

Working Paper No. 293

April 2009

Towards Regional Environmental Accounts for Ireland

Richard S.J. Tol^{a,b,c}, Nicola Commins^a, Niamh Crilly^a, Sean Lyons^a and Edgar Morgenroth^a

Subsequently published as R.S.J. Tol, N. Commins, N. Crilly, S. Lyons and E. Morgenroth, 2009, "<u>Towards Regional Environmental Accounts for Ireland</u>", Journal of the Statistical and Social Inquiry Society of Ireland, Vol. 38, pp. 105-142.

Abstract: Existing environmental accounts for the Republic of Ireland are at the national level. This is fine for continental and global environmental problems, but information at a finer spatial scale is needed for local environmental problems. Furthermore, the impact of environmental policy may differ across space. We therefore construct regional estimates of the environmental pressures posed by Irish households and the environmental problems faced by them. The basic unit of analysis is the electoral district, and the prime data source is the CSO's Small Area Statistics, a product of the Census. We use the results of classifying regressions of the Household Budget Survey to impute domestic energy use. We use engineering relations to impute transport fuel use, and secondary data on household behaviour to impute waste arisings. We use EPA data on drinking water use and quality per county. The results show marked regional differences. Electricity use and waste arisings are higher in the East and in the cities and towns. Transport fuel use is highest in the commuter belts around the cities and towns. Other energy is relatively uniform. There is no clear pattern in estimated drinking water use, which may be due to data quality. Drinking water quality is poor across much of the country, but different counties suffer from different problems. The regional estimates are constructed using data in the public domain. However, various government agencies hold data that would allow for the construction of more detailed, more accurate, and more extensive regional environmental accounts.

Key words: Regional accounts; environmental accounts; energy use; transport; household waste; drinking water quality; drinking water quantity

ESRI working papers represent un-refereed work-in-progress by members who are solely responsible for the content and any views expressed therein. Any comments on these papers will be welcome and should be sent to the author(s) by email. Papers may be downloaded for personal use only.

^a Economic and Social Research Institute, Whitaker Square, Sir John Rogerson's Quay, Dublin 2, Ireland

^b Institute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands

^c Department of Spatial Economics, Vrije Universiteit, Amsterdam, The Netherlands

Towards Regional Environmental Accounts for Ireland

1. Introduction

Environmental accounts for the Republic of Ireland have been presented at the national scale. This makes sense for some emissions – e.g., it does not matter whether greenhouse gases are emitted in Wexford or in Donegal – but other environmental problems have a clear regional dimension – e.g., drinking water is typically sourced locally, and a clean Liffey does not help the people of Galway. Furthermore, environmental policy may have a different impact on different regions. Therefore, this paper presents estimates of energy use, waste, and water use for over 3,400 electoral districts in the Republic of Ireland.

Regional data on waste generation and water use are obviously important. These services are provided by local authorities. Average levels of provision contain little information. Overcapacity in Cork does not cancel out undercapacity in Limerick. Spatial data on energy use are important for planning the grid, and provide information on the distribution of the impact of policy measures to reduce greenhouse gas emissions. Data on local emissions and resource use may also be used to assess the sustainability of specific settlements or settlement patterns; see for example Moles *et al.*, 2008.

Most of the regional estimates presented in this paper are not directly observed. Rather, the "data" presented here are imputed from things that are observed (by the Census) at regional level and relationships derived from secondary data. Such imputation cannot be avoided. The alternative is to have no regional estimates at all.

Our imputation method uses household microdata to estimate statistical relationships between household characteristics and the variables of interest (i.e. emissions and resource use), and then apply these relationships to the average socioeconomic characteristics of small geographical areas to predict the values that the variables of interest should take in each area. We keep the regressions as simple as possible, often only averaging across multiple household characteristics. We avoid double imputation, that is, we only feed observations into the regression models. We do not use imputed data in the imputation.

Development of regional environmental accounting is in its infancy, but there are several international examples of its application: see e.g. New Zealand Centre for Ecological Economics, 1999 (Northern New Zealand); Turner, 2006 (Jersey); OECD, 2007 (Hyogo Prefecture, Japan); Wadeskog and Eriksson, 2004 (Stockholm); and RAMEA, 2008 (Italy, Netherlands, Poland and the UK).

The paper proceeds as follows. Section 2 discusses the population and income patterns that drive most of our results. Section 3 presents the methods and results for energy use, Section 4 for waste, and Section 5 for water use. Section 6 presents some further analysis that helps to support the conclusions and policy implications. The data can be found at:

http://www.esri.ie/irish_economy/environmental_accounts/index.xml

2. Population and income

Our small area income estimates are derived using two different CSO data sets. The Census yields the Small Area Population Statistics (SAPS), which contain demographic data on household structure, age, education, and employment per electoral district (ED) as well as data on housing conditions and facilities. The Household Budget Survey (HBS) has similar data on housing and demographics plus data on income and expenditures. To impute incomes for each area, we ran a regression of household income in the 2004/5 HBS anonymised data file on the characteristics found in the 2006 SAPS, and used the estimated equation to impute the income level for each electoral district. Because the SAPS hold fairly basic information only, the regression essentially computes the average income per group. It is a "classifying regression" rather than a continuous function – that is, the explanatory variables are dummies. Table A1 shows the estimated coefficients.

Table 1 shows selected characteristics of the population data per ED. EDs vary widely in the number of people and household that live there, as well as in population density. As revealed by the Gini coefficient, a small number of EDs account for most of the population. Moran's I shows that large and densely populated EDs tend to cluster together. The variation in household size is much less, but here we also see spatial agglomeration of small

and large households. Figure 1 shows this. Rural households in the West and Northwest of the country tend to be smaller than the average. Nonetheless, Table 3 shows a negative correlation between household size and population density.

Figure 2 shows the map of imputed household incomes. The high incomes are clearly concentrated around the cities. Table 1 confirms this with Moran's I. Table 3 also shows a negative correlation between population density and household income. Table 1 also has the characteristics of total income per ED. Both the Gini coefficient and Moran's I show that income is more spatially concentrated than population, which confirms that rural areas tend to be poorer than urban areas.

3. Energy, transport and carbon dioxide emissions

Regional data on electricity use and other fuel consumption are derived from the SAPS and the HBS, using the same type of classifying regression as described above for household income. Tables A2 and A3 shows the estimated coefficients for electricity use and other fuel consumption, respectively. Other fuels are primarily used for home heating, although there is also some fuel used for lawnmowers and barbeques. However, electricity is also used for heating: in 2005 about 7% of households used electricity as their principal means of winter space heating (Central Statistics Office, 2006, Table 9).

3.1. Energy use

Figure 3 depicts electricity use per household. The spatial pattern lies somewhere in between that of household size (Figure 1) and household income (Figure 2), but differences are less pronounced. This is also seen in Table 1. Table 3 shows that household size is slightly more important than income in explaining electricity use.

Figure 4 shows fuel consumption for home heating and other purposes per household.¹ This is roughly equal across the country – with the exception of a few urban electoral districts,

4

¹ Strictly, non-electric energy use for anything but transport.

where a combination of small dwellings and fuel poverty leads to heat use that is well below the national average. The positive value of Moran's I in Table 1 is explained by the urban concentration of low per household heat use. Table 1 also shows the characteristics of total heat. The concentration of heat use in a few EDs follows the distribution of the population. Income is less important (cf. Table 3).

Figure 5 shows transport fuel consumption, for commuting, per adult. The map reveals the commuter belts around the cities – but also shows that these belts are not continuous. Moran's I in Table 1 confirms the strong spatial concentration of transport fuel use. The Gini coefficient in Table 1 again reveals that a minority of electoral districts dominate total fuel use – following the distribution of population and work. Table 3 shows that the correlations of transport fuels use to household size and income are indeed low (but positive), while the correlation with population density is negative (and larger, in absolute terms, than any other correlation.) Unfortunately, there is no data available on total transport fuel use.

3.2. The impact of regulation

Figure 3 shows the spatial distribution of electricity use. To a first approximation, Figure 3 also shows the spatial distribution of changes in the price of electricity. These include the price effects of the priority dispatch of peat power and the feed-in tariffs for wind power. In the future, the price of electricity may reflect the price of carbon permits. Similarly, Figure 4 also shows the spatial pattern of the impact of excise duties on heating fuel, and Figure 5 shows the pattern for excises on transport fuel.

A carbon tax may well be introduced in the foreseeable future, applied to all carbon dioxide emissions that are not already regulated by the EU Emissions Trading Scheme (ETS). Figure 6 shows the average impact per household for each of the electoral districts. Figure 6 is the weighted sum of Figures 4 and 5, with the emission coefficients of heating and

transport fuels as weights.² In the short run, the spatial pattern in Figure 6 is independent of the level of the tax.³ We assumed a carbon tax of €20/tCO_2 .

Although a carbon tax is occasionally portrayed as being an unfair burden on households at the countryside, Figure 6 shows a more nuanced pattern. A carbon tax would particularly hit the commuter belts around Cork, Dublin, Galway and Limerick, while the rest of the rural areas in fact see a below average impact. Table 3 confirms that transport fuel is more strongly correlated with the carbon tax than is other fuel use.

Figure 6 shows the incremental effect of a change in climate policy, viz. the introduction of a carbon tax on non-ETS CO₂ emissions. Figure 7 shows the impact of the total package of climate policies, including the effect of the ETS on electricity prices. That is, Figure 7 adds the carbon dioxide emissions from power generation, assuming that a permit price of €20/tCO₂ is fully passed on to final consumers.

Figure 7 reveals a spatial pattern which is less pronounced than that in Figure 6. While Figure 6 suggests that a carbon tax would be spatially inequitable, Figure 7 shows that a carbon tax in fact partially corrects for spatial inequities introduced by the EU ETS.

4. Biodegradable municipal waste generated by households

In this section we estimate the regional distribution of biodegradable municipal waste (BMW) generated by households and subsequently sent to landfill. This waste category is of policy interest because it poses particular problems for the environment if not managed properly and as a consequence is subject to EU regulatory limits.

Purcell and Magette (2009) estimate BMW quantities generated by the household and services sectors in the Dublin area. To estimate household waste, they apply fixed perhousehold waste generation factors taken from previous studies to SAPS data. Two factors

² Note that these emission coefficient are themselves weighted averages of the fuel-specific emission coefficients. This is particularly relevant for home heating, for which a range of different fuels (from peat to gas) are used.

³ In the long run, the pattern would become less pronounced, as behaviour and technology would change faster for those affected most.

are tested: one based on social class of the household and one based on household size. While both methods provide estimates that are considerably higher than reported aggregate waste generation, the authors find that factors based on household size overstate total waste generation by a smaller margin.

Our approach has some similarities to Purcell and Magette's, but rather than building up estimates from per-household factors, we use the relationship between household size and waste generation to assign shares of total waste to individual EDs. Following Scott and Watson's (2006) results for mixed household waste, we assume that the weight of BMW generated by a household is proportional to the number of people in the household raised to the power 0.486. The number of households by size per ED is found in the SAPS (see Figure 1). According to the ESRI's environmental accounts (based on EPA National Waste Report data), total household BMW sent to landfill in 2006 was 0.95 million tonnes (Lyons et al., 2008).

Figure 8 shows estimated waste per household. Not surprisingly, the pattern is rather similar to the pattern of Figure 1, albeit less pronounced as differences are suppressed by a power that is less than one. Table 3 confirms this: The correlation between household waste and household size is very close to unity.

5. Water

5.1. Sewage

There is no spatially disaggregated information on the pressures that Irish households place on the sewage system.⁴ However, there is a design standard for the volume: 225 litres per person per day, regardless of age, income, location, or anything. As a result, the spatial pattern of the demand for sewage facilities is equal to the pattern of population density.⁵

_

⁴ Note that there are observations on sewage treatment facilities. We have not been able to connect these to the populations they serve.

⁵ The gradient of population density between rural and urban areas is too sharp for a meaningful representation on a map, even in log scale.

The lack of readily available data on the quality of the water entering the sewage system is a potential concern because of the changing composition of detergents and the increased use of medication, be it prescribed or not. Sewage water treatment plants are designed to purify water of a certain quality. However, without frequent monitoring, one cannot be sure that the intake water quality has not changed since the plant was designed.

There is information available on the sewage provision, that is, whether houses are served by a public scheme, a group one, or a private one. Most electoral districts are served entirely by public schemes or by private ones. The division is by and large the same as the division between urban and rural areas.⁶

5.2. Drinking water

Data on water quality and supply was obtained from "The Provision and Quality of Drinking Water in Ireland" reports for the years 2001-2006 (with 2003 missing), published by the Environmental Protection Agency.

Monitoring of water quality is carried out by sanitary authorities in Ireland – the 34 City or County Councils - for a range of chemical, microbiological or additional indicator parameters. They must report exceedances for those supplies which are above the standard set by EU legislation for 48 parameters. The EPA is required to collect and verify monitoring results for all water supplies in Ireland covered by the Drinking Water Regulations. This involves the collection of results on an annual basis from local authorities and carrying out audits on selected local authorities to verify the information that has been submitted.

Data on the population served by each water supply is similarly collected and reported annually by each sanitary authority. These water supplies fall under four categories: public supplies (which provide water for the majority of households in Ireland), public group water schemes, private group water schemes (where the owners of the scheme source and distribute their own water) and small private supplies, which include a wide range of

_

⁶ The bimodality is so sharp that this data cannot be meaningfully shown on a map.

supplies including industrial supplies to small private sources serving only one household. These small private supplies are largely exempt from the requirements of the regulations, except where the water is supplied as part of a public or commercial activity. This may explain why the population and water quality data for such supplies is limited or missing for many of the private supplies in the data we use.

We know the county in which each scheme is placed. We know the exact location only for a minority of drinking water schemes (see Figure A1) based on 2004 data from the Department of the Environment, Heritage and Local Government. This data nonetheless allows us to estimate the county average per capita water use. The variations over space and time are indicative of poor data quality. For example, Wexford reports an average water use of 18 litres per person per day in 2004, enough to flush the toilet twice. The data for Dublin are also suspect: There is no variation over time, in either population served or total water flow. The range of observed water use values is substantial. Averaging over the five years of available data, Wexford uses only 2,84 l/p/d (after removal of the 2004 outlier) while Sligo uses more than three times as much at 9,16 l/p/d

We therefore use smoothed data. First, we compute the average water use per county for the five years for which we have data. We also compute the average for the country. Then, we take the weighted average of the county and country, using the inverse of the variances as weights. If a county has a standard deviation that is less than half the country standard deviation, we use the latter.

The result is shown in Figure 9. There are substantial differences between counties, but there is no obvious pattern that can be used to downscale the estimates to the electoral district level. Figure 9 also shows imputed drinking water use based on the engineering estimates reported by WS Atkins Ireland, 2000. These estimates do not show much difference between countries – as indeed there are no reasons why people in Donegal would use the toilet more often than people in Dublin. The engineering estimates are also remarkably lower than the EPA estimates. This disparity probably reflects the use of water supplies by small businesses and farm enterprises in addition to households, but we cannot separate out these segments of demand.

Figure 10 shows the fraction of people, by county, whose drinking water did not meet the EU regulations in 2006. The numbers range from 40% in Cork North to 100% in the cities. Figure 11 shows the same data, but per water quality parameter. In 2006, Irish drinking water breached 36 of the 48 standards. In most cases, only a small number of people are affected. However, more than 10% of people had their drinking water polluted with manganese, iron, lead or aluminium. The share of people suffering from biological contamination (enterococci, colony, e-coli, clostridium, coliform) is even larger.

Figure 12 shows the odds ratio of experiencing a breach of water quality standards per type of water supply. The odds ratio is defined as the share of people per water supply type experiencing a problem over the share of people supplied by that type of water supply. Figure 12 reveals that by and large public water supplies have the worst water quality (or the best monitoring). Private group supplies are better overall, but much worse for a few water quality parameters (arsenic, boron, bromate, nitrate, polycyclic aromatic hydrocarbons). Private water supplies have consistently better water quality than average (or are badly monitored) except for turbidity at the tap. Overall, public group water supplies have the best water quality, except for nitrates.

Figure 13 compares breaches of water quality standards between 2004 and 2005, and between 2005 and 2006. Figure 13 reveals that many of the drinking water facilities with a problem identified in 2005 continued to report the same problem in 2006. While some of the problems were adequately dealt with, more than 50% of cases of arsenic, coliform, aluminium, and nitrates were not solved within the calendar year.

6. Discussion and conclusions

In this paper, we construct a first set of regional environmental accounts for the Republic of Ireland. The data can be found at:

http://www.esri.ie/irish_economy/environmental_accounts/index.xml

_

⁷ Note that water quality reporting was incomplete in 2004, so that fewer problems are seen to persist to 2005.

The regional accounts are limited to energy use by households, waste arisings from households, demand for drinking water and sewage services by households, and drinking water quality. The energy, waste and sewage accounts are available for 3401 electoral districts, and the water accounts for 34 counties.

The limited scope of the accounts notwithstanding, the results reveal that the spatial pattern of the impacts of energy and climate policy is different than we and others thought it is. There is a distinction between rural and urban areas, but there is a much sharper distinction between the commuter belt and other areas of the countryside. The water data reveal a shockingly low water quality, a significant degree of local persistence in water quality problems and a remarkably high level of water use.

Conclusions like these call for better data, and there is ample room for improvement. First, our "accounts" are imputed. Although household behaviour is not observed at the spatial detail used here, the CSO typically has more information on household location than is released in anonymised datasets. Related to this, the EPA has detailed information on the use and quality of drinking water and sewage, but the data is not organized for analysis or interpretation, and the quality of the data is not uniformly high. Third, we omit locationspecific externalities of transport (noise, congestion, air pollution). There is little data on this, but values could be imputed from data on traffic flows. This is beyond the scope of the current paper, and the expertise of the current authors. Fourth, we omit emissions by companies. As all sizeable emitters of pollutants are licensed and monitored, a map of point sources of industrial emissions can be constructed. The main obstacle is the organization of the existing data by the EPA. The distribution of pollutants would require detailed modelling of the physical, chemical and biological environment. Fifth, we omit resource use and emissions by agriculture and forestry. Teagasc would be well-positioned to construct maps and regional accounts. Sixth, we limit our attention to the Republic of Ireland. North-South cooperation would be needed for building all-island accounts.

In sum, regional environmental accounts can be constructed for Ireland. This paper makes the first step, showing that the emerging insights are well worth the effort.

Acknowledgements

Financial support by the Environmental Protection Agency under the STRIVE programme is gratefully acknowledged.

References

Central Statistics Office, 2007, Household Budget Survey 2004-2005: Final Results.

Lyons, S., K. Mayor and R.S.J. Tol, 2008, "Environmental Accounts for the Republic of Ireland: 1990-2005", *Journal of the Statistical and Social Inquiry Society of Ireland*, Forthcoming.

Moles, R., B. O'Regan, J. Morrissey and W. Foley, 2008, *Environmental Sustainability and Future Settlement Patterns in Ireland*, Report prepared for the Environmental Protection Agency under the STRIVE programme, URL: http://erc.epa.ie/safer/reports.

New Zealand Centre for Ecological Economics, 1999, EcoLink accounts, URL: http://www.nzcee.org.nz/research_projects/ecolink/ecolink.html

OECD, 2007, Regional System Of Integrated Environment And Economic Accounting (Outline Of Manual For Developing Regional Hybrid Accounting System Prototype), Statistics Directorate, Committee on Statistics, Working Party on National Accounts, document STD/CSTAT/WPNA(2007)13, URL:

http://www.oecd.org/dataoecd/17/28/39335413.pdf

Purcell, M and W.L. Magette, 2009, "Prediction of household and commercial BMW generation according to socio-economic and other factors for the Dublin region", *Waste Management* 29, 1237-50.

RAMEA, 2008, RAMEA Construction Manual, URL:

http://www.arpa.emr.it/cms3/documenti/ramea/RAMEA_Constr_manual_web.pdf

Scott, S. and Watson, D., 2006, *Introduction of Weight-Based Charges for Domestic Solid Waste Disposal: Final Report*, EPA ERTDI Report Series No. 54, URL: http://www.epa.ie/downloads/pubs/research/econ/ertdi%20report%2054.pdf

Turner, K., 2006, "Additional precision provided by region-specific data: The identification of fuel-use and pollution-generation coefficients in the Jersey economy", *Regional Studies* 40(4), 347-64.

Wadeskog, A. and M. Eriksson, 2004, "Calculations of regional environmental accounts", presented at the Workshop on EU Sustainable Development Indicators, 12 February, URL: http://www.h.scb.se/sdiworkshop/presentations/reg_env_accounts.doc

WS Atkins Ireland, 2000. *National Water Study, National Report, Volume 2*, report for the Department of Environment and Local Government.

Table 1. Characteristics of the data.

Variable	Unit	Mean	Standard deviation	Minimum	Maximum	Gini coefficient	Moran's I	Geary's C
Population	# p	1,247	2,018	76	32,288	0.58	0.169	0.978
Population density	#/km ²	6.71	17.99	0.01	194.67		0.861	1.093
Households	# hh	432	692	23	10,581	0.59	0.188	0.965
Household size	#/hh	2.87	0.28	1.58	3.89		0.240	1.011
Income	K€yr	29,875	56,928	255	1,069,200	0.62	0.144	1.097
Income	€hh/yr	65,757	13,142	9,813	119,920		0.099	0.969
Electricity	MWh	2,220	3,684	66	59,852	0.59	0.163	0.986
Electricity	KWh/hh	5,151	474	2,555	6,523		0.181	0.998
Heat	MWh	7,930	12,745	445	186,920	0.59	0.160	0.965
Heat	KWh/hh	18,666	1,536	5,900	23,543		0.275	1.530
Transport ^a	1/d	617	1,110	6	23,442	0.55	0.046	1.006
Transport ^a	l/d/p	1.43	0.53	0.06	3.21		0.482	0.839
Carbon tax	K€yr	67.3	108.9	3.7	1,757.2	0.56	0.099	0.986
Carbon tax	€hh/yr	173	35	37	274		0.455	0.913
Climate policy	K€yr	97.6	158.4	5.4	2,453.4	0.57	0.117	0.985
Climate policy	€hh/yr	243	39	86	347		0.436	0.926
Waste	Kt	0.598^{b}	0.965	0.034	15.355	0.59	0.174	0.974
Waste	tonne/hh	1.398	0.071	1.052	1.643		0.235	1.018
Sewage	Ml/d	262	425	14	6,829	0.58	0.160	0.982
Sewage	l/ha	1,373	3,621	2	33,407		0.849	1.070
Public sewage	%	30.1	37.5	0.0	100.0		0.501	0.801

^a Note that the units are litre per *working* day (per commuter).

^b The average total waste of 598 tonnes per electoral district consists of 353 tonnes of biodegradable waste and 245 tonnes of other waste.

Table 2. Correlations between the variables: totals per electoral district.

	A]	P I	H I	I	Ε (\mathbf{C}	Γ (C+ V	V	S
Area	1										
Population	-0.16	1									
Household	-0.18	1.00	1								
Income	-0.13	0.97	0.97	1							
Electricity	-0.16	1.00	0.99	0.98	1						
Other fuels	-0.16	0.99	0.99	0.96	0.99	1					
Transport fuels	0.02	0.88	0.86	0.90	0.89	0.88	1				
Carbon tax	-0.06	0.96	0.95	0.97	0.97	0.97	0.97	1			
C tax + ETS	-0.09	0.98	0.97	0.98	0.99	0.98	0.95	1.00	1		
Waste	-0.17	1.00	1.00	0.97	1.00	0.99	0.87	0.96	0.98	1	
Sewage	-0.16	1.00	0.99	0.97	1.00	1.00	0.89	0.97	0.99	1.00	1

Table 3. Correlations between the variables: variables per household and per area (*).

	P	H	I	E	O	T	C	C+	W S	\mathbf{S}	P
Population density	[*] 1										
Household size	-0.41	1									
Income	-0.23	0.42	1								
Electricity	-0.38	0.82	0.72	1							
Other fuels	-0.36	0.69	0.25	0.59	1						
Transport fuels	-0.52	0.39	0.26	0.34	0.39	1					
Carbon tax	-0.55	0.66	0.55	0.66	0.59	0.89	1				
C-tax + ETS	-0.55	0.71	0.60	0.74	0.61	0.85	0.99	1			
Waste	-0.40	1.00	0.45	0.84	0.70	0.39	0.66	0.71	1		
Sewage density*	0.77	-0.41	-0.15	-0.35	-0.44	-0.64	-0.66	-0.64	-0.40	1	
Public sewage**	0.51	-0.46	-0.08	-0.31	-0.39	-0.61	-0.65	-0.63	-0.43	0.66	1
** Fraction of sewa	age colle	ected b	y publ	ic bodi	ies.						

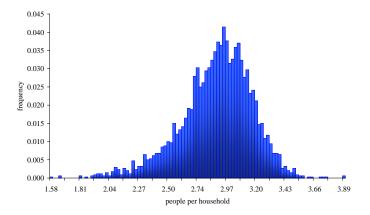


Figure 1. Average household size per electoral district.

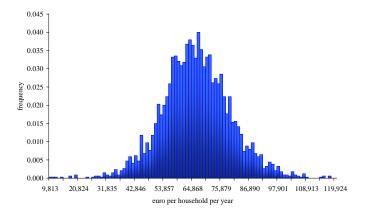


Figure 2. Average annual household income per electoral district.

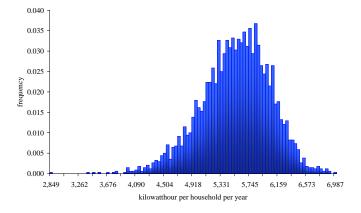


Figure 3. Average annual electricity use per household per electoral district.

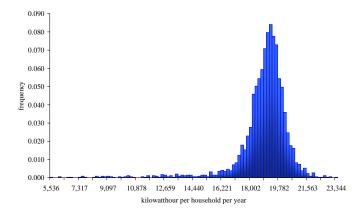


Figure 4. Average annual consumption of other fuels per household by electoral district.

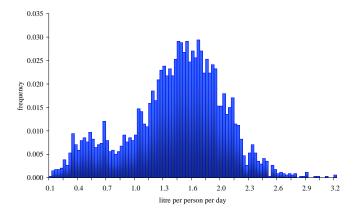


Figure 5. Average daily consumption of transport fuels per person by electoral district.

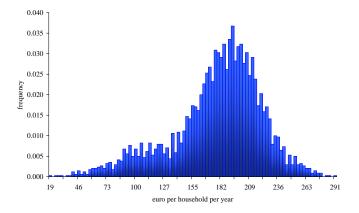


Figure 6. Average annual carbon tax per household by electoral district.

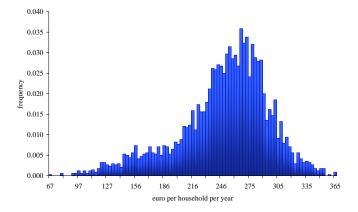


Figure 7. Average annual carbon tax plus pass-through of carbon permit price per household by electoral district.

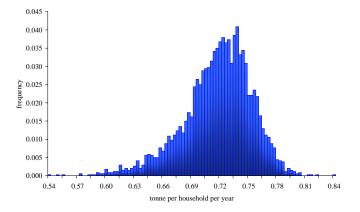


Figure 8. Average annual biodegradable waste generation per household by electoral district.

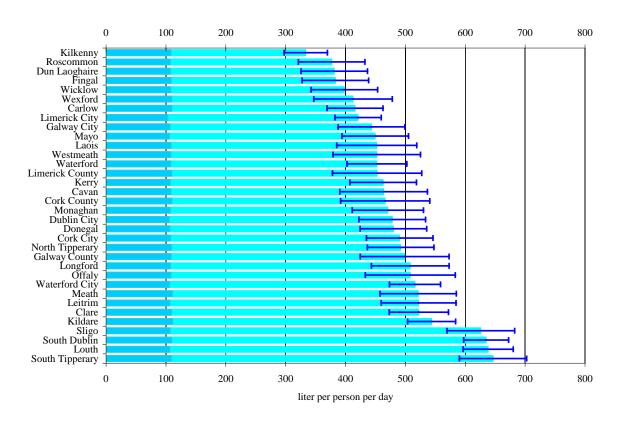


Figure 9. Reported drinking water production (light blue) and estimated drinking water use (dark blue) in litres per person per day for each of the 34 sanitary authorities; the graph also shows the 67% confidence interval around the reported water production.

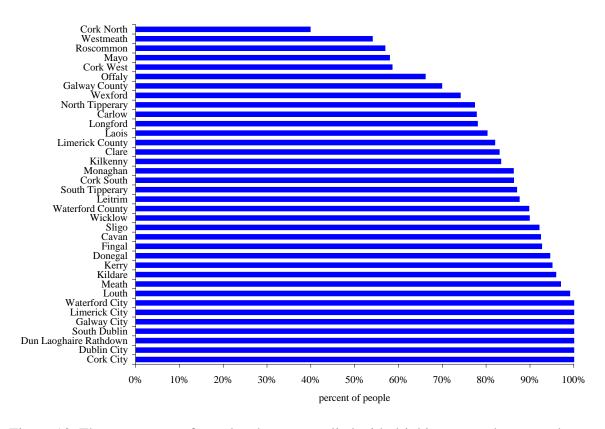


Figure 10. The percentage of people who are supplied with drinking water that exceeds at least one of 48 water quality standards, per sanitary authority, for 2006.

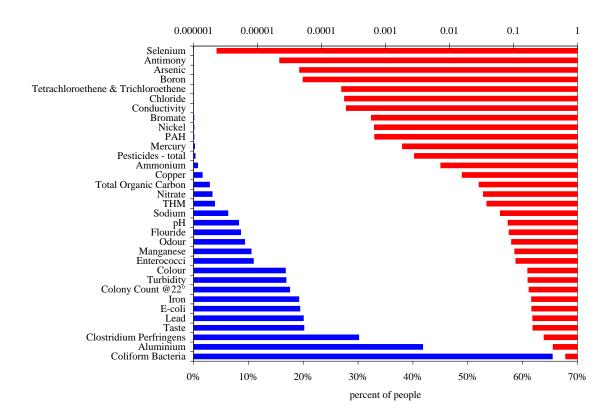


Figure 11. The percentage of people who are supplied with drinking water that does not meet the EU quality standard, per water quality parameter, for 2006. The bottom axis is in levels, and the data are shown to the left in blue. The top axis is in logarithms, and the same data are shown to the right in red. Note that there are 12 additional water quality parameters for which no problems were reported.

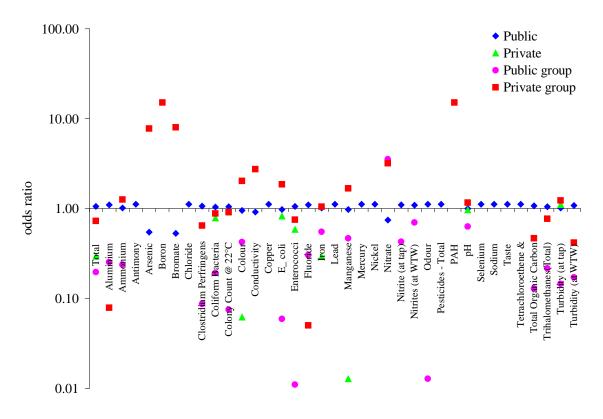


Figure 12. The odds ratio of experiencing a breach of standard per water quality parameter and per water supply type in 2006. Zeros are not displayed.

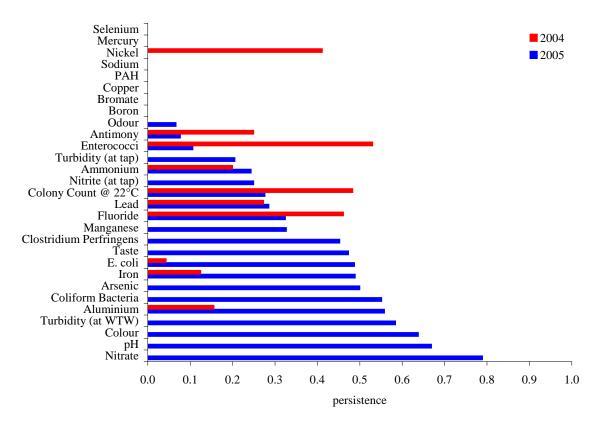
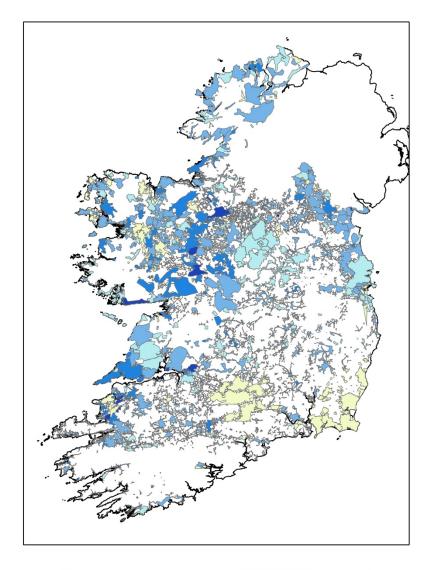


Figure 13. The persistence of breaches of water quality standards between 2004 and 2005 and between 2005 and 2006, per water quality parameter. Note that persistence is based on facility counts.

Table A1: Household disposable income, OLS cross-section regression results								
Variables and statistics	All	variables						
Dep. variable	ln(Weekly disposabl	le income of household, €)						
	Coef.	Robust S.E.						
d_social_1	0.318	0.0223***						
d_social_2	0.366	0.0257***						
d_social_3	0.219	0.0199***						
d_social_5	-0.074	0.018***						
d_social_6	-0.144	0.0204***						
d_social_7	-0.185	0.0202***						
d_social_8	-0.081	0.0309***						
d_social_9	-0.148	0.0264***						
d_social_10	-0.167	0.0485***						
d_social_11	-0.112	0.0255***						
d_empstatu~2	-1.2	0.0417***						
d_empstatu~3	-1.17	0.0357***						
d_empstatu~4	-0.754	0.0248***						
d_empstatu~5	-1	0.0255***						
d_persons_1	-0.605	0.019***						
d_persons_3	0.377	0.0172***						
d_persons_4	0.656	0.0198***						
d_persons_5	0.815	0.0235***						
d_persons_6	0.968	0.0288***						
d_persons_7	1.01	0.0456***						
d_persons_8	1.27	0.0644***						
Constant	6.87	0.0179***						
Observations		6,884						
\mathbb{R}^2		0.654						

Table A2: Total energy use from household fuels, OLS cross-section regression results Variables and statistics All variables Preferred model Dep. variable Total energy use in Total energy use in household (kWh) household (kWh) Robust S.E. Coef. Robust S.E. Coef. d_rooms_1 -113 50.3** -78.9 37** 38.9*** 27.7*** d rooms 2 -210 -183 26.4*** 23.9*** -112 -110 d_rooms_3 19.2 d_{rooms_4} -13.7 d rooms 6 0.351 12.3 14.2* 25.6 12.4** d_rooms_7 25.4 72.3 17.9*** 74.4 16.5*** d_rooms_8 -9.29 d_built_1 17.3 d_built_3 -25.7 20.3 d_built_4 -25 17.3 12.7*** d built 5 -57.7 16.3*** -40.3 16.4*** 12.8*** d_built_6 -70.8 -52.6 21.6*** 18.5** d_built_7 -55.4 -41.7 d_social_1 3.51 16.8 d_social_2 18.9 25.5 -1.91 d_social_3 16.8 d_social_5 -34.4 16.8** -40.7 13.9*** -15.8 18.3 d_social_6 27.5 31.7 d_social_7 34 26.1 d_social_8 19.1*** 14.3*** -63.4 -76.9 d social 9 38.4** 37** d social 10 -86.3 -91.6 23* 17.9** d_social_11 -38.6 -37.9 70.7 34.3** 70.4 34.2** d_centheat 13.5*** 12.3*** d_persons_1 -84.5 -94.8 15.4** d_persons_3 37.1 28.6 13.1** d_persons_4 21.3 15.9 21*** d_persons_5 68.4 22.5*** 65.7 35.1** 29.6*** d_persons_6 86.1 84.3 83.5 45.6* 86.5 42.5** d_persons_7 d_persons_8 40.1 61 d urban 13.1 11.3 27.3*** 28.2*** -132 d housetyp 2 -122 d_housetyp_3 -154 58.8*** -188 47.2*** 91.9 d_housetyp_4 101 d_empstatu~2 0.932 36.5 29 d_empstatu~3 32.7 16.4*** 15.8** d_empstatu~4 46.5 37 22.9*** d_empstatu~5 74.9 65.4 18.4*** 36.7*** 37.2*** Constant 359 374 Observations 6,884 6,884 \mathbb{R}^2 0.0473 0.0449


Table A3: Household electricity use, OLS cross-section regression results							
Variables and statistics	All	variables	Pref	ferred model			
Dep. variable	Electric	ity use (kWh)	Electr	icity use (kWh)			
	Coef.	Robust S.E.	Coef.	Robust S.E.			
d_rooms_1	-21.8	10.6**	-11.3	5.23**			
d_rooms_2	-13	7.02*	-10.9	6.27*			
d_rooms_3	0.429	4.27					
d_rooms_4	-0.158	2.40					
d_rooms_6	9.16	1.84***	9.06	1.71***			
d_rooms_7	15.2	2.01***	15.2	1.91***			
d_rooms_8	24.6	2.42***	24.7	2.33***			
d_built_1	6.5	2.59**	6.68	2.36***			
d_built_3	-1.47	2.28					
d_built_4	7.84	2.12***	7.75	1.85***			
d_built_5	3.46	2.11*	3.21	1.81*			
d_built_6	1.54	2.39					
d_built_7	-2.15	2.91					
d social 1	3.67	2.30	4.31	1.87**			
d_social_2	7.78	3.57**	8.49	3.31***			
d_social_3	2.83	2.40					
d_social_5	-2.01	2.19					
d_social_6	-1.87	2.42					
d_social_7	0.613	3.60					
d_social_8	16.3	5.57***	16.9	5.30***			
d_social_9	-10.8	3.03***	-10.5	2.48***			
d_social_10	-4.65	6.47	10.0	20			
d_social_11	-3.05	3.46					
d_centheat	-9.38	3.14***	-9.18	3.12***			
d_persons_1	-22.2	1.78***	-22.2	1.63***			
d_persons_3	16	2.07***	15.4	1.99***			
d_persons_4	26	2.62***	25.1	2.41***			
d_persons_5	40.4	3.44***	39.0	2.88***			
d_persons_6	43.4	4.09***	42.0	3.64***			
d_persons_7	51.6	6.22***	49.9	5.95***			
d_persons_8	63.7	12.6***	61.5	12.3***			
d_urban	0.318	1.72	01.5	12.3			
d_housetyp_2	6.3	4.21					
d_housetyp_3	12	12.4					
d_housetyp_4	4.84	9.56					
d_nousetyp_4 d_empstatu~2	-1.91	4.62					
d_empstatu~3	-3.9	4.13					
d_empstatu~4	-23.8	2.28***	-23.6	2.11***			
d_empstatu~5	-13.6	3.34***	-15.2	2.23***			
Constant	81.2	4.62***	81.0	3.54***			
Observations		6,884	01.0	6,884			
Adjusted R ²							
Aujustea K		0.222		0.220			

Variables and statistics	All va	riables	Pref	ferred model					
Dep. variable	CO_2 er	missions	CC	O ₂ emissions					
	(T CO	½/ week)	(T	CO ₂ /week)					
	Coef.	Robust S.E.	Coef.	Robust S.E.					
d_rooms_1	-0.0301	0.0266							
d_rooms_2	-0.0583	0.013***	-0.0552	0.0118***					
d_rooms_3	-0.0308	0.00896***	-0.0277	0.00857***					
d_rooms_4	-0.00477	0.00699							
d_rooms_6	0.0201	0.00471***	0.0223	0.0046***					
d_rooms_7	0.0462	0.00585***	0.0494	0.00581***					
d_rooms_8	0.0949	0.0127***	0.0987	0.0123***					
d_built_1	0.00752	0.00653							
d_built_3	0.0227	0.0124*							
d_built_4	0.0173	0.00606***	0.0111	0.00518**					
d_built_5	0.00828	0.00811							
d_built_6	0.00135	0.00653							
d_built_7	0.0053	0.00797							
d_social_1	0.0233	0.0124*	0.0236	0.0105**					
d_social_2	-0.000489	0.0103							
d_social_3	0.0142	0.00943							
d_social_5	-0.00267	0.00858							
d_social_6	-0.00867	0.0089							
d_social_7	-0.0118	0.00912							
d_social_8	0.0227	0.0121*	0.024	0.01**					
d_social_9	-0.0213	0.0101**	-0.0193	0.00743***					
d_social_10	-0.0102	0.0178							
d_social_11	-0.00932	0.0114							
d_centheat	0.0275	0.00751***	0.0297	0.00742***					
d_persons_1	-0.0514	0.00581***	-0.0535	0.00583***					
d_persons_3	0.045	0.00694***	0.0451	0.00668***					
d_persons_4	0.0706	0.0082***	0.0707	0.00747***					
d_persons_5	0.118	0.0112***	0.119	0.0105***					
d_persons_6	0.155	0.0273***	0.155	0.0263***					
d_persons_7	0.145	0.019***	0.145	0.0184***					
d_persons_8	0.159	0.0269***	0.159	0.0266***					
d_urban	-0.0341	0.00565***	-0.0329	0.00561***					
d_housetyp_2	-0.0353	0.0116***	-0.036	0.0113***					
d_housetyp_3	-0.0513	0.0276*	-0.072	0.0085***					
d_housetyp_4	0.00394	0.0253							
d_empstatu~2	-0.0373	0.013***	-0.0422	0.0129***					
d_empstatu~3	-0.0858	0.0191***	-0.0914	0.0158***					
d_empstatu~4	-0.0251	0.00797***	-0.0263	0.0076***					
d_empstatu~5	-0.0375	0.00984***	-0.045	0.0066***					
Constant	0.206	0.0121***	0.209	0.00968***					
Observations	6,	884		6,884					
Adjusted R ²	0.	165		0.185					

Table A5: Household disposable income after housing expenditures, OLS cross-section regression results

Variables and statistics	All variables									
Dep. variable	ln(Weekly disposable income of household after									
	housing e	expenditures, €)								
	Coef.	Robust S.E.								
d_social_1	0.339	0.0232***								
d_social_2	0.344	0.0293***								
d_social_3	0.217	0.0233***								
d_social_5	-0.0499	0.0203**								
d_social_6	-0.13	0.0248***								
d_social_7	-0.173	0.0265***								
d_social_8	-0.0644	0.0338*								
d_social_9	-0.0661	0.0269**								
d_social_10	-0.118	0.0526**								
d_social_11	-0.142	0.0324***								
d_empstatu~2	-1.28	0.0495***								
d_empstatu~3	-1.23	0.0428***								
d_empstatu~4	-0.68	0.0279***								
d_empstatu~5	-0.97	0.0288***								
d_persons_1	-0.605	0.0212***								
d_persons_3	0.376	0.0199***								
d_persons_4	0.673	0.0235***								
d_persons_5	0.86	0.0265***								
d_persons_6	1.02	0.0325***								
d_persons_7	1.07	0.0478***								
d_persons_8	1.32	0.0696***								
Constant	6.75	0.02***								
Observations	6,884									
\mathbb{R}^2	0.654									

Table A6: Household exposection regression results	Table A6: Household expenditures on heating and lighting, OLS cross-								
Variables and statistics	Δ11 3	variables	Prefe	erred model					
Dep. variable		heating &		l heating &					
Dep. variable		expenditures		g expenditures					
		E/week)		E/week)					
	Coef.	Robust S.E.	Coef.	Robust S.E.					
d_rooms_1	-5.54	2.5**	-4.55	2.47*					
d_rooms_2	-10.1	2.02***	-8.74	1.68***					
d_rooms_3	-3.92	1.43***	-3.39	1.35**					
d_rooms_4	-1.08	0.824	3.37	1.55					
d_rooms_6	1.77	0.55***	1.98	0.546***					
d_rooms_7	4.39	0.657***	4.58	0.667***					
d_rooms_8	7.35	0.839***	7.66	0.849***					
d_built_1	1.09	0.808		0.0.5					
d_built_3	-1.03	0.844							
d_built_4	1.39	0.75*	1.65	0.614***					
d_built_5	-0.675	0.716							
d_built_6	-1.42	0.73*	-1.12	0.57**					
d_built_7	-1.18	1.01							
d_social_1	0.339	0.755							
d_social_2	1.52	1.14							
d_social_3	0.543	0.783							
d_social_5	-1.7	0.738**	-1.96	0.601***					
d_social_6	-0.862	0.786							
d_social_7	1.39	1.37							
d_social_8	4.72	1.33***	4.4	1.26***					
d_social_9	-2.55	0.958***	-2.54	0.816***					
d_social_10	-4.41	1.96**	-4.75	1.88**					
d_social_11	-1.99	1.05*	-1.6	0.696**					
d_centheat	0.777	1.54							
d_persons_1	-6.59	0.593***	-6.67	0.562***					
d_persons_3	3.7	0.693***	3.54	0.655***					
d_persons_4	4.73	0.757***	4.54	0.653***					
d_persons_5	8.37	1.04***	8.15	1.02***					
d_persons_6	9.87	1.49***	9.68	1.31***					
d_persons_7	11.4	2.09***	11.2	2***					
d_persons_8	11.3	3.35***	10.8	3.27***					
d_urban	-3.55	0.547***	-3.57	0.526***					
d_housetyp_2	-4.12	1.16***	-4.77	1.12***					
d_housetyp_3	-6.33	3.04**	-6.69	2.77**					
d_housetyp_4	2.92	3.91							
d_empstatu~2	0.211	1.79							
d_empstatu~3	-0.167	1.43		0.665					
d_empstatu~4	-1.44	0.72**	-1.57	0.682**					
d_empstatu~5	1.4	1.04	20.2	0.000					
Constant	29.2	1.7***	30.2	0.68***					
Observations		6,884		6,884					
\mathbb{R}^2	(0.160		0.157					

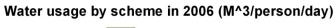


Figure A1. Water use by water scheme, known locations only.

Table A4. The percentage of people who are supplied with drinking water that does not meet the EU quality standard, per water quality

parameter and sanitary authority, for 2006.

parameter and san	mary	auı	11011	ty, I	01 20	oo.																												
	Any cause	Coliform	Colour	Ecoli	Clostridium Perf.	pН	Iron	Manganese	Nitrate	Aluminium	Lead	Total Organic Carbon	Colony Count @22°	Turbidity	Enterococci	Ammonium	Flouride	Bromate	MHT	3CIM, 4CIM	Conductivity	Taste	Odour	Sodium	PAH	Copper	Chloride	Antimony	Mercury	Selenium	Arsenic	Pesticides	Nickel	Boron
Carlow	78%	3%	2%	2%	0%	2%	2%	0%	0%	58%	15%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% (0%	0%	0%
Cavan	92%	33%	66%	21%		26%	8%	40%	6%	27%	7%	7%	23%	19%	13%	2%	23%	1%	1%		0%		0%	_	0%			0%	0%	0%		_	_	0%
Clare	83%	53%	11%	1%		20%	42%	4%	1%	18%	1%	0%	2%	0%	5%	0%	4%	1%	45%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		_	_	0%
Cork City	100%	99%	99%	0%	0%	1%	99%	99%	0%	99%	0%	0%	0%	99%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% (0%	0%	0%
Cork North	40%	19%	6%	11%	6%	3%	0%	0%	0%	14%	3%	0%	11%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% (0%	0%	0%
Cork South	86%	77%	6%	1%	3%	5%	0%	0%	0%	10%	0%	0%	6%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% (0%	0%	0%
Cork West	59%	23%	16%	9%	30%	1%	0%	0%	0%	39%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% (0%	0%	0%
Donegal	95%	60%	35%	8%	42%	15%	48%	51%	16%	43%	0%	0%	19%	63%	0%	0%	2%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% (0%	0%	0%
Dublin City	100%	100%	0%	22%	93%	0%	0%	0%	0%	53%	61%	0%	27%	0%	63%	0%	22%	0%	0%	0%	0%	89%	0%	0%	0%	0%	0%	0%	0%	0%	0% (0%	0%	0%
Dun Laoghaire Rathdown	100%	100%	25%	20%	24%	0%	19%	0%	0%	39%	21%	0%	24%	1%	0%	0%	0%	0%	0%	0%	0%	42% 4	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Fingal	93%	92%	0%	81%	0%	0%	0%	0%	0%	82%	81%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	93% 9	3% 8	31%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
South Dublin	100%	100%	0%	0%	92%	0%	0%	0%	0%	92%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Galway City	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	100%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Galway County	70%	45%	30%	30%	13%	4%	23%	14%	5%	9%	0%	0%	5%	33%	1%	0%	1%	0%	20%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Kerry	95%	58%	60%	9%	6%	75%	14%	6%	0%	2%	12%	11%	1%	21%	0%	0%	2%	0%	3%	0%	0%	0%	6%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Kildare	96%	95%	0%	60%	90%	0%	63%	0%	0%	31%	31%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% 3	31%	0%	0%	0%	0%	0%	0%	0%	0%
Kilkenny	83%	57%	44%	1%	18%	7%	25%	15%	4%	54%	0%	39%	0%	37%	0%	0%	63%	0%	7%	0%	0%	0%	0%	0%	0%	0%	0%	0%	14%	0%	0%	0%	0%	0%
Laois	80%	11%	8%	1%	4%	0%	10%	11%	6%	2%	0%	8%	44%	4%	1%	0%	8%	0%	8%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Leitrim	88%	81%	16%	16%	12%	15%	77%	5%	41%	63%	0%	1%	27%	71%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Limerick City	100%	100%	0%	0%	100%	0%	0%	0%	0%	100%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Limerick County	82%	15%	2%	6%	10%	0%	0%	0%	0%	62%	0%	5%	0%	45%	0%	10%	36%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Longford	78%	8%	9%	1%	1%	2%	62%	37%	0%	66%	0%	0%	2%	41%	0%	1%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Louth	99%	81%	45%	2%	0%	0%	49%	0%	0%	54%	0%	68%	33%	31%	60%	0%	48%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Mayo	58%	22%	22%	15%	24%	4%	27%	9%	5%	9%	0%	0%	10%	6%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Meath	97%	69%	1%	29%	1%	27%	51%	34%	0%	38%	0%	0%	5%	16%	30%	0%	0%	0%	29%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	6%	0%	0%
Monaghan	86%	45%	42%	6%	21%	0%	42%	32%	0%	46%	1%	0%	29%	41%	6%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
North Tipperary	77%	47%	4%	5%	0%	0%	20%	0%	3%	0%	0%	4%	46%	15%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	11%	0%	0%	0%	0%	0%	0%	3%	0%
South Tipperary	87%	75%	45%	0%	7%	17%	21%	3%	0%	41%	0%	2%	40%	5%	0%	17%	51%	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Offaly	66%	55%	0%	3%	7%	0%	0%	0%	3%	37%	0%	0%	7%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	9%	0%	0%
Roscommon	57%	22%	16%	8%		13%	0%	0%	0%	0%	20%	1%	13%	16%	3%	0%	8%	0%	7%	0%	0%	11% 1	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Sligo	92%	55%	19%	25%	14%	27%	43%	11%	1%	14%	0%	0%	36%	15%	9%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Waterford City	100%	100%	0%	100%	0%	0%	0%	100%	100%	100%	100%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Waterford County	90%	28%	17%	1%	2%	30%	29%	11%	11%	16%	0%	0%	40%	1%	18%	0%	19%	0%	10%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Westmeath	54%	50%	3%	29%	9%	0%	0%	0%	0%	29%	0%	0%	0%	0%	3%	0%	2%	0%	0%	0%	0%	0%	0%	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Wexford	74%	22%	45%	8%	0%	45%	1%	12%	1%	8%	0%	0%	50%	45%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%
Wicklow	90%	12%	5%	3%	19%	16%	28%	0%	20%	16%	0%	0%	20%	0%	3%	0%	23%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
State	88%	65%	17%	19%	30%	8%	19%	10%	3%	42%	20%	3%	18%	17%	11%	1%	9%	0%	4%	0%	0% 2	20%	9%	6%	0%	2%	0%	0%	0%	0%	0%()%()%()%

Year	Number	Title/Author(s) ESRI Authors/Co-authors Italicised
2009		
	292	EU Climate Change Policy 2013-2020: Thoughts on Property Rights and Market Choices Paul K. Gorecki, Sean Lyons and Richard S.J. Tol
	291	Measuring House Price Change David Duffy
	290	Intra-and Extra-Union Flexibility in Meeting the European Union's Emission Reduction Targets <i>Richard S.J. Tol</i>
	289	The Determinants and Effects of Training at Work: Bringing the Workplace Back In Phillip J. O'Connell and Delma Byrne
	288	Climate Feedbacks on the Terrestrial Biosphere and the Economics of Climate Policy: An Application of <i>FUND Richard S.J. Tol</i>
	287	The Behaviour of the Irish Economy: Insights from the HERMES macro-economic model Adele Bergin, Thomas Conefrey, John FitzGerald and Ide Kearney
	286	Mapping Patterns of Multiple Deprivation Using Self-Organising Maps: An Application to EU-SILC Data for Ireland Maurizio Pisati, <i>Christopher T. Whelan</i> , Mario Lucchini and <i>Bertrand Maître</i>
	285	The Feasibility of Low Concentration Targets: An Application of FUND Richard S.J. Tol
	284	Policy Options to Reduce Ireland's GHG Emissions
		Instrument choice: the pros and cons of alternative policy instruments Thomas Legge and <i>Sue Scott</i>
	283	Accounting for Taste: An Examination of Socioeconomic Gradients in Attendance at Arts Events Pete Lunn and Elish Kelly
	282	The Economic Impact of Ocean Acidification on Coral Reefs Luke M. Brander, Katrin Rehdanz, <i>Richard S.J. Tol</i> , and Pieter J.H. van Beukering

281	Assessing the impact of biodiversity on tourism flows: A model for tourist behaviour and its policy implications Giulia Macagno, Maria Loureiro, Paulo A.L.D. Nunes and <i>Richard S.J. Tol</i>
280	Advertising to boost energy efficiency: the Power of One campaign and natural gas consumption Seán Diffney, Seán Lyons and Laura Malaguzzi Valeri
279	International Transmission of Business Cycles Between Ireland and its Trading Partners Jean Goggin and Iulia Siedschlag
278	Optimal Global Dynamic Carbon Taxation David Anthoff
277	Energy Use and Appliance Ownership in Ireland Eimear Leahy and Seán Lyons
276	Discounting for Climate Change David Anthoff, Richard S.J. Tol and Gary W. Yohe
275	Projecting the Future Numbers of Migrant Workers in the Health and Social Care Sectors in Ireland Alan Barrett and Anna Rust
274	Economic Costs of Extratropical Storms under Climate Change: An application of FUND Daiju Narita, <i>Richard S.J. Tol, David Anthoff</i>
273	The Macro-Economic Impact of Changing the Rate of Corporation Tax Thomas Conefrey and John D. Fitz Gerald
272	The Games We Used to Play An Application of Survival Analysis to the Sporting Life-course Pete Lunn
271	Exploring the Economic Geography of Ireland Edgar Morgenroth
270	Benchmarking, Social Partnership and Higher Remuneration: Wage Settling Institutions and the Public-Private Sector Wage Gap in Ireland Elish Kelly, Seamus McGuinness, Philip O'Connell
269	A Dynamic Analysis of Household Car Ownership in Ireland

Anne Nolan

268	The Determinants of Mode of Transport to Work in the Greater Dublin Area <i>Nicola Commins</i> and <i>Anne Nolan</i>
267	Resonances from <i>Economic Development</i> for Current Economic Policymaking <i>Frances Ruane</i>
266	The Impact of Wage Bargaining Regime on Firm-Level Competitiveness and Wage Inequality: The Case of Ireland Seamus McGuinness, Elish Kelly and Philip O'Connell
265	Poverty in Ireland in Comparative European Perspective Christopher T. Whelan and Bertrand Maître
264	A Hedonic Analysis of the Value of Rail Transport in the Greater Dublin Area Karen Mayor, Seán Lyons, David Duffy and Richard S.J. Tol
263	Comparing Poverty Indicators in an Enlarged EU Christopher T. Whelan and Bertrand Maître
262	Fuel Poverty in Ireland: Extent, Affected Groups and Policy Issues Sue Scott, Seán Lyons, Claire Keane, Donal McCarthy and Richard S.J. Tol
261	The Misperception of Inflation by Irish Consumers David Duffy and Pete Lunn
260	The Direct Impact of Climate Change on Regional Labour Productivity Tord Kjellstrom, R Sari Kovats, Simon J. Lloyd, Tom Holt, <i>Richard S.J. Tol</i>
259	Damage Costs of Climate Change through Intensification of Tropical Cyclone Activities: An Application of FUND Daiju Narita, <i>Richard S. J. Tol</i> and <i>David Anthoff</i>
258	Are Over-educated People Insiders or Outsiders? A Case of Job Search Methods and Over-education in UK Aleksander Kucel, <i>Delma Byrne</i>
257	Metrics for Aggregating the Climate Effect of Different Emissions: A Unifying Framework <i>Richard S.J. Tol,</i> Terje K. Berntsen, Brian C. O'Neill, Jan S. Fuglestvedt, Keith P. Shine, Yves Balkanski and Laszlo Makra

256	Intra-Union Flexibility of Non-ETS Emission Reduction Obligations in the European Union <i>Richard S.J. Tol</i>
255	The Economic Impact of Climate Change Richard S.J. Tol
254	Measuring International Inequity Aversion Richard S.J. Tol
253	Using a Census to Assess the Reliability of a National Household Survey for Migration Research: The Case of Ireland Alan Barrett and Elish Kelly
252	Risk Aversion, Time Preference, and the Social Cost of Carbon David Anthoff, Richard S.J. Tol and Gary W. Yohe
251	The Impact of a Carbon Tax on Economic Growth and Carbon Dioxide Emissions in Ireland <i>Thomas Conefrey, John D. Fitz Gerald, Laura Malaguzzi Valeri</i> and <i>Richard S.J. Tol</i>
250	The Distributional Implications of a Carbon Tax in Ireland Tim Callan, Sean Lyons, Susan Scott, Richard S.J. Tol and Stefano Verde
249	Measuring Material Deprivation in the Enlarged EU Christopher T. Whelan, Brian Nolan and Bertrand Maître
248	Marginal Abatement Costs on Carbon-Dioxide Emissions: A Meta- Analysis Onno Kuik, Luke Brander and <i>Richard S.J. Tol</i>
247	Incorporating GHG Emission Costs in the Economic Appraisal of Projects Supported by State Development Agencies Richard S.J. Tol and Seán Lyons
246	A Carton Tax for Ireland Richard S.J. Tol, Tim Callan, Thomas Conefrey, John D. Fitz Gerald,
245	Seán Lyons, Laura Malaguzzi Valeri and Susan Scott Non-cash Benefits and the Distribution of Economic Welfare Tim Callan and Claire Keane
244	Scenarios of Carbon Dioxide Emissions from Aviation Karen Mayor and Richard S.J. Tol
243	The Effect of the Euro on Export Patterns: Empirical Evidence from Industry Data Gavin Murphy and Iulia Siedschlag
242	The Economic Returns to Field of Study and Competencies Among

	Higher Education Graduates in Ireland Elish Kelly, Philip O'Connell and Emer Smyth
241	European Climate Policy and Aviation Emissions Karen Mayor and Richard S.J. Tol
240	Aviation and the Environment in the Context of the EU-US Open Skies Agreement Karen Mayor and Richard S.J. Tol
239	Yuppie Kvetch? Work-life Conflict and Social Class in Western Europe Frances McGinnity and Emma Calvert
238	Immigrants and Welfare Programmes: Exploring the Interactions between Immigrant Characteristics, Immigrant Welfare Dependence and Welfare Policy Alan Barrett and Yvonne McCarthy
237	How Local is Hospital Treatment? An Exploratory Analysis of Public/Private Variation in Location of Treatment in Irish Acute Public Hospitals Jacqueline O'Reilly and Miriam M. Wiley
236	The Immigrant Earnings Disadvantage Across the Earnings and Skills Distributions: The Case of Immigrants from the EU's New Member States in Ireland Alan Barrett, Seamus McGuinness and Martin O'Brien
235	Europeanisation of Inequality and European Reference Groups Christopher T. Whelan and Bertrand Maître
234	Managing Capital Flows: Experiences from Central and Eastern Europe Jürgen von Hagen and <i>Iulia Siedschlag</i>
233	ICT Diffusion, Innovation Systems, Globalisation and Regional Economic Dynamics: Theory and Empirical Evidence Charlie Karlsson, Gunther Maier, Michaela Trippl, <i>Iulia Siedschlag</i> , Robert Owen and <i>Gavin Murphy</i>
232	Welfare and Competition Effects of Electricity Interconnection between Great Britain and Ireland Laura Malaguzzi Valeri
231	Is FDI into China Crowding Out the FDI into the European Union? Laura Resmini and <i>Iulia Siedschlag</i>
230	Estimating the Economic Cost of Disability in Ireland John Cullinan, Brenda Gannon and <i>Seán Lyons</i>

	229	Controlling the Cost of Controlling the Climate: The Irish Government's Climate Change Strategy Colm McCarthy, <i>Sue Scott</i>
	228	The Impact of Climate Change on the Balanced-Growth-Equivalent: An Application of <i>FUND</i> <i>David Anthoff, Richard S.J. Tol</i>
	227	Changing Returns to Education During a Boom? The Case of Ireland Seamus McGuinness, Frances McGinnity, Philip O'Connell
	226	'New' and 'Old' Social Risks: Life Cycle and Social Class Perspectives on Social Exclusion in Ireland Christopher T. Whelan and Bertrand Maître
	225	The Climate Preferences of Irish Tourists by Purpose of Travel Seán Lyons, Karen Mayor and Richard S.J. Tol
	224	A Hirsch Measure for the Quality of Research Supervision, and an Illustration with Trade Economists Frances P. Ruane and Richard S.J. Tol
	223	Environmental Accounts for the Republic of Ireland: 1990-2005 Seán Lyons, Karen Mayor and Richard S.J. Tol
2007	222	Assessing Vulnerability of Selected Sectors under Environmental Tax Reform: The issue of pricing power J. Fitz Gerald, M. Keeney and S. Scott
	221	Climate Policy Versus Development Aid Richard S.J. Tol
	220	Exports and Productivity – Comparable Evidence for 14 Countries The International Study Group on Exports and Productivity
	219	Energy-Using Appliances and Energy-Saving Features: Determinants of Ownership in Ireland Joe O'Doherty, <i>Seán Lyons</i> and <i>Richard S.J. Tol</i>
	218	The Public/Private Mix in Irish Acute Public Hospitals: Trends and Implications Jacqueline O'Reilly and Miriam M. Wiley
	217	Regret About the Timing of First Sexual Intercourse: The Role of Age and Context <i>Richard Layte</i> , Hannah McGee
	216	Determinants of Water Connection Type and Ownership of Water- Using Appliances in Ireland Joe O'Doherty, <i>Seán Lyons</i> and <i>Richard S.J. Tol</i>

215	Unemployment – Stage or Stigma? Being Unemployed During an Economic Boom <i>Emer Smyth</i>
214	The Value of Lost Load Richard S.J. Tol
213	Adolescents' Educational Attainment and School Experiences in Contemporary Ireland Merike Darmody, Selina McCoy, Emer Smyth
212	Acting Up or Opting Out? Truancy in Irish Secondary Schools Merike Darmody, Emer Smyth and Selina McCoy
211	Where do MNEs Expand Production: Location Choices of the Pharmaceutical Industry in Europe after 1992 Frances P. Ruane, Xiaoheng Zhang
210	Holiday Destinations: Understanding the Travel Choices of Irish Tourists Seán Lyons, Karen Mayor and Richard S.J. Tol
209	The Effectiveness of Competition Policy and the Price-Cost Margin: Evidence from Panel Data Patrick McCloughan, <i>Seán Lyons</i> and William Batt
208	Tax Structure and Female Labour Market Participation: Evidence from Ireland <i>Tim Callan</i> , A. Van Soest, <i>J.R. Walsh</i>
207	Distributional Effects of Public Education Transfers in Seven European Countries Tim Callan, Tim Smeeding and Panos Tsakloglou