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The Direct Impact of Climate Change on Regional Labour 
Productivity  

 

Introduction 

 

“Too hot” working environments are not just a question of comfort, but a concern for health 

protection and the ability to perform work tasks. This occupational health problem has been 

known for considerable time and protective methods have been developed. Still, many 

workers are exposed to unacceptably high temperatures and humidity in work situations that 

cannot be modified and heat strain and heat stroke are important issues not only for health but 

also for labour productivity 1-4. In outdoor, and many indoor, jobs, particularly in low and 

middle income countries, air conditioning of the workplace is not, and will possibly never be, 

an option. Global climate change will increase average temperatures, as well as shift the 

distribution of daily peak temperature and relative humidity – so that heat episodes will 

become more frequent and more extreme5, 6. In order to cope with heat, an instinctive 

adaptive action by a worker is to reduce work intensity or increase the frequency of short 

breaks. One direct effect of a higher number of very hot days is therefore likely to be the 

“slowing down” of work and other daily activities 7. Whether it occurs through “self-pacing” 

(which reduces output) or occupational health management interventions (which increases 

costs), the end result is lower labour productivity (which is defined as the value of output 

over labour costs)3. 
 

When the body carries out physical work, heat is produced internally, which needs to be 

transferred to the external environment in order to avoid the body temperature increasing.8 If 

body temperature exceeds 39°C heatstroke may develop and a temperature of 40.6°C is life-

threatening. Before these serious health effects occur, at lower heat exposures, the effects are 

diminished “work ability”8, 9, diminished mental task ability2, and increased accident risk10. 

These effects all contribute to a reduced “work ability” and lower labour productivity.  

 

Reduced work ability is a function of environmental humidity, radiant heat, air movement 

and ambient temperature11. In humid and calm conditions, it can occur above 26°C for heavy 

physical work12, 13 but individual variations are large and a complex relationship between 

climate factors, sweat rate and body temperature has been used to establish a “predicted heat 
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strain model”14. Heat strain can occur in arid climates 15, indoor office environments16 and 

factories17. Unusual heat waves create particular problems, as during the 2003 heat wave in 

France18. The economic cost of the existing suboptimal climate in US workplaces has been 

estimated at many billions of dollars19. 

 

Quantitative standards to protect workers from heat injury have been developed by the 

International Standards Organization13 and NIOSH20. More recent national guidelines also 

appear to be based on these. Most standards use “wet bulb globe temperature” (WBGT) to 

quantify different levels of heat stress and define the percentage of a typical working hour 

that a person can work assuming the remaining time is rest. The NIOSH standard also 

stipulates a WBGT level above which no worker should be expected to carry out ongoing 

tasks. The standards are stricter for persons un-acclimatized to heat than for those who are 

acclimatized. For un-acclimatised persons faced with a very energy demanding work task, the 

need to reduce heat stress starts at WBGT above 22.5°C; for acclimatized persons, this 

reduction starts at a WBGT of 26°C13, 20.  

 

An assessment of the potential impact of climate change on “work ability” and the associated 

economic costs has not yet been made. Occupational health risk have been given little to no 

attention in international or national climate change impact and vulnerability assessments 21, 

22. This paper estimates the extent to which climate change may affect labour productivity 

due to increased ambient temperatures and/or humidity, under future climate scenarios.  

 

 

Methods 

We used global climate model data for different world regions in combination with the 

relationships between WBGT and work ability to calculate the relative change in population 

work ability at different future time periods and for different climate scenarios. The analysis 

went through five steps: 

1. Classify populations by world region and climate type and select representative 

points. 

2. Obtain daily climate model data for each point, representing the sub-regional climate 

zone in which at least 5% of the regional population live.  
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3. Calculate current and future distributions of daily daytime WBGT ("work WBGT") 

for each sub-regional climate zone and then generate a single regional work WBGT 

series using a population-weighted average.  

4. Estimate current and future relative work ability, in order to estimate labour 

productivity losses due to global climate change for each gross labour sector 

(agricultural, industrial, service). 

5. Combine sector-specific estimates to a single regional estimate using the distribution 

of working population across sectors.  

 

Note that throughout the paper, we assume that changes in labour productivity (an economic 

concept) are equal to changes in the work ability (a physiological concept) – that is, we 

abstract from changes in wages. We also ignore changes in behaviour (e.g., shifts in working 

hours, air conditioning). We estimated “labour productivity” for 21 world regions, where 

countries are grouped according to health indicators and geography (Figure 1). In order to 

take into account the diversity of climates within each region, we selected grid cells (from the 

climate model grid) representative of the main climate types in which people live within each 

region, based on the Köppen climate classification23. A Geographic Information System 

(GIS) was used to allocate the proportion of the regional population (year 2000) to each 

climate zone, using the Gridded Population of the World version 3 (GPW v3)24. We then 

selected the climate zones in which at least 5% of the regional population resided (Table 1). 

A population-weighted centre point was calculated for each of these climate zones and the 

climate grid cell in which this was located was then chosen. This gave a total of 93 grid cells 

(Figure 1). 

 

Daily data (24-hour averages) were extracted for these climate grid cells for the years 1960 to 

2100 for two climate scenarios: A2 and B2. These climate scenarios are derived from 

specified emissions scenarios that project future economic growth and technological 

development within a consistent storyline25. The A2 scenario assumes a high population 

growth and medium rapid economic development and therefore represents a moderately 

“high” emissions scenario. The B2 scenario assumes that greenhouse gas emissions are 

reduced through technological change and that there is more emphasis of governments 

addressing environmental problems through policy implementation. The increase in global 

mean temperature by the 2080s from pre-industrial levels is projected to be 3.4 °C (2.4 to 6.4) 

and 2.4 °C (range 1.4 to 3.8) for A2 and B2, respectively26. 
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WBGT is calculated from measurements of the natural wet bulb temperature (Tnwb), the 

globe temperature (Tg) and the dry bulb air temperature (Ta). WBGT outdoors is 0.7 Tnwb + 

0.2 Tg + 0.1 Ta, and WBGT indoors is 0.7 Tnwb + 0.3 Tg. Note that Tnwb and Tg outdoors 

are likely to be much higher than Tnwb and Tg indoors, because of the influence of solar 

radiation. The specialised measurements for WBGT are not available from routine weather 

stations, and various formulas have been developed to estimate WBGT from the routinely 

collected data (Ta, relative humidity, etc.). The Australian Bureau of Meteorology27, 28 

proposes a method for estimating “WBGT” from air temperature (Ta) and relative humidity 

(RH), assuming moderately high heat radiation level in light wind conditions (approximately 

outdoor work in hot calm environments with some, but not extreme, sun exposure or indoor 

work with some local heat source).  

 

This method was adopted from one suggested by the American College of Sports Medicine in 

198528, but the exact derivation of the formula was not explained. Other authors have 

proposed different formulas (e.g. Bernard and Pourmoghani29) and one of us (TK) has carried 

out preliminary field tests of measuring the difference between WBGT outdoors and indoors 

in the same location. TK also used hourly weather station data to assess the difference 

between 24-hour averages and mean daytime values for Ta and WBGT (6 am to 6 pm). Using 

24-hour average temperature and relative humidity from the HadCM3 global climate model30, 

we calculated WBGT using the Australian Bureau of Meteorology equations:  

 

WBGT = 0.567 x Ta + 3.94 + 0.393 x E 

 

E = RH/100 x 6.105 x exp(17.27 x Ta / (237.7 + Ta )) 

 

Where Ta = 24-hour average shaded dry bulb air temperature in °C; E = 24-hour average 

absolute humidity (water vapour pressure) in hPa, hector Pascal; RH = 24-hour average 

relative humidity in %. The factor 3.94 represents impact of WBGT from radiated heat, and 

we found that this formula produces too high WBGT values. In our (TK) analysis of hourly 

data we noted that the difference between 24-hour averages and daytime means in hot places 

were generally between 3 and 5°C. As a compromise we assumed that the WBGT values 

calculated from 24-hour values would represent the daytime mean WBGT outdoors. 
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Daily work WBGT estimates were made for the current climate (years 1961-1990) and three 

future 30-year time periods centred on the 2020s (2010-2039), 2050s (2040-2069) and 2080s 

(2070-2099). In order to take into account indoor heat exposures for industrial and service 

sector workers, we used the approximation that indoor WGBT = outdoor WBGT – 4, based 

on a deduction of the radiation exposure factor 3.94 from the formula above.  

 

The distributions of the number of days at different work WBGT values within each future 

time slice period were calculated. Figure 2 shows the distribution of WBGT under the current 

climate and three future climates for one location in South-East Asia. To provide a single 

estimate of the daily WBGT distribution for each world region, we combined the 

distributions for regional cells using population weighting. 

 

Using the ILO and NIOSH standards for acclimatized persons, Kjellstrom7 produced a graph 

of “work ability” as the maximum percentage of an hour that a worker should be engaged 

working (Figure 3). The four curves represent four different work intensities. We assume that 

200 W corresponds to office desk work and service industries; 300 W to average 

manufacturing industry work and 400 W to construction or agricultural work. 500 W 

corresponds to very heavy labouring work and is not considered in this analysis. Work ability 

rapidly diminishes within a 10-20 degree range.  

 

We then classified the working population of each region into three sectors: service, industry 

and agriculture using World Bank data for 1990-200531. In each region, any country without 

labour data was assumed to have the same distribution pattern as the country with the nearest 

GDP for which labour data were available. Country data were combined using population-

weighted averages to give estimates of labour distributions for each region.  

 

Assuming the different work intensities for each sector (see above), we estimated regional 

labour productivity as a weighted average based on the distribution of work activities across 

the three sectors within each region. We assumed that labour patterns change over time 

consistent with economic growth projected under the A2 and B2 emission scenarios25, 32 

(Figure 4). North America was kept constant and all other regions converged towards this 

pattern as per capita income increased. Globally, GDP growth is higher under B2, and 

therefore more rapid convergence to the high income distribution occurs under this scenario 

than under A2.  
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We then calculated the number of days with reduced work ability for each day during each 30 

year period using the WBGT work ability relationships in Figure 3. The loss in work ability 

for each day was added up for each 30 year period. The reductions in work ability are 

presented for the baseline climate (we assume this to be 1961-1990 as it the standard now 

used for climate impact studies). For the two climate modelling scenarios and three future 

time periods, the additional reductions in relation to the reference period (no climate change) 

were calculated. As sensitivity analyses, we performed the same calculations assuming both 

constant climate and constant labour patterns over time.  
 

Results 

Climate change is associated with a shift in the distribution of daily temperatures to include 

more hot days, and more days with WBGT exceeding the threshold for heat tolerance in 

individuals. Assuming trends towards less labour intense work and no adaptation to climate 

change, our model shows significant reductions in labour productivity due to climate 

warming in a number of regions, particularly in Africa (Table 2). In terms of absolute change 

in labour productivity (hence reflecting both current and future climate patterns) by the 

2080s, the greatest losses (11.4-26.9%) are seen under A2 in South-East Asia, Andean and 

Central America, and the Caribbean. Under the A2 scenario, Eastern and Western Europe, 

and Southern Latin America have the smallest losses (0.1-0.2%), with a gain seen in Tropical 

Latin America (3.0%). Under B2, the combined effects of less warming and greater wealth 

(meaning more people work in less labour intense jobs) result in considerably smaller 

impacts in all regions (the greatest loss being 16% in Central America), and overall 

productivity gains for many (up to 6%).  
 

The difference between the climate scenarios is only apparent after the 2020s. This is due to 

the latency in the climate system, and any differences reflect natural climate variability and 

other uncertainties within the climate model. Ideally, an assessment should use a range of 

outputs from a range of climate models rather than a single model.  

 

The estimates of labour productivity are sensitive to the assumptions about future workforce. 

As labour moves away from agriculture and toward industry and services as wealth increases 

the impact of climate warming is reduced (Table 3). The estimated differences in loss 

compared to baseline can be as high as 10% by the 2050s.  
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Discussion 

The climate change “attributable” effect is the difference between labour productivity (in 

terms of lost labour days) under the baseline climate and under the climate scenarios. The 

relationship in our model are theoretical and potential and may not reflect actual labour 

productivity losses as there will most likely be some adaptation measures in place, such as the 

space cooling of offices and factories. It is not possible to validate the labour productivity 

loss for the current climate – but our measure of labour productivity is based on validated 

ergonomical guidelines13. However, adaptation measures will vary by country, with high 

income countries having higher rates of adaptation, using more expensive methods, than low 

income countries. 

 

Countries and individual businesses will vary in their willingness or capacity to adapt to the 

projected climate change. There is a strong incentive to adapt though. On average, the 

elasticity of output to labour is 0.7533. This implies that, for every 1% reduction in labour 

productivity, income falls by 0.75%. Without adaptation, the economic losses of reduced 

labour productivity relative to baseline (Table 2) are up to 20% of GDP (Central America, 

A2, 2080). 

 

There are several limitations to this study. We only look at one aspect of effects of climate 

change on labour productivity. The number of days worked depends on the weather in both 

cold and hot countries. Working hours and work practices may change, and air conditioning 

may be put in place. Wages would respond to changes in the ability to work and to the costs 

to enhance that ability; this would determine whether the employer or the employee bears the 

brunt of the decrease in work ability and it would shape the wider economic consequences. A 

more comprehensive analysis could address these outputs but is beyond the scope of this 

exercise. Second, the climate model grid cell output may not accurately represent the 

observed temperature and humidity exposures for a given location. We therefore only report 

the aggregated changes in the labour productivity by region under climate warming. 

 

The global burden of ill health from occupational exposures is large and often underestimated 

and under reported. The current WHO assessment does not include the effects of heat or cold 
34. The direct effect of climate warming on direct [worker] productivity has not been 

investigated, as far as we are aware. Although some models have converted health impacts 
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(mortality) into productivity losses, this is based on the assumption that mortality due to 

climate-sensitive diseases in adults will affect productivity at the regional level35. 

 

Changes in productivity due to reductions on cold stress are not included because a different 

association applies between productivity and exposure to severe outdoor cold climate at work 

in polar or temperate regions.. Exposures to indoor cold are better regulated as they generally 

occur in high income countries. For outdoor workers, the projected increases in temperature 

in polar regions are likely to have productivity implications too, but the numbers affected (in 

polar and sub polar regions) are very small, compared to workers in temperate, tropical and 

subtropical regions. We are not addressing performance based on comfort and other issues in 

the environment, motivation, etc, which may also be important. Changes in temperature will 

affect days available for outdoor work (decreasing the number of too cold days) but this 

outcome is also not addressed. We also do not address days lost due to illness (either heat-

related or cold-related or other climate-sensitive illnesses) which are an additional climate-

change “cost”.  

 

Assumptions about adaptation are key in all assessments of impacts on human systems due to 

climate change. As with many outcomes, there is a currently insufficient adaptation to 

climate factors in areas of limited economic development. There is an identifiable cost of 

climate change in terms of climate-proofing industrial and commercial buildings36. However, 

this is not always possible or may be prohibitively expensive, and it potentially increases 

greenhouse gas emissions. Further, there are limited adaptation options for outdoor work 

other than changes to hours and cooled suits. Nonetheless, future research should study 

adaptation to climate change in labour practices. 
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Figures and Tables 

 
Figure 1. Location of population-weighted centroids of climate zones which were matched to 

climate modelling points within the 21 GBD regions (regional boundaries shown as black 

borders on map). 

Figure 2. Distribution of WBGT for South East Asia under A2 

Figure 3. Schematic diagram – productivity and WBGT curves  

Figure 4. Distribution of gross labour sectors, estimated for baseline and in the 2050s under 

the A2 and B2 scenarios, for selected regions.  

 

 

Table 1. Regional characteristics  

Table 2. Estimates % labour productivity loss due to climate change by region.  

Table 3: Sensitivity of results to assumed labour trends and projected climate change, as 

change in percent days lost compared to baseline, for A2 in 2050s.  
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Figure 1. Location of population-weighted centroids of climate zones which 
were matched to climate modelling points within the 21 GBD regions (regional 
boundaries shown as black borders on map) 
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Figure 2. Frequency distributions of estimated WBGT in South-East Asia in 
current climate (1961-1990) and three future time periods under A2 
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Figure 3. Association between work ability and WBGT for four work intensities. 
Based on recommendations by NIOSH, 1986 (ref 20) 
 

 
 

Work ability (%) as a function of WBGT (°C ) 
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0 

 10
 20
 30
 40
 50
 60
 70
 80
 90
100

20 25 30 35 40

Temperature °C

Work Ability %

500 Watts
400 Watts
300 Watts
200 Watts



 14

Figure 4. Distribution of gross labour sectors, estimated for baseline and in the 
2050s under the A2 and B2 scenarios, for selected regions 
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2050s. 
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Table 1. Region characteristics, based on climate zones with at least 5% of 
regional population. 
World Region Main climate types* 

(% population in the region) 

Number of 
climate 

grid points 

% of 
populati

on 
represen

ted 

    

Asia Pacific, High 
Income 

warm temperate, fully humid, hot summer 
(63%) 

snow, winter dry, hot summer (11%) 

2 74% 

Asia, Central warm temperate, summer dry, hot summer 
(13.2%) 

6 52% 

Asia, Eastern warm temperate, fully humid, hot summer 
(33%) 
warm temperate, winter dry, hot summer 
(27%) 
snow, winter dry, hot summer (11%) 

4 79% 

Asia, South equatorial, winter dry (34%) 
warm temperate, winter dry, hot summer 
(27%) 
hot steppe (11%) 

5 86% 

Asia, South East equatorial, fully humid (24%) 
equatorial, winter dry (20%) 

7 76% 

Australasia warm temperate, fully humid, hot summer 
(35%) 
warm temperate, fully humid, warm 
summer (26%) 
warm temperate, fully humid, warm 
summer (16%) 

5 91% 

Caribbean equatorial, winter dry (32%) 
equatorial, winter dry (28%) 
equatorial, fully humid (15%) 

4 83% 

Europe, Central warm temperate, fully humid, warm 
summer (63%) 
snow, fully humid, warm summer (19%) 

3 90% 

Europe, Eastern snow, fully humid, warm summer (71%) 3 83% 

Europe, Western warm temperate, fully humid, warm 
summer (49%) 
warm temperate, fully humid, warm 
summer (16%) 

2 64% 

Latin America, Andean equatorial, winter dry (14%) 
warm temperate, fully humid, warm 
summer (10%) 

7 58% 

Latin America, Central warm temperate, winter dry, warm summer 
(15%) 
equatorial, winter dry (15%) 
equatorial, winter dry (14%) 

5 55% 

Latin America, South warm temperate, fully humid, hot summer 
(51%) 
cold steppe (10%) 

4 76% 

Latin America, Tropical warm temperate, fully humid, hot summer 
(33%) 
equatorial, winter dry (29%) 

5 80% 

North America, High 
Income 

warm temperate, fully humid, hot summer 
(43%) 
snow, fully humid, warm summer (18%) 
snow, fully humid, hot summer (10%) 

4 80% 
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North Africa – Middle 
East 

hot desert (37%) 5 63% 

Oceania equatorial, fully humid (62%) 2 71% 

Sub-Saharan Africa, 
Central 

equatorial, winter dry (55%) 
equatorial, winter dry (12%) 

6 92% 

Sub-Saharan Africa, 
East 

equatorial, winter dry (25%) 
hot steppe (10%) 

6 66% 

Sub-Saharan Africa, 
South 

warm temperate, winter dry, hot summer 
(42%) 
warm temperate, winter dry, warm summer 
(19%) 

5 87% 

Sub-Saharan Africa, 
West 

equatorial, winter dry (61%) 
hot steppe (22%) 

3 91% 

*Only types with ≥10% of regional population are listed; type appears more than once within a 
region if non-contiguous zones of the same type are present.  
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Table 2: Impact of climate on labour productivity, as percent days lost and incremental 
loss relative to baseline, by region1 for A2 and B2 scenarios, assuming changes in labour 
patterns.  
 
Region Impact Baseline 2020s 2050s 2080s
   A2 B2 A2 B2 A2 B2
AP_HI %days 

lost 0.3% 0.2% 0.5% 0.5% 0.9% 2.0% 1.7%
 Increment  -0.1% 0.2% 0.2% 0.6% 1.7% 1.4%
As_C %days 

lost 0.1% 0.4% 0.3% 0.5% 0.6% 1.1% 0.2%
 Increment  0.3% 0.1% 0.4% 0.4% 0.9% 0.1%
As_E %days 

lost 10.1% 9.7% 11.3% 10.5% 7.7% 16.4% 10.4%
 Increment  -0.4% 1.2% 0.4% -2.4% 6.3% 0.3%
As_S %days 

lost 25.2% 30.1% 22.9% 29.6% 22.8% 32.7% 28.4%
 Increment  4.9% -2.3% 4.4% -2.4% 7.5% 3.2%
As_SE %days 

lost 42.1% 38.2% 42.7% 44.1% 50.3% 59.1% 46.2%
 Increment  -3.9% 0.6% 2.0% 8.2% 17.0% 4.1%
Au %days 

lost 0.0% 0.1% 0.1% 0.2% 0.2% 0.3% 0.3%
 Increment  0.0% 0.0% 0.2% 0.1% 0.3% 0.3%
Ca %days 

lost 11.3% 12.3% 13.1% 19.1% 12.6% 25.3% 18.4%
 Increment  1.0% 1.8% 7.7% 1.2% 14.0% 7.1%
Eu_C %days 

lost 0.1% 0.2% 0.4% 0.1% 0.1% 0.4% 0.3%
 Increment  0.0% 0.3% 0.0% 0.0% 0.3% 0.1%
Eu_E %days 

lost 0.1% 0.2% 0.2% 0.5% 0.1% 0.2% 0.1%
 Increment  0.2% 0.2% 0.4% 0.0% 0.1% 0.1%
Eu_W %days 

lost 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0%
 Increment  0.0% 0.0% 0.0% 0.0% 0.1% 0.0%
LA_A %days 

lost 1.8% 2.8% 2.7% 5.0% 2.9% 13.2% 6.7%
 Increment  1.0% 0.9% 3.2% 1.2% 11.4% 5.0%
LA_C %days 

lost 15.5% 23.0% 22.9% 34.1% 19.9% 42.4% 31.5%
 Increment  7.5% 7.4% 18.6% 4.4% 26.9% 16.0%
LA_S %days 

lost 0.2% 0.2% 0.2% 0.2% 0.3% 0.3% 0.2%
 Increment  0.1% 0.1% 0.1% 0.0% 0.2% 0.1%
LA_T %days 

lost 11.9% 13.0% 13.3% 5.8% 3.6% 8.9% 6.0%
 Increment  1.2% 1.5% -6.0% -8.3% -3.0% -5.9%
NA_HI %days 

lost 0.8% 2.1% 2.0% 4.2% 3.4% 9.0% 5.9%
 Increment  1.3% 1.2% 3.4% 2.6% 8.2% 5.1%
NA_ME %days 

lost 0.0% 0.2% 0.1% 0.6% 0.3% 0.5% 0.1%
 Increment  0.2% 0.1% 0.6% 0.3% 0.5% 0.1%
Oc %days 

lost 58.9% 50.8% 58.9% 62.0% 64.8% 61.8% 40.6%
 Increment  -8.0% 6.0% 3.1% -18.2% 2.9% -5.5%
SSA_C %days 

lost 33.6% 41.1% 40.9% 34.5% 22.6% 38.2% 30.3%
 Increment  7.5% 7.3% 0.8% -11.0% 4.6% -3.3%
SSA_E %days 

lost 6.3% 9.3% 10.4% 10.3% 9.8% 16.8% 11.0%
 Increment  3.0% 3.4% 4.0% 2.8% 10.5% 3.9%
SSA_S %days 

lost 2.2% 3.4% 2.2% 1.8% 3.3% 3.1% 1.2%
 Increment  1.2% 1.1% -0.4% -1.1% 0.9% -0.3%
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SSA_W %days 
lost 40.3% 47.0% 40.3% 43.8% 47.1% 49.6% 32.1%

 Increment  6.7% 6.8% 3.4% -8.2% 9.3% 1.6%
 
1AP_HI: Asia Pacific, High Income; As_C: Central Asia; As_E: East Asia; As_S: South Asia; As_SE: 
South East Asia; Au: Australasia; Ca: Caribbean; Eu_C: Central Europe; Eu_E: Eastern Europe; 
Eu_W: Western Europe; LA_A: Andean Latin American; LA_C: Central Latin America; LA_S: 
Southern Latin America; LA_T: Tropical Latin America; NA_HI: North America, High Income; 
NA_ME: North Africa/Middle East; Oc: Oceania; SSA_C: Central Sub-Saharan Africa; SSA_E: 
Eastern Sub-Saharan Africa; SSA_S: Southern Sub-Saharan Africa; SSA_W: Western Sub-Saharan 
Africa. 
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Table 3: Sensitivity of results to assumed labour trends and projected climate change, 
as the incremental percent days lost compared to baseline, for A2 in 2050s. 

 Change in percent days lost compared to baseline for A2 in 
2050s 

Region1 Constant labour, 
changing climate 

Changing labour, 
constant climate 

Changing labour 
and climate2 

AP_HI 0.8% -0.2% 0.2% 
As_C 0.7% -0.1% 0.4% 
As_E 7.0% -5.1% 0.4% 
As_S 11.5% -6.7% 4.4% 
As_SE 18.2% -21.6% 2.0% 
Au 0.2% 0.0% 0.2% 
Ca 11.7% -4.0% 7.7% 
Eu_C 0.6% -0.1% 0.0% 
Eu_E 0.3% 0.0% 0.4% 
Eu_W 0.1% 0.0% 0.0% 
LA_A 4.1% -0.6% 3.2% 
LA_C 18.6% 0.0% 18.6% 
LA_S 0.3% -0.1% 0.1% 
LA_T 3.6% -8.3% -6.0% 
NA_HI 3.4% 0.0% 3.4% 
NA_ME 0.6% 0.0% 0.6% 
Oc 15.2% -15.1% 3.1% 
SSA_C 15.4% -11.5% 0.8% 
SSA_E 8.1% -2.1% 4.0% 
SSA_S 2.8% -1.6% -0.4% 
SSA_W 15.8% -13.0% 3.4% 
 
1AP_HI: Asia Pacific, High Income; As_C: Central Asia; As_E: East Asia; As_S: South Asia; As_SE: 
South East Asia; Au: Australasia; Ca: Caribbean; Eu_C: Central Europe; Eu_E: Eastern Europe; 
Eu_W: Western Europe; LA_A: Andean Latin American; LA_C: Central Latin America; LA_S: 
Southern Latin America; LA_T: Tropical Latin America; NA_HI: North America, High Income; 
NA_ME: North Africa/Middle East; Oc: Oceania; SSA_C: Central Sub-Saharan Africa; SSA_E: 
Eastern Sub-Saharan Africa; SSA_S: Southern Sub-Saharan Africa; SSA_W: Western Sub-Saharan 
Africa. 
2This equals the bottom line of the 6th column in Table 2. 
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