by A1C
m and is unknown at this stage since the constant A1 has not been determined.

In the region where it is optimal to invest (C > C∗) we have

rW n = Pn − (ξ + r)I(t) +
σ2C2

2
Wcc + µCWc. (2.12)

The solution of this equation is

W n = B1C
m +B2C

m′

+
αn − ξI(t)

r
− I(t)−

qnC

r − µ
.

This time it is clear that there is no value to the option to delay, since we are in the

investment optimal region. Thus we take B1 = B2 = 0 since we are not modelling an

option value of disinvestment (the investment is irreversible). See [Dixit (1989)] for an

example where the option to disinvest is included.

The final two boundary conditions are the value matching condition on the free bound-

ary

W o(C∗) = W n(C∗)

and the smooth pasting condition

W o
c (C

∗) = W n
c (C

∗).

11
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If W o and W n did not match continuously and tangentially at C∗, then it would be op-

timal to invest at a different point to C∗ (i.e. it would not be optimal to invest above

C∗ and wait below C∗). This is proven by contradiction in [Dixit and Pindyck (1994)].

(Note that our investment decision is akin to deciding the optimal time to excercise an

American option. In this case the value matching and smooth pasting boundary con-

ditions ensure that there are no arbitrage opportunities). Together these two boundary

conditions determine the constant A1 and the free-boundary C∗.

Applying the value matching and smooth pasting boundary conditions we find that the

free boundary is given by:

C∗ =
m

m− 1

(

αo − αn − I ′(t)

r
+ I(t)

)

r − µ

qo − qn
(2.13)

after substituting I ′(t) for −ξI(t). This expression for C∗ is the main result of this

work. For values of C > C∗ it is optimal to invest immediately whilst for values of

C < C∗ it is optimal to wait. The implicit time dependence of C∗ is a major advance on

previous works which assume unrealistic fixed investment costs over time. Of course

the methodology at arriving at this formula is not restricted to modelling CCS invest-

ment but rather is well suited to modelling situations where it is desirable to ‘switch’

optimally under exogenous uncertainty-the functional form of the profit functions being

critical in describing a particular switching scenario.

Note that we can already see a value to waiting to invest since (−I ′(t)) > 0 behaves

like extra revenue for the plant that has not yet been upgraded (αo/r).

For an investment cost decreasing with time, I ′(t) < 0, C∗ tends to a positive constant

proportional to the difference in gross revenues △α := αo − αn as I(t) tends to zero.

This makes intuitive sense since without investment costs the decision to invest will

be made on the basis of the relative attractiveness of the retrofit as described by the

parameters α0, αn, qo and qn, r, µ and σ.

C∗ tends to the same non-zero constant described above in the case where the investment

costs are increasing with time according to I ′(t) = rI(t). In this case the discounted

investment cost appearing in the integral (2.7) is T-independent leaving only the constant

I(t = 0) which does not affect the optimisation.

However, if the rate of growth of the investment cost is greater than r then the NPV

integral and also C∗ tend to −∞, so we must exclude this case from our analysis on the

grounds that W is not bounded.

We now apply techniques of comparative statics to determine how C∗ changes as its

parameters vary.
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We first study how this investment threshold changes as the carbon permit price volatil-

ity is varied, this standard argument may be found in more detail in [Dixit and Pindyck (1994)],

for example. First note that the only term in (2.13) that depends on the volatility σ is m,

where recall that m is the positive root of the fundamental quadratic

Q(m̂) = m̂(m̂− 1)
σ2

2
+ µm̂− r = 0 (2.14)

The coefficient of m̂ in Q(m̂) is positive so Q(m̂) describes an upward pointing parabola

tending to ∞ as m̂ → ±∞. Now Q(1) < 0 since we are assuming µ < r, and Q(0) < 0.

Therefore the graph of Q crosses the horizontal axis at one point to the right of 1 and at

one point to the left of zero. Thus at the positive root m̂ = m > 1. We are interested

in how m changes as the volatility is varied since m is the only parameter in (2.13)

that depends on σ. For this we follow [Dixit and Pindyck (1994)] and take the total

derivative of (2.14) with respect to σ to find

∂Q

∂m̂

∂m̂

∂σ
+

∂Q

∂σ
= 0 (2.15)

with all derivatives evaluated at the positive root m. Since Q(m̂) is an upward-pointing

parabola, at m we have ∂Q

∂m̂
> 0. Furthermore

∂Q

∂σ
= σm̂(m̂− 1) > 0

at m > 1.

So we conclude that ∂m
∂σ

< 0 so that as σ increases, m decreases and in particular m
m−1

increases. So an increase in the volatility of the ETS permit price will push up the

critical threshold for optimal investment C∗ (see Figure 1 and the numerical example

that follows).

Note that expanding the explicit formula for the positive root m in a power series in σ
and taking the limit σ → 0 we find that m = r

µ
. In Appendix A we verify that the

deterministic limit of (2.13) gives the value of T that maximises the deterministic limit

of (2.7).

Now we define the difference in gross revenues of the plants △α = αo − αn and the

difference in the carbon coupling constants of the plants △q = qo − qn. Using (2.13) it

follows that
∂C∗

∂△α
> 0 (2.16)

and
∂C∗

∂△q
< 0. (2.17)
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Now (2.16) tells us that as we increase the difference between the gross revenues of

the plants the optimal investment boundary increases and it’s optimal to invest later,

since in this case the plant without the upgrade has an increased relative advantage over

the upgraded plant in terms of gross revenue. Likewise, (2.17) tells us that if the plant

without the upgrade emits more CO2 then the plant with the upgrade has a relative

advantage and so the investment threshold decreases and it’s optimal to invest earlier.

In Appendix B we plot C∗ varying △α (Figure 2) and varying △q (Figure 3) for the

range of parameters used in the the numerical example in the next section.

2.4 A numerical example of the investment decision in the rest of

Europe

To illustrate the utility of our expression for C∗ we will give a numerical example. We

assume again we are dealing with a baseload coal plant throughout the lifetime of the

plant.

We will choose the discount rate r = 0.06 and the carbon permit drift µ = 0.05. In

fact, as noted in [Abadie and Chamorro (2008)], some authors recommend using a much

higher discount rate-as high as 14.8% in [Rubin et al. (2007)] to reflect the higher risk

involved in CCS investments. For fixed 0 < µ < r, the higher the discount rate, the

faster the convergence of the NPV integral and so our approach of using an infinite

planning horizon becomes more similar to a finite horizon problem.

To consider the effects of carbon price volatility on the investment timing decision we

plot the free boundary C∗ with △q as above and with △α =e(22 + 50) × 106 i.e.

assuming 22Me/y cost to transport and store the carbon and revenue depletion of e50

M due to the reduced output of the upgraded plant (the comparative statics result (2.16)

tells us that increasing △α pushes up the investment boundary C∗). We plot C∗ for

σ = 0, the deterministic case, and for σ = 0.3, the stochastic case. In the deterministic

case the intersection of the deterministic carbon price curve and the free boundary C∗

gives the maximum of the NPV (not shown).

A summary of all the parameters used in this example is given in Table 2.

In the stochastic case the time of optimal investment depends on the sample path of our

GBM. However we can still define the optimal ‘switching time’ as

Ts := inf{t > 0 : C(t) ≥ C∗(t)}

where inf stands for infimum or greatest lower bound, see [Mosino (2012)] for exam-

ple. For presentation purposes we take the the deterministic path followed by C as our

14
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Table 2: Parameters used in Figure 1 to plot the optimal investment boundary C∗ (2.13)

Parameter Value

Discount rate r 0.06

Drift rate µ 0.05

Volatility (Deterministic scenario) σ 0

Volatility (Stochastic scenario) σ 0.3

Initial Carbon Price C(t = 0) 5e/tCO2

Investment Cost Function I(T ) e214.5× 106 exp(−0.0202T )
Difference in Plant gross revenues △α e(22 + 50)× 106/y

Difference in emission coupling Constants △q 2.397× 106tCO2/y

reference path, even in the stochastic case. Figure 1 clearly demonstrates the effect

of volatility on the optimal decision choice. When σ = 0 we recover the determinis-

tic solution and the intersection of C and C∗ gives the maximum of the NPV. Adding

volatility to the ETS price drives the free-boundary C∗ upwards hence delaying the opti-

mal decision to invest further, in agreement with the comparative statics of the previous

section.

For the range of parameters chosen, investment in carbon capture technology is not

optimal in the normal lifetime of an SCPC power plant which we take to be 40 years

and assuming that the investor will not invest after the 35 year period as they will want

to recoup their investment (for the reference path chosen Ts is approximately 38 years

for the deterministic scenario and approximately 50 years for the stochastic scenario).

The significant difference between predicted investment timing in these two scenarios

illustrates the sensitivity of investment to the expected volatility of carbon prices. This

volatility assumption, in turn, depends upon the form of climate policy that is in place

and the way the policy is operated. In particular, if climate policy relies on tradable

carbon permits, as in the ETS, expected price volatility will likely be higher than if

carbon taxes are used. Both mechanisms can give rise to some carbon price volatility,

but taxes tend to change more slowly and predictably than the prices of permits. Permit

systems are intended to guarantee a quantity of carbon abatement but must allow price

variation to achieve this.

Figure 1 illustrates the point that putting structures in place that reduce the volatility of

the ETS price (such as a carbon tax or binding carbon price floor) will lead to earlier

investment in abatement technologies than maintaining volatile carbon prices.
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Figure 1: The intersection of the expected ETS price with the critical boundary curve

C∗ with and without ETS price volatility.
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3 Discussion

In this work we have determined the optimal time to invest in CCS technology in

Great Britain where the carbon floor price effectively removes emission cost volatil-

ity to fossil-based electricity generators. We also determined the optimal time to invest

in CCS in the rest of Europe where the cost of emissions to electricity generators is

volatile. We improved upon existing literature in our analytical models by including

time dependent costs so that the investment decision has an added component, namely

the value of waiting for investment costs to decrease sufficiently.

In our deterministic model for the investment decision in GB-simple calculus techniques

were sufficient to determine the investment time that maximised the net present value of

the option which we found to be during 2020 in our model with the carbon price fully

determined by the carbon floor price.

In contrast the optimal investment time for our stochastic model of the investment deci-

sion in the rest of Europe was highly sensitive to the level of volatility in the ETS permit

price (assumed to follow geometric Brownian motion). With volatility level of σ = 0.3
the optimal investment time was post 2060 (leaving little or no time for the investor to

recoup the investment cost) and approximately 2050 when σ = 0, both times taken with

respect to the expected ETS permit price path as explained above.

This work has policy implications in the area of maximally incentivising investment

in carbon abatement technologies such as CCS. It contributes to the ongoing debate

on reform of the ETS by providing evidence on the merits of a tax-based system to

accelerate optimal investment in carbon abatement technologies. We have shown that

different investment timing decisions are optimal depending on the level of volatility in

the ETS price. Carbon taxes and tax-type climate policy mechanisms such as the newly

introduced carbon floor in Great Britain can substantially reduce the uncertainty in the

carbon price and push the critical value of C for investment, C∗, lower. They are likely

to be more effective than permit-based policies for the policy priority of encouraging

investment in abatement technologies. Of course, their wider efficiency properties de-

pend upon the tax/carbon price floor being set at an appropriate level and on the policy

being harmonised across as many jurisdictions as possible.

As noted in [Abadie and Chamorro (2008)] different methodologies and parameters used

in the existing literature will lead to different estimates of the optimal investment thresh-

old. The main contribution of this paper is an analytic model of the CCS investment

decision with the important advancement of the inclusion of time dependent investment

cost in regions where the carbon price is based on a tax and in regions where it is based

on a tradable permit. We reproduce the qualitative features of previous research, namely

that volatility increases the investment threshold and that at current ETS permit prices
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it is not optimal to invest in CCS.

Appendix A

In this appendix we verify that in the limit as σ → 0, that the integral (2.7) is maximised

by the σ → 0 limit of (2.13).

In this limit W becomes:

W (C) =

∫ T

0

Po(C(t))e−rtdt+

∫

∞

T

Pn(C(t))e−rtdt− I(T )e−rT . (3.18)

This may be differentiated with respect to T which yields

dW

dT
(T ) = (Po(C(T ))− Pn(C(T )) + rI(T )− I ′(T )) e−rT (3.19)

with an extremal value of T found by setting it equal to zero.

To determine whether this extremal value is a maximum or a minimum we differentiate

once again with respect to T

d2W

dT 2
(T ) = −r (Po(C(T ))− Pn(C(T )) + rI(T )− I ′(T )) e−rT (3.20)

+

((

dPo

dC
−

dPn

dC

)

dC

dT
(T ) + (−I ′′(T ) + rI ′(T ))

)

e−rT . (3.21)

The first term in brackets on the right hand side above vanishes at an extremal value

(it is equal to −r dW
dT

). Since we are assuming the profits of the plant that has not been

upgraded, Po, fall off faster with increasing carbon price C than the upgraded plant’s

profits, Pn, we have that

(

dPo

dC
−

dPn

dC

)

= −△q < 0.

In the deterministic limit of an ETS price following geometric Brownian motion we

have exponential growth

dC = µCdt,

18
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where µ is the constant drift rate taken to be positive to model an increasing ETS price,

i.e.
dC

dT
= µC > 0.

Furthermore, we assume that as the technology matures the investment costs will de-

crease so that for a convex decreasing investment cost function I(T )

(−I ′′(T ) + rI ′(T )) < 0.

Therefore, for quite general choices of Po,n and I(T ) we find

d2W

dT 2
< 0

at an extremal value and therefore the NPV is maximised at the value of T obtained

from setting (3.19) equal to zero.

Substituting our linear functional forms for Po and Pn into

Pn(C(T ))− Po(C(T )) = rI(T )− I ′(T )

and rearranging terms we are left with the deterministic free boundary equation for C∗

(noting that m → r/µ as σ → 0).

Appendix B

In Figure 2 we plot the optimal investment boundary in the stochastic case (σ = 0.3) for

three values of the revenue depletion due to the reduced output of the CCS retrofitted

plant, namely, for △α = (22+ 25)× 106e/y, △α = (22+ 50)× 106e/y (the reference

value used in figure 1) and for △α = (22 + 75) × 106e/y. For a higher gross revenue

of the retrofitted plant compared to reference value the optimal investment threshold

decreases whilst for lower values of the gross revenue of the retrofitted plant the optimal

investment threshold increases, in agreement with our comparative statics (2.16).

In Figure 3 we can clearly see that the more CO2 is emitted (i.e. the less that is captured)

the higher the investment threshold, again in agreement with (2.17). Note that we have

ignored the fact that the investment costs for a retrofit capturing less than 90% of the

carbon (the reference value qn = qo/10) would be much less and therefore would push

the investment threshold downwards.
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Figure 2: The intersection of the expected ETS price with the critical boundary curve

C∗ for three values of △α.
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Figure 3: The intersection of the expected ETS price with the critical boundary curve

C∗ for three values of △q.
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