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SUMMARY

The largest partial sum of deviations from the mean is a statistic of importance in several areas of
application, including hydrology and in testing for a change-point. Approximations to its distribution
for the simple normal case have appeared in the literature, based either on functionals of Brownian
motion asymptotics or on a methodology developed for boundary crossing problems in sequential
analysis. The former approximation is inaccurate except for very large samples, while the latter is
based on rather difficult theory. In this paper, we first review some early findings about exact
moments and extend them somewhat. We then use these moments to fit simple Chi-squared and Beta

approximations and show that they work very well.
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1. Introduction

The scaled largest partial sum of deviations from the mean

Ws:%{maxk{i(xi —J?)} } (0

where 1<k <n, ¥ =2Xx/n and s* = Z(x — x)* / n, with the summations taken 1 ton, is a
statistic of importance in several areas of application. It seems to have first appeared in hydrology, in
studies of reservoir storage (Hurst, 1951). The x’s were variable inflows in successive time periods
(often annual), with X a constant outflow, and it was called the “adjusted surplus”. Along with the
scaled minimum partial sum (the “adjusted deficit™) and their difference (the “adjusted range”, or R/s
statistic) it played an important part in reservoir design and this stimulated statistical research on
distributional properties, commencing with the asymptotic approach of Feller (1951). Substantial
findings on the finite sample distribution followed, commencing with Anis & Lloyd (1953), which
have been reviewed by Lloyd (1981).

The statistic (1) and several related statistics are also employed in testing for a change-point, that is,
of testing the hypothesis that the x’s are independently identically distributed against the alternative
that at some r (1 < 7 < n) the distribution changes. For the case of normal x’s and an alternative of
a single change in the mean, findings and discussion in James, James & Sigmund (1987) suggest that
(1) is preferable when the change-point is towards the centre of the data set, rather than close to either
end. They provided approximations to the null distributions of both M/s and the somewhat simpler
statistic obtained by replacing s by a known standard deviation ¢. These statistics can be given score
type interpretations and have also been applied to other than the simple normal case. Pettitt (1980)

considered zero-one data, while Ploberger & Kramer (1992) use (1) to test for parameter constancy by
replacing the x; — X by regression residuals, giving a cusum statistic like that of Brown, Durbin &
Evans (1975), but based on ordinary rather than recursive residuals,

Statistics similar to (1) also arise in boundary crossing problems in sequential analysis. Indeed, it
was the methodology developed in that field (Siegmund, 1985, 1986) that was utilised to derive the

approximate distributions of M/c and M/s in James et al (1987). See also James, James and Siegmund

(1988). The methodology is quite difficult, involving large deviation theory and discrete time




corrections to functionals of Brownian motion type approximations to boundary crossing probabilities,
although the final formula for a significance probability is simple for M/o and tractable, given
numerical computation, for M/s. The approximating distribution employed by Ploberger & Kramer
(1992) uses the familiar Brownian bridge approximation to partial sums of deviations to derive critical
points. However, unless n is very large the tail probabilities can be very inaccurate.

In many fields of statistics the most widely-used, and often the soundest (see, for example, Cox &
Hinkley (1974), pp. 462-465) approach to approximating a complicated distribution is to fit a simpler
distribution, that has much the same range and general shape, by equating moments. In this paper, we
first review the existing results on the exact moments of M/c and M/s and extend them somewhat. We
then show that for the simple normal case Chi-squared and Beta approximations are easily fitted.
Through a Monte Carlo simulation study, we confirm these approximations are very accurate and
compare well with the James et al formulae and are much superior to the Ploberger & Kramer critical

values. We conclude with some comments on possible extensions to econometric models.
2. Exact moments

Anis & Lloyd (1953) investigated the distribution of
~k
max k (21 xi ) H

with 1 < k < 7 and the x’s independent standard normal and found its exact expectation. Anis (1955)

found the exact variance and continued (Anis, 1956) to obtain a recurrence relation for higher

moments. Solari & Anis (1957) considered the distribution of M/c

Y

where the x’s are again independent with arbitrary mean, but known variance. They showed the
distribution has a ‘spike’ at the origin, the probability of all the partial sums being negative or zero
equalling n”, and they obtained the first two moments. The expectation (as later slightly rearranged by

Boes & Salas-La Cruz (1973)), is

1 & n-j
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and the second moment is
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These have been tabulated by Solari & Anis for a range of n, but are obviously easily computed.

The expectation of (1), M/s, could now have easily been deduced from (2) if Solari & Anis had
employed a result of Geary (1933). Geary showed that, for normal samples, ratios with s as the
denominator are independent of s if they are homogeneous of degree zero, Hence, in such cases,
moments of ratios are obtained by dividing the moments of the numerators by those of the
denominators. The statistic (1) is homogeneous of degree zero and so, given normality, is independent
of its denominator. So the expectation of the numerator, which is (2) by o, is the product of the
expectation of the ratio and the denominator. As is well known (for example, exercise 17.6 of Kendall

& Stuart, 1967, vol. 2, p.32)
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and dividing (2) by (4) immediately gives
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2dn T(n/2) ; i ®

Instead, the exact mean of M/s remained unknown until Anis and Lloyd (1976), using a theorem of

Spitzer (1956) showed, with substantial manipulation, that it is (5). Using the same approach, the
second moment of M/s, which has not previously appeared in the literature, is (3) divided by the
expectation of s%/6%, which is (n-1)/n. Rearranging to a more convenient computational form, it is

1 n+1+ rin E{Zi_ni L } . (6)
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3. Approximating by equating moments

Since the distributions of M/ and M/s have a spike at the origin, what will be approximated are the
distributions conditional on non-zero statistics. The means and second moments are then n/(n-1)
multiplied by (3) and (4) for M/c and n/(n-1) by (5) and (6) for M/s. The ascertained probability that
a critical point is exceeded in an approximating distribution can then be multiplied by (n-1)/n to allow

for the probability mass at the origin.




There is an important difference between the M/c and M/s statistics in that the latter is bounded and

functions of bounded variables are often approximated by Beta distributions. From Mandelbrot (1972),

itis clear that M /s <n/2,andso
_4_M2 4 M?

2 s n Z(xi—g‘c)z

appears to have the right dimensions for a Beta, with a range from zero to one, the denominator a sum

)

of squares of deviations and the Beta ratio property that the ratio is independent of the denominator.
For known &, which may be taken as unity, the corresponding approximation relates 4M%n to a
chi-squared. A simple one moment approximation would then take 4M>/n as chi-squared with (non-

integer) degrees of freedom estimated as either f = (3) multiplied by 4/(n-1), or £ * obtained by

equating (2) multiplied by 24n /(n —1)to the ‘half’ moment of chi-squared
Vz I'(f/2+.5)
r(fr2) -
The comparison of the two estimates in Table 1 for a selection of values of n shows little difference
and provides reassurance about the plausibility of the chi-squared approximation. In the next section
we will use £, rather than f*, because it is simplest,

Table 1. ‘Degrees of freedom’  fand f*

Sample size 10 20 30 40 60 80 100
f 1.34 1.49 1.56 1.61 1.67 1.71 1.74
£* 1.36 1.50 1.57 1.61 1.67 1.71 1.74

I 2¢ .
A two moment approximation to ay f2 or to ¥, would be possible, of course, but as Table 1

suggests and the simulations in the next section will confirm, it is hardly worthwhile. It may be worth

noting that Solari & Anis (1957) showed that 3), = n/2— \/17 asn—oo,s0f > 2asn — oo,
although it is well short of this for n = 100 and converging only slowly.

Returning to the case of unknown o, let ¢; denote (5) multiplied by 2/(n-1) and c, denote (6)
multiplied by 4/(n*n). A one moment approximation to a Beta, with parameters p and q, would take
p +q=(n-1)/2 and, via ¢, = p/(p+q), p = ¢, (n-1)/2. A two moment approximation uses ¢, = p/(p+q)
and solves for p from

o = I'(p/c,)I'(p+.5) .
I'(p/c, +5)T(p)




4. Comparing approximations

The asymptotic (via the Brownian Bridge) approximation to the probability, assuming ¢ = 1, that

o o]}

used by Ploberger and Kramer (1992) is
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The large deviation approximation given by James, James and Siegmund (1987) is

2
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Of course, the probability of (8) is the same as that of

o fp o)

exceeding 4b%, which is approximated by chi-squared. For large b and n — oo all three become
exp(-2b?), since the large deviation probability for a chi-squared exceeding 4b” is (for example,

Abramowitz & Stegun, 1972, p. 941)

1

(2b2)f/2—1 e—2b2 .
T(f/2)

However, in finite samples it turns out that the probability given by chi-squared is close to the true

probability of (8) and to (10), but quite different from (9). In Table 2, the first column in each sample

size sub-table contains the ) f2 ‘critical values’ for not/(n-1) with a0 =.5, 4, .3, .2, .1, .05, .025, .01,

The second column, labelled ot gives the actual proportions of times these values were exceeded in a

Monte Carlo simulation with 6000 replications for each sample size and, obviously, the closer ¢¢ “to

«, the better the chi-squared approximation. The distribution of

e o)

is identical to that of M / «/; , SO that proportiohs were also estimated from this statistic. This more
than doubled the effective simulation replication, because the maximum partial sum and minus the
minimum partial sum are negatively correlated and so constitute antithetic variates. The third column

contains the value given by (10) with b replaced by half the square root of the critical chi-squared




value and is labelled JJS. The fourth column contains the corresponding values given by (9) and is

labelled PK. The results presented are for the sample sizes n =10, 20, 30, 40, 60, 80 and 100. A larger

set were actually employed in the study, but the results for 50, 70, etc. conform fully with those

presented,

Table 2.  Performance of the chi-squared approximation — the known variance case

Sample size n=10 n=20 n =30
o x; o JIS PK x; o JIS PK x; o JIS PK
5 61 512 515 499 82 508 507 493 91 503 505 488
4 93 411 410 486 117 403 405 466 128 405 404 453
3 137 307 305 441 165 302 303 402 178 299 302 383
2 203 198 200 345 235 196 200  .300 250 199 200 280
1 322 093 09 .198 359 096 098 .166 376 095 099 152
.05 445 047 046 108 486 .050 .048 .088 505 047 .048 080
025 571 023 022 058 615 025 023 046 636 024 024 042
o1 740 008 008  .025 788 011 .009 .019 811 010 009 .017
Sample size n=40 n=60 n =80
o x; o JIS PK x: o JIS PK x; o JIS PK
5 97 502 504 484 1.04 493 503 478 109 503 502 474
4 135 398 403 444 143 398 403 433 149 405 402 426
3 1.86 299 302 371 195 301 302 357 201 302 302 348
2 259 202 201 269 269 202 201 256 276 197 201 247
1 3.87 099 099  .144 399 097 099 136 407 100 099 130
.05 517 049 049 075 531 049 049 070 540 050 049 067
025 648 024 024 039 664 024 024 036 673 025 024 034
.01 824 010 009 016 840 .009 010 .015 851 010 010 014
Sample size n=100
2 *

o Xs o JIS PK

5 112 503 503 472

4 152 403 402 421

K] 2.05 301 301 342

2 2.81 203 201 242

1 412 102 .100 127

.05 545 052 050 065

025 679 027 024 033

01 8.58 010 010 014

The chi-squared approximation generally fits well over all ‘critical values’, so that it can be used to

evaluate P-values as well as test hypotheses, but the tail points for o =.1, .05, .025 and .01 are of most

interest. The corresponding O¢ * values are obviously close to these o, but the matter deserves a little




more examination. The James et al (1987) probability formula (10} applied to the chi-squared points

give very similar values to the simulation results. If the JJS tail values were consistently substantially

closer to the ¢¢" than the latter were to the 0., the chi-squared approximation would be inferior to use of
(10). However, except for n=10, this is not consistently so and even then the difference is slight. It may
be worth remarking that for tail values and n as low as 10, accurate probabilities can be obtained from
Bonferroni bounds in the manner of Worsley (1982). All this is not to claim that the chi-squared
approximation is superior to (10), but it is of comparablé performance.

The Ploberger & Kramer (1992) formula (9) gives higher values in the tails — very much so for low
n, but still appreciable at n=100. So using critical values based on (9) would imply a true size of test
well below the nominal 0. Ploberger & Kramer reported a Monte Carlo simulation for n=120, where
the proportion exceeding a nominal 5% (two tail) point was actually .0378. The situation is much
worse at lower n, however. In our simulation, for example, the estimated probability of (8) with b =
1.36, which is the nominal 2.5% (one tail) point based on (9), was .01 for n=30 and .006 for n=20.

Turning to the case of ¢ unknown, the James et al formula for the probability that
1 k
max, Z(x,. ~-X)¢ |>b
Vn s 1

{1—422.}('1_3)/2V —————-—4b/\/—’; . 1
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n

is

where

2 1. 1
V(z) = 'Z—ZCXP{— Z;‘I’(—gzﬁ)}’ (12)

1
with @ the standard normal distribution function.

The two Beta based approximations were described in the last section. The simple single moment
approximation will be denoted B1 and the two moment approximation B2. The ‘critical’ tail values for
both were obtained from the inverse of the Beta integral (now a standard feature in most statistical
computing packages) and compared in a simulation study, which was again based on 6000 replications
and used both the maximum and minus the minimum partial sums.. For consistency, the corresponding

‘critical’ JJS values were obtained from solution of (11) for b, given tail probabilities. As this is not a

trivial computation, the approximation, used in James et al (1987), of V(z) = exp(—.583z) and valid




for 0 < z <2 was employed in all cases except for n =10, with ot=.025 and .01, when z exceeded 2.
The Ploberger & Kramer critical values were also investigated in the study, but as in the case of known
o, proved so inaccurate that they will not be further reported on.

The three sets of ‘critical’ values are generally very close together. For lower sample sizes, the
pattern is that the B1 value is slightly higher (further to the right) than the B2 value, which in turn is
very slightly higher than the JJS value, but as sample size increases the B1 value falls very slightly
below the B2 value. The important issue is how they compare in terms of ‘true’ probabilities as
estimated in the Monte Carlo study. The results are shown in Table 3.

Table 3.  Performance of the Beta approximations — the unknown variance case

o=.1 o =.05 o =.025 o =.01

n B1 B2 JJIS Bl B2 JJIS Bl B2 JIS B1 B2 IS

10 09 100 .105 .046 .050 .055 .020 .023 .023 .008 .010 .01l
20 093 .094 094 .044 046 .046 .019 .020 .021 .006 .007 .008
30 09 .097 .097 .047 048 .048 .024 .024 025 .009 .009 .010
40 098 .099 .100 .047 .048 .048 .020 .020 .020 .007 .007 .008
60 099 .098 .100 .050 .050 .051 .025 .024 .025 .009 .009 .009
80 097 097 .097 051 .050 .051 .026 .026 .026 .010 .010 .01l
100 099 099 .099 .051 .051 .051 .025 .025 .025 .010 .010 .011

The distributions of 6000 maxima and minima were generated independently for the different sample
sizes, but of course are kept the same for the critical values given sample size and so, for example, the
consistent slight shortfall from nominal levels for n =20 contains a sampling effect. Overall, there is
nothing to choose between B2 and JIS as regards accuracy of test size. Bl is just as accurate as B2
for n > 40, but even for n =20 the very slight underestimation relative to B2 could hardly be considered
of practical importance. The underestimation may be more appreciable at n =10, though still small, but
the earlier comment about Bonferroni inequalities applies to the unknown G case too.

Just as for chi-squared in the case of known o, the simulation showed that the Beta approximations
were accurate in giving probabilities well outside the tail, so that computation of P values is quite

feasible .

5. Concluding remarks
The James et al (1987) approximations to the distributions of M and of M/s are very good and the
chi-squared and Beta approximations obtained in this paper cannot really improve on them. But they
are as good and are derived by the familiar method of fitting curves by moments using longstanding

results from statistical hydrology and a simple application of Geary (1933). But besides showing the
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relevance of these rather neglected results, the approach of this paper may be relevant in fields where
testing for parameter stability is important. For example, in econometrics the topic of structural chan ge
and the need to test for it has received and continues to receive much attention.

The authors providing the methodology for such investigations (Ploberger and Kramer, 1992;
Andrews, 1993; among others) rely heavily on approximations based on functionals of Brownian
motion in spite of the associated inaccuracy. This may be because the theory underlying the James et al
approximations is considered difficult and the task of applying it the maximum of a partial sum of
residuals (or some related statistic) from a complex econometric model, instead of from a simple
normal distribution, may be seen as daunting. Perhaps tﬁc possibility of obtaining accurate
approximations through traditional fitting by moments may be considered less so. The task is
still demanding, of course, as at least one moment of the statistic must be determined, or at least

approximated.
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