

Working Paper No. 311

September 2009

Exploring International Differences in Rates of Return to Education: Evidence from EU SILC

Maria A. Davia*, Seamus McGuinness** & Philip, J. O'Connell**

Abstract: This paper uses EU-SILC data from 2005 and 2006 to explore the hypothesis that international differences in rates of return to education reflect variations in the level of risk associated with educational investments. While there was some evidence to support this hypothesis with regards to returns to ISCED level 5 qualifications among males, the majority of the variation in international returns was related to distributional impacts. The results suggest that higher rates of return to more advanced qualifications relate to more dispersed distributions among poorly qualified workers which, in turn, raise the returns to credentials further up the educational spectrum.

Corresponding Author: seamus.mcguinness@esri.ie

JEL classification codes: C29; I21; J24

Keywords: returns to education, dispersion, risk

ESRI working papers represent un-refereed work-in-progress by members who are solely responsible for the content and any views expressed therein. Any comments on these papers will be welcome and should be sent to the author(s) by email. Papers may be downloaded for personal use only.

^{*} Universidad de Castilla, La Mancha

^{**}Economic & Social Research Institute, Dublin

Exploring International Differences in Rates of Return to Education: Evidence from EU SILC

1.0 Background & Introduction

This paper explores the idea that cross-country differences in the rates of return to education can be explained by variations in relative risk. Pereira & Martins (2002) demonstrate, using micro 1995 data for 16 countries, a positive relationship between rates of return and risk. Pereira & Martins (2002) estimate a set of quantile Mincer regressions for each country and measure risk as the difference in the years of schooling coefficient in the first and ninth quantile. While the measurement approach adopted by Periera & Martins (2002) is novel, it is also not without its drawbacks. Specifically, the quantile regressions were estimated over the total population, thus the technique compares the investments of individuals at the bottom end of the distribution, who have typically low levels of schooling, with those in the top decile, who are typically graduates. The approach is acceptable provided that the returns to schooling are linear and that both returns and risk do not vary with the level of education. However, Heckman, Lockner & Todd (2003) demonstrate that the assumption of linearity does not, in fact, hold. This suggests that the risk measure adopted in the earlier study is more indicative of the difference in the returns to different levels of schooling and may not, therefore, adequately reflect the risk of investing in a particular level of education. The results from Heckman, Lochner & Todd (2003) also suggest that uncertainty will vary across educational groupings, leaving open the possibility that the risk of specific investments may have a higher weight in explaining any observed relationship with rates of return.

The notion of differing rates of return is consistent with the Skill Biased technological Change framework (SBTC) (see Katz & Autor (1999) for an overview of the literature) which emphasises the idea that as the economy grows, technology will disproportionately increase the relative demand for more skilled labour. Thus, given the evidence is support of SBTC, we should expect to observe larger returns to higher levels of educational attainment. Potentially these higher returns will also be associated with a higher risk of investment. However, it has also been argued that SBTC can result in

accelerated returns to having few or no qualifications at all. Autor, Levy and Murnane (2003) argue that technology can replace human labour in more routine tasks but cannot replace labour in non-routine tasks, a point also made by Keep (2005). So, while computers can replace precise tasks in manufacturing, and even routine clerical operations, tasks such as cleaning and waiting tables cannot be replaced. And in fact, a growth in high-skilled employment may cause an increased demand for low-skilled service jobs. The result of such a scenario would be a rising relative demand in both high-skilled and low-skilled jobs, but a falling-off in relative demand for jobs in the 'middle', where technical skills can replace human labour. These demand changes will result in rising returns for the high skilled, but wages of the low skilled will be maintained. Thus SBTC may also result in falling returns to lower levels of schooling associated with mid-skilled occupations.

Recognition that rates of return can vary at different levels of education also opens up the possibility that earnings dispersion may also differ by level. Such variation in wage dispersion could take place if different sectors of the labour market are differential influenced by labour market institutions. Therefore, there are strong grounds to believe that both rates of return and relative risk will vary by level of educational attainment suggesting that a more disaggregated approach to the study of cross-country risk-return relationships is warranted.

2.0 Data and Methods

The data for this study comes from the EU Survey on Income and Living Conditions (EU-SILC) which is a voluntary survey of private households carried out by national statistical units under EU legislation (Council Regulation No 1177/2003) and coordinated by Eurostat. The first survey was carried out in 15 countries in 2004 and expanded in 2005 to 26 European countries (plus Turkey). The present piece of work relies on data from waves 2 and 3 (corresponding to 2005 and 2006, respectively). The primary focus of the survey is the collection of information on the income and living conditions of different types of households to compute indicators on poverty, deprivation and social exclusion. It is not, therefore, designed to provide information on the structure of wages, job or employer characteristics making it more limited than it was in its predecessor, the European Community Household Panel (ECHP).

Nevertheless, it provides us with an opportunity for estimating differences in cross-country returns using relatively recent data.

.

The EU-SILC data set presents a number of challenges in the context of any international study on rates of return. Firstly, we use information on gross monthly wages and average hours worked per week to derive gross hourly wages. Information on gross monthly wages was only available in the period 2005/2006 in nine countries (namely, Austria, Spain, Greece, Italy, Portugal, Ireland, Iceland, Poland and the UK). This is the most restrictive feature of the data set since it hinders the extent of our international comparisons. Nevertheless, the countries for which information was available represent the main European welfare regimes or institutional setups, with Mediterranean countries fully represented, Nordic (Iceland), Central or Continental (Austria), Liberal (Ireland and UK) and new Easter European EU member states (Poland).

The second challenge in the data-set is the accuracy of the measure of educational attainment, which is also absolutely crucial if returns to education are to be correctly identified. According to Schneider and Müller (2009) the education attainment variables (following ISCED97 classification) in EU-SILC present problems in a number of countries. The principal problems relate to an overrepresentation of ISCED 3 and other dissimilarities between the distribution of populations in the home countries Labour Force Survey and that of EU-SILC. While such dissimilarities did not appear to radically affect estimated rates of return, the exception to this was the UK where the estimates appeared much lower than in previous literature, making it necessary for us to exclude the UK from our analysis. However, a clear advantage of the EU_SILC dataset is its regional geographical component, which allows for us to examine both inter and intra-country differences in rates of return. The country sample sizes vary from 6,698 observations in Iceland, to 28,928 in Italy. The country level data has been disaggregated into NUTS1¹ regions (see Annex for concrete labels of the regions).

-

¹ NUTS stands for Nomenclature of Territorial Units for Statistics. The NUTS territorial units were established to provide standard regional statistics for the EU and are used for policymaking and analysis. The NUTS nomenclature is a three-level hierarchical categorization that divides each of the 25 EU member states into a whole number of NUTS-1 regions. Population in NUTS1 rank between three and seven million people.

With respect to the methodology employed, our primary objective was to generate reliable estimates of both educational returns and dispersion for each NUTS region. As stated, the returns to schooling are generally estimated using a standard Mincer regression such as in equation 1 where S_{ij} represents the years of schooling undertaken, ex relates to labour market experience and X_i is a vector of earnings related personal or job characteristics. The alternative specification which allows for possible non-linear rates of return is outlined by equation 2 whereby the years of schooling variable S_i in equation 1 is replaced by Q_i , which denotes the highest qualification obtained by the respondent. Given the concerns outlined in this paper, equation 2 is obviously preferred.

$$LnW_{i} = \sum_{i=1}^{i} S_{i}\alpha + X_{i}\beta + ex_{i}\delta + ex_{i}^{2}\gamma + \varepsilon_{i}$$
 (1)

$$LnW_{ij} = \sum_{i=1}^{J} Q_i \alpha + X_i \beta + \delta e x_i + \gamma e x_i^2 + \varepsilon_i$$
 (2)

We estimate equation 2^2 to generate returns to ISCED levels $3\&4^3$ and ISCED 5 with both estimates related to the base category which contains individuals educated to ISCED level 2 and below. The equations are estimated separately by gender with the female models accounting for selection bias.

With respect the riskiness of the human capital investment, we follow the approach adopted in the industrial economics literature by Winter-Ebmer & Zweimuiller (1999) who include the regression standard error of a firm level wage regression as a dependant variable representing conditional intra-firm dispersion in a firm level productivity regression. In a similar vein we estimate equation 3 for each educational level within each region taking the regression standard error σ_{ij} as a measure of wage dispersion

² In terms of our X variables, these are restricted to 1 digit NACE dummies.

³ Due to the small number of cases in ISCED 4 category and the fact that it refers to different types of post/secondary studies across countries we have merged categories 3 and 4 in a post-compulsory but non tertiary education category.

controlling for observable differences in the experience profile and sectoral composition of the regions educational cohort.

$$LnW_{ij} = \sum_{i=1}^{J} X_{i}\beta + \delta x_{i} + \gamma x_{i}^{2} + \varepsilon_{i}$$
 (3)

3.0 Results

Table 1 displays the distribution of employees in NUTS1 by gender according to the three education levels defined in this paper. While we have estimated returns for each region for both 2005 and 2006, for convenience we report the 2 year averages for each of our 28 regions. Table 1 shows wide dispersion in education attainment across Europe and even within European countries. The proportion of employees with ISCED 0 to 2 (up to compulsory education) is particularly high in Portugal (with around 70 percent of males and 58 percent of females) followed by southern regions in Spain and Italy. In the opposite extreme we find Polish and Austrian regions, where ISCED 3 and 4 count for more than half of the employee population. Finally, very high education attainment (measured by the proportion of higher education graduates, ISCED 5 or above) is found in Spain for both men and women and in Greece and Ireland.

[Table 1 about here]

As for differences within countries, considerable variation may be found between North-East and Central versus Southern Spain as regards both extremes in the distribution. In Greece, Attiki (GR3) registers far more higher education graduates then the other regions, whereas Poland, Central (PL1) has a much higher share of graduates relative to the rest of the country, with the difference particularly pronounced among males.

Table 2 shows returns to education (namely, the coefficients from simple region-gender-specific Mincer equations outlined in equation 2). Since returns to education with dummy variables need a category to be used as a base-case (in our case, ISCED 0, 1 and 2) we only display and use the coefficient for ISCED 3 / 4 and ISCED 5. Due to the

semilogarithmic shape of the wage equations, coefficients may be interpreted as rates of return to the specific ISCED levels compared to the base case.

[Table 2 about here]

Returns to secondary and non-tertiary education (ISCED 3&4) are high in Austria (and are particularly high in the Southern region of Austria) and Portugal, followed closely by Poland. The highest nation-wide rates are of return to ISCED 3 / 4 attainment range between 30 and 40 per cent for both men and women (depending on the country). The lowest rates of return to this level of education are registered in Spain, Italy and Greece, with rates averaging around 16 percent for men in these countries. Women tend to enjoy higher returns to this level of education, with the noteworthy exceptions of Iceland and Austria. Amongst higher education graduates, returns range for males from between 42 percent in Spain to 92 percent in Portugal, whereas for females the lowest return is registered in Iceland (44 per cent) and the highest, again, in Portugal (approximately 100 per cent). There is again notable variation between regions within countries, such as in Spain (between North-East and the Centre) and Italy (it varies across genders, but South and Islands appear to reward higher education more than North East and Centre).

To get a preliminary feel for the extent of any relationship between rates of return and conditional earnings dispersion, we plot the estimated coefficients for each region from equations 2 against the corresponding standard errors generated by equation 3. The linear trend line would suggest a strong positive relationship between rates of return and conditional dispersion for ISCED levels 5 for both men and women (but particularly for men). With respect to ISCED levels 3 / 4 the positive relationship appears somewhat weaker for male's returns while, if anything, the trend line for females has a slightly negative slope. The preliminary graphical evidence would suggest that the relationship between returns and conditional dispersion strengthens as the level of educational attainment rises.

[Panel 1 about here]

We now move onto the regression analysis. In order to assess the extent to which the dispersion measurement approach adopted here is comparable with that of Pereira &

Martins (2002) we estimate equation 1 for quantiles 1 and 9 at regional level and take the absolute difference in the years schooling coefficients as a measure of dispersion. This will be compared to a measure based on the regression standard errors of regional equations estimated using equation 2. Thus we initially estimate an overall measure of conditional dispersion in a sample including all levels of educational attainment within each region. Table 3 presents the results from OLS models that regress the standard error dispersion measures on the regional rates of return to each ISCED level in each Consistent with the descriptive analysis we find that conditional general dispersion, as measured by the regression standard error, is positively related to rates of return for all education levels with the exception of ISCED 3 /4 among females where the coefficient is negative but non-significant. Interestingly, the R² statistic suggests that this measure of dispersion is particularly effective in explaining spatial variations in the rates of return to ISED level 5 among males. We then include country level dummies to assess the relationship within countries but across regions. By including such controls we are able to assess the extent to which the relationships we observe in the more basic model relate to inter, as opposed to intra, country relationships. We find that the controls remain significant for ISCED level 5, however, the marginal effects are somewhat lower suggesting that the observed result was important both within and across countries. Conversely, the ISCED 3/4 result is no longer significant when country effects are included suggesting that dispersion is only important within a crosscountry context. Table 4 replicates the model with the quantile regression based estimate and while, at first glance, the results look similar to those in table 3, substantial differences do exist. For instance, no relationship between dispersion and rates of return was found within the male ISCED 5 equation, despite the fact that this was a particularly strong effect in the previous model. Furthermore, the relationship between the male returns to ISCED 3 /4 and dispersion is much stronger in table 4, accounting for over 40 per cent of the variation. Generally, the finding, implied by table 4, that variations in dispersion become less important in explaining spatial differences in rates of return to higher levels of schooling seems somewhat implausible. This suggests that the quantile regression based estimate is, perhaps, a somewhat less reliable measure of dispersion. Finally, it is worth noting that, in table 4, when county level controls are included in the model the results suggest that regional variations in returns to ISCED level 3/4 and 5 attainment for males is positively related to dispersion.

[Table 3 about here]

[Table 4 about here]

While the analysis of the impact of overall labour market conditional dispersion on rates of return is interesting it is not highly informative as, given the high correlation between overall labour market dispersion and that in the various components of the wage distribution, we cannot distinguish the extent to which the relationship is driven by risk as opposed to purely distributional impacts. If, as hypothesised by Pereira & Martins (2002) the relationship centres on the risk of the educational investment, then only dispersion at ones own highest education level will prove important. However, it may be that the observed relationships relate more heavily to dispersion in other parts of the distribution, specifically in the areas associated with lower levels of educational attainment. Arguably, high levels of dispersion among workers with lower qualification could generate a higher floor to the rates of return enjoyed by more highly qualified workers. To test these competing hypotheses, we regress the conditional dispersion measures of each education level on the various rates of return. However, given that within country levels of dispersion are likely to be highly correlated, concerns regarding colinearity dictate that we cannot simply estimate a model that includes multiple conditional dispersion measures without some degree of consistency checks. The issue is illustrated by table 5 which reports the correlation coefficients for the various regression standard errors, note, we also include conditional dispersions from the regression estimated using the ISCED 2 and below educational category. Generally speaking, the correlation coefficients are larger for males with the rate of correlation highest between the ISCED 3 / 4, 5 and overall conditional dispersion measures while that based on ISCED 2 was relatively poorly correlated with the other education specific measures. With respect to females, the correlation was highest between the measure of conditional dispersion estimated using the ISCED 3/4 population and that based on the overall and ISCED level 2 distributions. However, as was the case with males, the female ISCED level 2 conditional dispersion measure was poorly correlated with that based on ISCED 5 and the overall distributions.

[Table 5 about here]

Given our concerns with colinearity we estimate our models to include each measure of dispersion as a singular right hand side variable, before estimating a model that includes all measures. The results are reported in table 6. Dealing firstly with the cross-country / cross-region regressions, based on the relative magnitude of the R² statistics, the results for males suggest that the returns to ISCED level 3&4 and ISCED level 5 are more effectively explained by conditional dispersion levels in the ISCED 2 and below distribution. Similarly for females, the variation in returns to ISCED level 5 appears to be most effectively explained by conditional dispersion levels in the ISCED 3 & 4 distributions. These results suggest that distributional effects whereby the labour markets in lower educational categories, by virtue of their more dispersed nature, set a more elevated floor for returns to more advanced educational attainments are the principal driver of the dispersion / returns relationship. The absence of a dominant relationship with own dispersion levels would tend not to support the hypothesis that variations in cross-country returns solely reflect a higher return to riskier educational investments. The results hold when the model is re-estimated to include all conditional dispersion measures although there is some suggestion that the risk return relationship may, in fact, also be a factor with respect to spatial differences in the returns to ISCED 5 qualifications among males⁴. Finally, when country level controls are included the models suggest that, within countries and across regions, higher returns to ISCED 5 among males do predominately reflect an increased investment risk whereas the ISCED 2 effects appear more important in explaining differences in returns the national level.

4.0 Summary and Conclusions

This paper uses SILC data to explore the relationship between wage dispersion and rates of return. The analysis seeks to shed further light on the hypothesis that variations in cross-country returns are positively related to the risk level of the human capital investment, as measured by dispersion in the expected rate or return. The results find that while risk is a contributing factor, particularly for explaining varying rates of return

⁴ The within country region generated an unusual result whereby male returns to ISCED level 3 & 4 investment are dependant on dispersion at ISCED 5. However, given that this coefficient was negative and non-significant when included as a solitary control we believe the result here is spurious and a product of colinearity bias.

to level 5 qualifications both within and across countries, distributional factors appear to represent a much more important component in explaining spatial variations in rates of return. The findings of this study suggest that higher rates of return to both level 3/4 and level 5 qualifications relate primarily to higher dispersion levels in the earnings of those with lower levels of educaiton, which, we contend, create a higher floor for rates of returns to more advanced qualifications.

The results for males appear consistent with a scenario whereby changes in the relative demand have resulted in an increased rate of dispersion for individuals at both extremes of the distribution which is consistent with the notion that SBTC will result in increased demand for both high and low skilled labour. These findings are also consistent with an interpretation based on the impact of labour market institutions. We would expect that strong labour market institutions should lead to wage compression, an effect that could be particularly marked at lower levels of education. Such wage compression can lower returns both among the poorly qualified as well as the highly skilled, at ISCED 5 and above. However, it is not within the scope of the current study for formally test this hypothesis.

With respect to females the results are less clear cut and, in general, conditional dispersion was found to be less important in explaining variations in rates of return. The finding that female returns to level 5 qualifications relate to conditional dispersion in the level 3/4 distribution may be related in some way country level differences in the structure of the public sector, which is a common source of employment for many intermediately qualified females,

REFERENCES:

Autor, D., Levy, F. and Murnane, R. (2003) 'The skill content of recent technological change: an empirical exploration'. *Quarterly Journal of Economics*, CXVIII, pp. 1279-1333.

Heckman, J., Lochner, J. & Todd, P, (2003). "<u>Fifty Years of Mincer Earnings Regressions</u>," <u>NBER Working Papers</u> 9732

Katz, L. and Autor, D. (1999) 'Changes in the Wage Structure and Earnings Inequality', in Ashenfelter, O, and Card, D. (Eds) *Handbook of Labor Economics*, Vol. 3A. Amsterdam: North Holland.

Keep, E. (2005), "The 'Bottom Half' and the Dangers of Labour Market Polarisation – Challenges for Policy", ERINI Seminar April 2005.

Pereira, T. & Martins, P, (2002). "<u>Is there a return-risk link in education?</u>," *Economics Letters*, vol. 75(1), pp 31-37

Schneider, S. and W. Müller (2009), Measurement of Education in EU-SILC / Preliminary Evaluation of Measurement Quality, paper presented in EQUALSOC EDUC/INCDIS Meeting on the potential of the EU-SILC International Module, in Dublin, 26th -27th March 2009.

Winter-Ebmer, R. & Zweimuller, J. (1999). "Intra-firm Wage Dispersion and firm performance", *Kyklos*, 1999 52(4); pp. 555-72

Table 1: Education attainment in regions, ordered by country and welfare regime.

		men			women			
		isced 0-2	isced 3&4	isced 5	isced 0-2	isced 3&4	isced 5	
country/regime	regions							
Central Europan								
Austria	AT1	0.147	0.650	0.203	0.185	0.612	0.203	
	AT2	0.100	0.723	0.177	0.166	0.651	0.183	
	AT3	0.159	0.658	0.183	0.203	0.632	0.165	
average	AT	0.141	0.668	0.190	0.188	0.627	0.185	
Mediterranean								
Spain	ES1	0.430	0.259	0.311	0.343	0.264	0.393	
•	ES2	0.333	0.255	0.412	0.247	0.239	0.513	
	ES3	0.313	0.277	0.410	0.209	0.276	0.515	
	ES4	0.484	0.228	0.288	0.336	0.229	0.435	
	ES5	0.463	0.259	0.279	0.354	0.262	0.384	
	ES6	0.522	0.230	0.248	0.360	0.260	0.379	
	ES7	0.539	0.249	0.212	0.402	0.255	0.343	
average	ES	0.440	0.252	0.308	0.318	0.258	0.424	
Greece	GR1	0.340	0.417	0.243	0.206	0.398	0.396	
	GR2	0.383	0.457	0.161	0.284	0.463	0.253	
	GR3	0.235	0.448	0.317	0.148	0.449	0.402	
	GR4	0.406	0.404	0.190	0.256	0.507	0.237	
average	GR	0.307	0.437	0.256	0.193	0.443	0.364	
Italy	ITC	0.440	0.428	0.132	0.338	0.504	0.157	
	ITD	0.429	0.442	0.129	0.298	0.515	0.187	
	ITE	0.386	0.456	0.158	0.279	0.489	0.233	
	ITF	0.488	0.374	0.138	0.225	0.503	0.272	
	ITG	0.526	0.359	0.115	0.230	0.537	0.233	
average	IT	0.445	0.419	0.136	0.292	0.506	0.202	
Portugal	PT	0.712	0.167	0.121	0.584	0.194	0.222	
Liberal								
Ireland	IE0	0.312	0.384	0.304	0.223	0.391	0.386	
Nordic								
Iceland	IS	0.308	0.461	0.231	0.344	0.356	0.300	
Eastern Europea	an							
Poland	PL1	0.080	0.656	0.264	0.041	0.566	0.393	
	PL2	0.045	0.776	0.179	0.040	0.634	0.326	
	PL3	0.072	0.731	0.197	0.030	0.622	0.349	
	PL4	0.085	0.750	0.165	0.072	0.631	0.297	
	PL5	0.061	0.776	0.164	0.042	0.683	0.275	
	PL6	0.084	0.756	0.160	0.074	0.666	0.259	
average	PL	0.070	0.737	0.193	0.049	0.627	0.324	

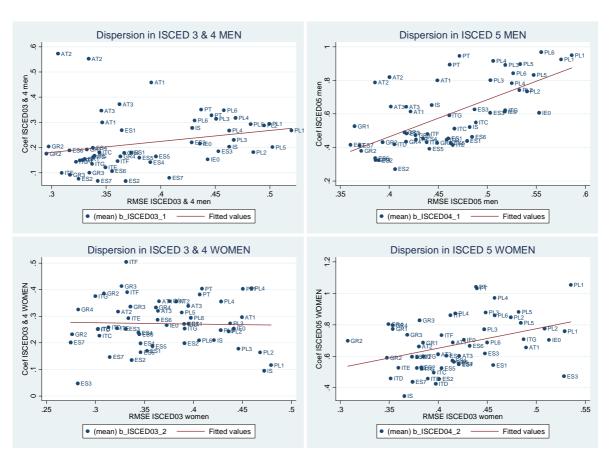

Source: EU-SILC 3005, 2006. Eurostat.

Table 2: Returns to education in regions, ordered by country and welfare regime

and wenare reg	iiiic		ı		1
		men		women	
		isced 3&4	isced 5	isced 3&4	isced 5
country/regime	regions				
Central Europea	n				
Austria	AT1	0.384	0.713	0.324	0.673
	AT2	0.563	0.803	0.336	0.628
	AT3	0.360	0.643	0.330	0.608
average	AT	0.398	0.691	0.329	0.642
Mediterranean					
Spain	ES1	0.224	0.446	0.219	0.575
	ES2	0.072	0.298	0.168	0.493
	ES3	0.206	0.615	0.160	0.553
	ES4	0.169	0.467	0.219	0.563
	ES5	0.163	0.409	0.176	0.543
	ES6	0.149	0.402	0.259	0.633
	ES7	0.074	0.413	0.175	0.491
average	ES	0.159	0.427	0.209	0.572
Greece	GR1	0.173	0.509	0.313	0.729
	GR2	0.190	0.405	0.309	0.644
	GR3	0.096	0.450	0.374	0.781
	GR4	0.172	0.379	0.329	0.801
average	GR	0.158	0.488	0.351	0.755
Italy	ITC	0.174	0.531	0.239	0.508
	ITD	0.153	0.433	0.255	0.442
	ITE	0.111	0.424	0.274	0.493
	ITF	0.148	0.464	0.447	0.797
	ITG	0.142	0.607	0.315	0.654
average	IT	0.158	0.485	0.283	0.530
Portugal	PT	0.340	0.920	0.393	1.037
Liberal					
Ireland	IE0	0.185	0.610	0.260	0.704
Nordic					
Iceland	IS	0.240	0.586	0.152	0.436
Eastern					
Poland	PL1	0.281	0.937	0.252	0.899
	PL2	0.235	0.738	0.204	0.812
	PL3	0.273	0.847	0.226	0.826
	PL4	0.293	0.851	0.381	0.922
	PL5	0.249	0.866	0.282	0.848
	PL6	0.328	0.907	0.252	0.776
average	PL	0.306	0.893	0.286	0.889
0 511.011.0	2005 20				

Source: EU-SILC 3005, 2006. Eurostat.

Panel 1. Returns to education and ISCED-specific dispersion of wages, by gender.

Source: EU-SILC 2005, 2006, Eurostat.

Table 3 OLS robust regression: returns to education explained by overall dispersion

			or country ef		Controlling for country effects			ets
	ISCE	D 3&4	ISCE	ED 5	ISCE	ISCED 3&4		D 5
	Men	Women	Men	Women	Men	Women	Men	Women
Overal RMSE	0.628***	-0.404	2.354***	1.524***	0.122	-0.120	1.568***	1.085**
	(0.155)	(0.272)	(0.238)	(0.461)	(0.359)	(0.431)	(0.530)	(0.533)
year 2006	-0.000	-0.003	0.013	-0.017	-0.003	-0.005	0.009	-0.014
	(0.028)	(0.024)	(0.036)	(0.041)	(0.016)	(0.020)	(0.021)	(0.024)
Austria					0.260***	0.064**	0.253***	-0.008
					(0.052)	(0.026)	(0.058)	(0.038)
Spain					-0.022	-0.072**	-0.028	-0.095**
					(0.042)	(0.034)	(0.058)	(0.043)
Greece					-0.012	0.062	0.019	0.125**
					(0.053)	(0.038)	(0.071)	(0.056)
Iceland					0.058	-0.109**	-0.004	-0.257**
					(0.041)	(0.043)	(0.082)	(0.107)
Italy					-0.022	0.034	0.095	-0.013
					(0.055)	(0.060)	(0.079)	(0.078)
Poland					0.089***	0.008	0.220***	0.137***
					(0.029)	(0.027)	(0.034)	(0.036)
Portugal					0.162***	0.127***	0.407***	0.389***
					(0.033)	(0.025)	(0.042)	(0.036)
Constant	-0.035	0.436***	-0.366***	0.072	0.127	0.316	-0.146	0.221
	(0.073)	(0.107)	(0.098)	(0.176)	(0.176)	(0.194)	(0.258)	(0.240)
Observations	56	56	56	56	56	56	56	56
Rmse	0.104	0.0902	0.135	0.152	0.0595	0.0735	0.0762	0.0893
r2	0.124	0.0448	0.545	0.188	0.754	0.449	0.874	0.756
F	8.749	1.123	49.04	5.530	48.68	28.71	68.05	142.8
df_r	53	53	53	53	46	46	46	46
Robust standard errors in parentheses		ntheses						
*** p<0.01, ** p<0	*** p<0.01, ** p<0.05, * p<0.1							
Source: EU-SILC,	waves 2005,	, 2006, Euros	stat					

Table 4. Consistency check: OLS robust regression: returns to education explained by overall dispersion (measured through differences in returns to 9th and 1st decile)

Ovoran ale		NOT Controlling for country effects				Controlling for country effects			
	isced		isce		isced 3&4		isced 5		
	men	women	men	women	men	women	men	women	
absdif91	0.638***	0.062	-0.021	0.240**	0.253***	0.026	0.207**	-0.026	
	(0.099)	(0.078)	(0.185)	(0.103)	(0.091)	(0.069)	(0.092)	(0.075)	
Year 2006	0.009	-0.004	-0.000	-0.020	0.001	-0.005	-0.001	-0.007	
	(0.022)	(0.025)	(0.053)	(0.043)	(0.015)	(0.020)	(0.021)	(0.025)	
Austria					0.175***	0.070	0.128*	-0.076	
					(0.052)	(0.060)	(0.066)	(0.080)	
Spain					-0.048	-0.067	-0.172***	-0.157**	
					(0.042)	(0.056)	(0.060)	(0.072)	
Greece					-0.047	0.069	-0.188***	0.032	
					(0.044)	(0.058)	(0.063)	(0.075)	
Iceland					0.045	-0.107	0.016	-0.273***	
					(0.055)	(0.074)	(0.081)	(0.096)	
Italy					-0.053	0.044	-0.151**	-0.128*	
					(0.043)	(0.057)	(0.063)	(0.074)	
Poland					0.071	0.002	0.245***	0.146**	
					(0.043)	(0.058)	(0.061)	(0.072)	
Portugal					0.094	0.127*	0.284***	0.338***	
					(0.059)	(0.075)	(0.080)	(0.095)	
Constant	0.134***	0.264***	0.601***	0.617***	0.176***	0.261***	0.556***	0.717***	
	(0.021)	(0.022)	(0.065)	(0.040)	(0.040)	(0.053)	(0.062)	(0.072)	
Observations	56	56	56	56	56	56	56	56	
Rmse	0.0836	0.0917	0.200	0.160	0.0550	0.0735	0.0796	0.0944	
r2	0.438	0.0128	0.000247	0.0925	0.789	0.450	0.862	0.727	
F	20.68	0.343	0.00655	2.702	19.11	4.182	32.00	13.63	
Df_r	53	53	53	53	46	46	46	46	

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
EU_SILC, waves 2-3

Table 5. Correlation between measures of conditional dispersion

Males	Stand Error 1 & 2	Stand Error 3&4	Stand Error 5	Overall SE
Stand Error 1 & 2	1.0000			
Stand Error 3&4	0.6034	1.0000		
Stand Error 5	0.4738	0.7627	1.0000	
Overall SE	0.7485	0.9451	0.8014	1.0000
Females				
Stand Error 1 & 2	1.0000			
Stand Error 3&4	0.7416	1.0000		
Stand Error 5	0.2575	0.4713	1.0000	
Overall SE	0.5451	0.8430	0.7321	1.0000

TABLE 6: OLS robust regressions: returns to education explained by all overall dispersion, ISCED-specific dispersion and spillover effects across ISCED levels

dispersion and spi		ntrolling for c			Controlling for country fixed effects			
	ISCE	03&4	ISCI	ED 5	ISCED 3 & 4		ISCED 5	
	males	Females	Males	Females	Males	Females	Males	Females
own ISCED RMSE	0.433**	-0.046	2.220***	1.261***	-0.179	0.112	1.196***	0.661
	(0.215)	(0.269)	(0.313)	(0.445)	(0.320)	(0.326)	(0.322)	(0.425)
Rmse	0.108	0.0922	0.150	0.155	0.0593	0.0735	0.0733	0.0914
R2	0.0622	0.00164	0.433	0.154	0.755	0.450	0.883	0.744
RMSE ISCED 2	0.593***	0.023	1.293***	0.588**	0.228	0.153	0.235*	0.327
	(0.187)	(0.164)	(0.257)	(0.281)	(0.168)	(0.194)	(0.136)	(0.230)
Rmse	0.0902	0.0922	0.139	0.162	0.0575	0.0728	0.0824	0.0918
R2	0.347	0.00121	0.516	0.0705	0.769	0.460	0.852	0.742
RMSE ISCED 3&4	0.433**	-0.046	2.162***	1.380***	-0.179	0.112	0.672	0.566*
	(0.215)	(0.269)	(0.271)	(0.436)	(0.320)	(0.326)	(0.500)	(0.324)
rmse	0.108	0.0922	0.144	0.149	0.0593	0.0735	0.0816	0.0925
R2	0.0622	0.00164	0.481	0.214	0.755	0.450	0.855	0.738
RMSE ISCED 5	0.334	-0.245	2.220***	1.261***	0.351	-0.105	1.196***	0.661
	(0.255)	(0.277)	(0.313)	(0.445)	(0.217)	(0.405)	(0.322)	(0.425)
rmse	0.110	0.0914	0.150	0.155	0.0583	0.0735	0.0733	0.0914
R2	0.0316	0.0202	0.433	0.154	0.763	0.450	0.883	0.744
RMSE ISCED 2	0.696**	0.058	0.838***	0.113	0.225	0.149	0.264*	0.284
	(0.274)	(0.206)	(0.253)	(0.293)	(0.161)	(0.207)	(0.139)	(0.223)
RMSE ISCED 3&4	-0.222	0.044	0.590	0.996*	-0.361	0.072	0.192	0.433
	(0.339)	(0.381)	(0.430)	(0.539)	(0.256)	(0.332)	(0.387)	(0.334)
RMSE ISCED 5	-0.102	-0.289	0.989**	0.712	0.485**	-0.116	1.154***	0.620
	(0.292)	(0.385)	(0.390)	(0.554)	(0.237)	(0.398)	(0.321)	(0.388)
rmse	0.0906	0.0930	0.119	0.148	0.0566	0.0743	0.0726	0.0895
R2	0.366	0.0238	0.658	0.255	0.787	0.462	0.890	0.766
Observations	56	56	56	56	56	56	56	56

Source: EU-SILC 3005, 2006. Eurostat.

Annex: labels of the NUTS1 regions identified in the data-set

AUSTRIA		ITALY	
AT1	OSTÖSTERREICH	ITC	NORD-OVEST
AT2	SÜDÖSTERREICH	ITD	NORD-DEST
AT3	WESTÖSTERREICH	ITE	CENTRO (I)
SPAIN		ITF	SUD
ES1	NOROESTE	ITG	ISOLE
ES2	NORESTE	POLAND	
ES3	COMUNIDAD DE MADRID	PL1	REGION CENTRALNY
ES4	CENTRO (E)	PL2	REGION POLUDNIOWY
ES5	ESTE	PL3	REGION WSCHODNI
ES6	SUR	PL4	REGION POLNOCNO-
			ZACHODNI
ES7	CANARIAS	PL5	REGION POLUDNIOWO-
			ZACHODNI
GREECE		PL6	REGION POLNOCNY
GR1	VOREIA ELLADA		
GR2	KENTRIKI ELLADA	PT	PORTUGAL
GR3	ATTIKI	IE0	IRELAND
GR4	NISIA AIGAIOU, KRITI	IS0	ÍSLAND

Voor	Number	Title/Author(s)
Year	Number	ESRI Authors/Co-authors Italicised
2009	310	Car Ownership and Mode of Transport to Work in Ireland Nicola Commins and Anne Nolan
	309	Recent Trends in the Caesarean Section Rate in Ireland 1999-2006 Aoife Brick and Richard Layte
	308	Price Inflation and Income Distribution Anne Jennings, Seán Lyons and Richard S.J. Tol
	307	Overskilling Dynamics and Education Pathways Kostas Mavromaras, <i>Seamus McGuinness</i> , Yin King Fok
	306	What Determines the Attractiveness of the European Union to the Location of R&D Multinational Firms? <i>Iulia Siedschlag, Donal Smith, Camelia Turcu, Xiaoheng Zhang</i>
	305	Do Foreign Mergers and Acquisitions Boost Firm Productivity? Marc Schiffbauer, Iulia Siedschlag, Frances Ruane
	304	Inclusion or Diversion in Higher Education in the Republic of Ireland? Delma Byrne
	303	Welfare Regime and Social Class Variation in Poverty and Economic Vulnerability in Europe: An Analysis of EU-SILC Christopher T. Whelan and <i>Bertrand Maître</i>
	302	Understanding the Socio-Economic Distribution and Consequences of Patterns of Multiple Deprivation: An Application of Self-Organising Maps Christopher T. Whelan, Mario Lucchini, Maurizio Pisati and <i>Bertrand Maître</i>
	301	Estimating the Impact of Metro North Edgar Morgenroth
	300	Explaining Structural Change in Cardiovascular Mortality in Ireland 1995-2005: A Time Series Analysis <i>Richard Layte, Sinead O'Hara</i> and Kathleen Bennett
	299	EU Climate Change Policy 2013-2020: Using the Clean

	Development Mechanism More Effectively Paul K Gorecki, Seán Lyons and Richard S.J. Tol
298	Irish Public Capital Spending in a Recession Edgar Morgenroth
297	Exporting and Ownership Contributions to Irish Manufacturing Productivity Growth Anne Marie Gleeson, <i>Frances Ruane</i>
296	Eligibility for Free Primary Care and Avoidable Hospitalisations in Ireland Anne Nolan
295	Managing Household Waste in Ireland: Behavioural Parameters and Policy Options John Curtis, Seán Lyons and Abigail O'Callaghan-Platt
294	Labour Market Mismatch Among UK Graduates; An Analysis Using REFLEX Data Seamus McGuinness and Peter J. Sloane
293	Towards Regional Environmental Accounts for Ireland Richard S.J. Tol , Nicola Commins, Niamh Crilly, Sean Lyons and Edgar Morgenroth
292	EU Climate Change Policy 2013-2020: Thoughts on Property Rights and Market Choices Paul K. Gorecki, Sean Lyons and Richard S.J. Tol
291	Measuring House Price Change David Duffy
290	Intra-and Extra-Union Flexibility in Meeting the European Union's Emission Reduction Targets <i>Richard S.J. Tol</i>
289	The Determinants and Effects of Training at Work: Bringing the Workplace Back In Philip J. O'Connell and Delma Byrne
288	Climate Feedbacks on the Terrestrial Biosphere and the Economics of Climate Policy: An Application of <i>FUND Richard S.J. Tol</i>
287	The Behaviour of the Irish Economy: Insights from the HERMES macro-economic model Adele Bergin, Thomas Conefrey, John FitzGerald and Ide Kearney
286	Mapping Patterns of Multiple Deprivation Using

	Self-Organising Maps: An Application to EU-SILC Data for Ireland
	Maurizio Pisati, <i>Christopher T. Whelan</i> , Mario Lucchini and <i>Bertrand Maître</i>
285	The Feasibility of Low Concentration Targets: An Application of FUND Richard S.J. Tol
284	Policy Options to Reduce Ireland's GHG Emissions
	Instrument choice: the pros and cons of alternative policy instruments Thomas Legge and <i>Sue Scott</i>
283	Accounting for Taste: An Examination of Socioeconomic Gradients in Attendance at Arts Events Pete Lunn and Elish Kelly
282	The Economic Impact of Ocean Acidification on Coral Reefs
	Luke M. Brander, Katrin Rehdanz, <i>Richard S.J. Tol</i> , and Pieter J.H. van Beukering
281	Assessing the impact of biodiversity on tourism flows: A model for tourist behaviour and its policy implications Giulia Macagno, Maria Loureiro, Paulo A.L.D. Nunes and <i>Richard S.J. Tol</i>
280	Advertising to boost energy efficiency: the Power of One campaign and natural gas consumption Seán Diffney, Seán Lyons and Laura Malaguzzi Valeri
279	International Transmission of Business Cycles Between Ireland and its Trading Partners Jean Goggin and Iulia Siedschlag
278	Optimal Global Dynamic Carbon Taxation David Anthoff
277	Energy Use and Appliance Ownership in Ireland Eimear Leahy and Seán Lyons
276	Discounting for Climate Change David Anthoff, Richard S.J. Tol and Gary W. Yohe
275	Projecting the Future Numbers of Migrant Workers in the Health and Social Care Sectors in Ireland Alan Barrett and Anna Rust
274	Economic Costs of Extratropical Storms under Climate Change: An application of FUND

		Daiju Narita, Richard S.J. Tol, David Anthoff
	273	The Macro-Economic Impact of Changing the Rate of Corporation Tax Thomas Conefrey and John D. Fitz Gerald
	272	The Games We Used to Play An Application of Survival Analysis to the Sporting Life- course Pete Lunn
2008		Tota Lami
	271	Exploring the Economic Geography of Ireland Edgar Morgenroth
	270	Benchmarking, Social Partnership and Higher Remuneration: Wage Settling Institutions and the Public-Private Sector Wage Gap in Ireland Elish Kelly, Seamus McGuinness, Philip O'Connell
	269	A Dynamic Analysis of Household Car Ownership in Ireland <i>Anne Nolan</i>
	268	The Determinants of Mode of Transport to Work in the Greater Dublin Area Nicola Commins and Anne Nolan
	267	Resonances from <i>Economic Development</i> for Current Economic Policymaking <i>Frances Ruane</i>
	266	The Impact of Wage Bargaining Regime on Firm-Level Competitiveness and Wage Inequality: The Case of Ireland Seamus McGuinness, Elish Kelly and Philip O'Connell
	265	Poverty in Ireland in Comparative European Perspective Christopher T. Whelan and Bertrand Maitre
	264	A Hedonic Analysis of the Value of Rail Transport in the Greater Dublin Area Karen Mayor, Seán Lyons, David Duffy and Richard S.J. Tol
	263	Comparing Poverty Indicators in an Enlarged EU Christopher T. Whelan and Bertrand Maître
	262	Fuel Poverty in Ireland: Extent, Affected Groups and Policy Issues Sue Scott, Seán Lyons, Claire Keane, Donal McCarthy and Richard S.J. Tol

261	The Misperception of Inflation by Irish Consumers David Duffy and Pete Lunn
260	The Direct Impact of Climate Change on Regional Labour Productivity Tord Kjellstrom, R Sari Kovats, Simon J. Lloyd, Tom Holt, <i>Richard S.J. Tol</i>
259	Damage Costs of Climate Change through Intensification of Tropical Cyclone Activities: An Application of FUND Daiju Narita, <i>Richard S. J. Tol</i> and <i>David Anthoff</i>
258	Are Over-educated People Insiders or Outsiders? A Case of Job Search Methods and Over-education in UK Aleksander Kucel, <i>Delma Byrne</i>
257	Metrics for Aggregating the Climate Effect of Different Emissions: A Unifying Framework Richard S.J. Tol, Terje K. Berntsen, Brian C. O'Neill, Jan S. Fuglestvedt, Keith P. Shine, Yves Balkanski and Laszlo Makra
256	Intra-Union Flexibility of Non-ETS Emission Reduction Obligations in the European Union Richard S.J. Tol
255	The Economic Impact of Climate Change Richard S.J. Tol
254	Measuring International Inequity Aversion Richard S.J. Tol
253	Using a Census to Assess the Reliability of a National Household Survey for Migration Research: The Case of Ireland Alan Barrett and Elish Kelly
252	Risk Aversion, Time Preference, and the Social Cost of Carbon David Anthoff, Richard S.J. Tol and Gary W. Yohe
251	The Impact of a Carbon Tax on Economic Growth and Carbon Dioxide Emissions in Ireland Thomas Conefrey, John D. Fitz Gerald, Laura Malaguzzi Valeri and Richard S.J. Tol
250	The Distributional Implications of a Carbon Tax in Ireland Tim Callan, Sean Lyons, Susan Scott, Richard S.J. Tol and Stefano Verde

249	Measuring Material Deprivation in the Enlarged EU Christopher T. Whelan, Brian Nolan and Bertrand Maître
248	Marginal Abatement Costs on Carbon-Dioxide Emissions: A Meta-Analysis Onno Kuik, Luke Brander and <i>Richard S.J. Tol</i>
247	Incorporating GHG Emission Costs in the Economic Appraisal of Projects Supported by State Development Agencies Richard S.J. Tol and Seán Lyons
246	A Carton Tax for Ireland Richard S.J. Tol, Tim Callan, Thomas Conefrey, John D. Fitz Gerald, Seán Lyons, Laura Malaguzzi Valeri and Susan Scott
245	Non-cash Benefits and the Distribution of Economic Welfare Tim Callan and Claire Keane
244	Scenarios of Carbon Dioxide Emissions from Aviation Karen Mayor and Richard S.J. Tol
243	The Effect of the Euro on Export Patterns: Empirical Evidence from Industry Data Gavin Murphy and Iulia Siedschlag
242	The Economic Returns to Field of Study and Competencies Among Higher Education Graduates in Ireland Elish Kelly, Philip O'Connell and Emer Smyth
241	European Climate Policy and Aviation Emissions Karen Mayor and Richard S.J. Tol
240	Aviation and the Environment in the Context of the EU- US Open Skies Agreement Karen Mayor and Richard S.J. Tol
239	Yuppie Kvetch? Work-life Conflict and Social Class in Western Europe Frances McGinnity and Emma Calvert
238	Immigrants and Welfare Programmes: Exploring the Interactions between Immigrant Characteristics, Immigrant Welfare Dependence and Welfare Policy Alan Barrett and Yvonne McCarthy
237	How Local is Hospital Treatment? An Exploratory Analysis of Public/Private Variation in Location of Treatment in Irish Acute Public Hospitals

Jacqueline O'Reilly and Miriam M. Wiley

236	The Immigrant Earnings Disadvantage Across the Earnings and Skills Distributions: The Case of Immigrants from the EU's New Member States in Ireland Alan Barrett, Seamus McGuinness and Martin O'Brien
235	Europeanisation of Inequality and European Reference Groups Christopher T. Whelan and Bertrand Maître
234	Managing Capital Flows: Experiences from Central and Eastern Europe Jürgen von Hagen and <i>Iulia Siedschlag</i>
233	ICT Diffusion, Innovation Systems, Globalisation and Regional Economic Dynamics: Theory and Empirical Evidence Charlie Karlsson, Gunther Maier, Michaela Trippl, <i>Iulia</i> Siedschlag, Robert Owen and Gavin Murphy
232	Welfare and Competition Effects of Electricity Interconnection between Great Britain and Ireland Laura Malaguzzi Valeri
231	Is FDI into China Crowding Out the FDI into the European Union? Laura Resmini and <i>Iulia Siedschlag</i>
230	Estimating the Economic Cost of Disability in Ireland John Cullinan, Brenda Gannon and Seán Lyons
229	Controlling the Cost of Controlling the Climate: The Irish Government's Climate Change Strategy Colm McCarthy, <i>Sue Scott</i>
228	The Impact of Climate Change on the Balanced-Growth- Equivalent: An Application of <i>FUND</i> <i>David Anthoff</i> , <i>Richard S.J. Tol</i>
227	Changing Returns to Education During a Boom? The Case of Ireland Seamus McGuinness, Frances McGinnity, Philip O'Connell
226	'New' and 'Old' Social Risks: Life Cycle and Social Class Perspectives on Social Exclusion in Ireland Christopher T. Whelan and Bertrand Maître
225	The Climate Preferences of Irish Tourists by Purpose of Travel Seán Lyons, Karen Mayor and Richard S.J. Tol

	224	A Hirsch Measure for the Quality of Research Supervision, and an Illustration with Trade Economists Frances P. Ruane and Richard S.J. Tol
	223	Environmental Accounts for the Republic of Ireland: 1990-2005 Seán Lyons, Karen Mayor and Richard S.J. Tol
2007	222	Assessing Vulnerability of Selected Sectors under Environmental Tax Reform: The issue of pricing power <i>J. Fitz Gerald</i> , M. Keeney and <i>S. Scott</i>
	221	Climate Policy Versus Development Aid Richard S.J. Tol
	220	Exports and Productivity – Comparable Evidence for 14 Countries The International Study Group on Exports and Productivity
	219	Energy-Using Appliances and Energy-Saving Features: Determinants of Ownership in Ireland Joe O'Doherty, <i>Seán Lyons</i> and <i>Richard S.J. Tol</i>
	218	The Public/Private Mix in Irish Acute Public Hospitals: Trends and Implications Jacqueline O'Reilly and Miriam M. Wiley
	217	Regret About the Timing of First Sexual Intercourse: The Role of Age and Context Richard Layte, Hannah McGee
	216	Determinants of Water Connection Type and Ownership of Water-Using Appliances in Ireland Joe O'Doherty, <i>Seán Lyons</i> and <i>Richard S.J. Tol</i>
	215	Unemployment – Stage or Stigma? Being Unemployed During an Economic Boom Emer Smyth
	214	The Value of Lost Load Richard S.J. Tol
	213	Adolescents' Educational Attainment and School Experiences in Contemporary Ireland Merike Darmody, Selina McCoy, Emer Smyth
	212	Acting Up or Opting Out? Truancy in Irish Secondary Schools Merike Darmody, Emer Smyth and Selina McCoy
	211	Where do MNEs Expand Production: Location Choices of

	the Pharmaceutical Industry in Europe after 1992 Frances P. Ruane, Xiaoheng Zhang
210	Holiday Destinations: Understanding the Travel Choices of Irish Tourists Seán Lyons, Karen Mayor and Richard S.J. Tol
209	The Effectiveness of Competition Policy and the Price- Cost Margin: Evidence from Panel Data Patrick McCloughan, <i>Seán Lyons</i> and William Batt
208	Tax Structure and Female Labour Market Participation: Evidence from Ireland <i>Tim Callan</i> , A. Van Soest, <i>J.R. Walsh</i>
207	Distributional Effects of Public Education Transfers in Seven European Countries <i>Tim Callan,</i> Tim Smeeding and Panos Tsakloglou