

Working Paper No. 329

November 2009

Climate Policy and Corporate Behaviour

Nicola Commins, Seán Lyons, Marc Schiffbauer,^a and Richard S.J. Tol^{b,c}

Subsequently published in N. Commins, S. Lyons, M. Schiffbauer and R.S.J. Tol, 2011, <u>Climate Policy and Corporate Behaviour</u>, Energy Journal, Vol. 32, No. 4, pp. 51-68.

Abstract: In this paper, we study the impact of energy taxes and the EU ETS on a large number of firms in Europe between 1996 and 2007. Using company level micro-data, we examine how firms in different sectors were affected by environmental policies. Aspects of behaviour and performance studied include total factor productivity, employment levels, investment behaviour and profitability. On the whole, energy taxes increased total factor productivity and returns to capital but decreased employment, with a mixed effect on investment, for the sectors included in our analysis. However, large sectoral variation is observed, with some industries losing out in terms of productivity and profitability when faced with increased energy taxes, while others benefitted.

Corresponding Author. <u>Richard.Tol@esri.ie</u>

Key words: energy taxes, productivity, investment, firm performance

^aWorld Bank, 1818 H Street NW, Washington DC 20015, USA

^b Institute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands

^c Department of Spatial Economics, Vrije Universiteit, Amsterdam, The Netherlands

ESRI working papers represent un-refereed work-in-progress by members who are solely responsible for the content and any views expressed therein. Any comments on these papers will be welcome and should be sent to the author(s) by email. Papers may be downloaded for personal use only.

Climate Policy and Corporate Behaviour

1. Introduction

With increasing emphasis on environmental regulation in the industrial sector in recent years, it is important to understand the impacts of such measures on firm productivity and investment behaviour. While much attention has been focused on the environmental benefits of differing climate policies, there is relatively little empirical evidence of their impact on company behaviour.

In this paper, we are interested in the effect of energy and carbon taxes on various measures of corporate behaviour and performance. Using firm level micro-data, we focus on the influence of these taxes on the employment levels, investment behaviour and productivity of European companies for the years 1996 to 2007.

Theory provides conflicting guidance as to the likely effects of environmental regulation and taxes on firm behaviour and performance. Taxes represent additional costs for a firm, and as such would be expected to be a constraint on their production possibilities and thus reduce profits. However, when faced with higher environmental taxes, firms may seek to reduce their costs by locating in "pollution havens" or countries where environmental standards or regulatory costs are relatively low. This is known as the pollution haven hypothesis.

Other models stress the importance of the availability of clean natural resources as factor inputs, which could help to improve the production possibilities of firms (factor endowment hypothesis). Equally, technology innovation as a result of increased regulation is also considered a potential outcome. According to the Porter Hypothesis (Porter 1991; Porter & van der Linde 1995), environmental regulation provides incentives for companies to innovate, which can increase competitiveness and productivity. Both the factor endowment and Porter Hypotheses imply that environmental stringency may lead to improvements in the performance of firms as well as advancing environmental goals (Wagner 2003)

There is also some previous empirical research into the impact of environmental regulation on company behaviour and performance. Leiter *et al.* (2009) study firm investment decisions in response to environmental protection measures. Using European industry-level panel data, they find a positive but diminishing impact of environmental stringency on investment. Average elasticities of around 0.15 for industry expenditure on environmental protection and 0.06 for country revenue from environmental taxes are found.

Veith *et al.* (2008) examine the impact of the EU ETS on capital market responses in the power generation sector. Returns on common stock in this sector are found to be positively correlated with rising prices for emissions rights. This indicates that the ETS increases profits, as firms pass on or even overcompensate for regulation costs in prices charged to customers, thus increasing their profitability.

A study undertaken as part of the EU COMETR study, Enevoldsen (2007), includes an analysis of eight sectors in seven European countries. The results show a slightly negative effect of energy taxes on competitiveness and output. However, Henderson and Millimet (2005), using a US sample, find insignificant effects of environmental stringency on state-level output.

While most of the previous literature is undertaken at country or industry level, there has been relatively little research undertaken using firm level micro-data. Anger and Oberndorfer (2008) assess the impact of the EU ETS on firm performance and employment. Using a sample of German firms, they do not find an effect of the relative allocation of emission allowances on firm revenue and employment in 2005. Martin *et al.* (2009) investigate the effect of a UK energy tax, the climate change levy, on the manufacturing sector using firm panel data. However, they find no significant impacts on employment, gross output or total factor productivity (TFP).

Economic theory and previous empirical research suggests conflicting or ambiguous outcomes of environmental policies on corporate performance. The pollution haven hypothesis would suggest decreased employment in more stringently regulated sectors, and the assumption that taxes cause additional cost burdens on firms would equally point to decreased productivity and profitability. However, the Porter Hypothesis and Factor Endowment theory suggest otherwise. They indicate the potential for increased output and TFP due to the availability of clean natural resources, or to increased innovation.

However, we can see from previous empirical work that these findings vary widely, based on which sectors and countries are included in the analysis. The literature finds conflicting or insignificant results for competitiveness, employment and investment amongst different country and industry samples. The type of regulation is also important to take into consideration, as energy taxes are expected to be more efficient than some other forms of regulation, such as command-and-control approaches. For this reason it is important to utilise data at the most disaggregated firm level, and to undertake cross-country and cross-industry analysis in order to examine the validity of these conflicting viewpoints.

In this paper, we make use of cross-country firm level panel data, for a large sample of European companies. In order to test the differing hypotheses, we examine how firms in different industries adapt their structure and behaviour in response to energy taxes and the introduction of the EU Emissions Trading Scheme. We assess the effects of such environmental policies on employment, investment and productivity over a twelve year period.

2. Data

The data employed in this paper is firm-level panel data for a range of European firms across various sectors, provided in the AMADEUS database. This database contains financial and economic information for approximately 11 million firms across Europe. The dataset we used covered the years 1996 to 2007.

From this we construct four dependent variables, representing several measures of corporate performance. These include:

- Total Factor Productivity (TFP)
- Number of employees
- Investment (calculated as change in tangible fixed assets minus depreciation)
- Return on capital employed

While our main data source is the Amadeus database, additional industry and country level variables are collected from a range of sources, such as the OECD, Eurostat and the International Energy Agency.

Energy tax data is sourced from the Eurostat environmental accounts. These consist of taxes on energy products such as petrol, diesel, fuel oils, natural gas, coal and electricity. CO_2 taxes are also included where applicable. Both energy taxes at time t, as well as lagged energy taxes, are incorporated into each model. Firms covered under the EU Emissions Trading Scheme are indicated by a binary variable, given a value of 1 for all sectors included in the scheme since its introduction in 2005, and 0 for all other sectors.

In addition, labour cost shares at country level, calculated as total country labour costs as a proportion of output, are collected from the OECD and included as independent variables in both the employment and TFP models. Other determinants of TFP are also included as controls. Educational attainment at country level (the proportion of people aged 25-64 with a third level education), national output gap, and the import intensity of each industry were obtained from the OECD. Electricity prices per country, from the International Energy Agency, are also included.

We use TFP as our productivity measure since changes in TFP directly reflect efficiency gains due to the reorganization of production processes (Factor Endowment Hypotheses) as well as the introduction of new technologies or innovations related to improvements of a firm's energy efficiency (Porter Hypotheses). We derive TFP of firm j in sector s at time t as a residual from a production function in logs:

$$y_{jst} = \beta_s^k k_{jst} + \beta_s^l l_{jst} + \alpha_i + \eta_s + \mu_t + \varepsilon_{jst}$$
(2)

where y_{jst} denotes a firm's real value added, k_{jst} the real physical capital stock and l_{jst} the labour input, α_i is a vector of country specific effects, η_s a vector of

industry specific effects, μ_t a vector of year specific effects, $\beta = (\beta^k \beta^l)$ a vector of average input elasticities, and \mathcal{E}_{jst} an error term.¹

We estimate (2) to obtain empirical measures of the average input elasticities β from firm level data. We account for heterogeneous input elasticities across three-digit (NACE) industry levels in that we estimate the marginal input effects separately for each of the three-digit industries. Note, however, that we pool the observations in each three-digit industry across countries in order to obtain sufficient information for robust production function estimations per industry. We believe that this is a relatively minor restriction on the data since average input elasticities for three-digit industries are typically found to be relatively homogeneous across European countries. Obtaining the estimates for the average input elasticities for each three-digit industry allows us, together with the information on y, k, and l of each individual firm, to compute residual TFP measures at the firm-level. However, the estimation of (2) involves an endogeneity problem which is well-known in the literature on production functions estimation. That is, a firm's demand for labour is expected to depend on its contemporaneous productivity level which is unobserved and hence captured in the error term. In such a case, the estimated input elasticities would be biased. Appropriate instruments for labour services that are uncorrelated with productivity are typically not available. Being aware of this problem, we consistently estimate (2) following Olley and Pakes (1996) who propose a semi-parametric estimator to correct for this simultaneity bias by imposing additional restrictions on the data. In particular, the authors use changes in firm's investment decision as a proxy for the productivity shock. The method supposes that a firm's investment decision is a function of its capital stock, age, and its unobserved productivity. Hence, the unobserved productivity parameter can be modeled as some (inverse) function of investments, capital, and age given the assumption of a monotonic relationship between investment and productivity. We apply this methodology to derive consistent estimates of the average input elasticities in our sample.

Variable definitions and sample means are presented in Tables 2 and 3 below.

¹ Real variables are obtained deflating by the national output price deflators. Unfortunately, price deflators were not available at the industry level for most of the countries.

3. Methodology

We have estimated four models, each exploring a different aspect of company behaviour or performance. First, our model of employment tests the suggestion that these taxes weaken the incentive to use capital due to high energy-capital complementarity, with firms switching to more labour-intensive activities. However, decreased employment may also be observed in heavily regulated sectors, as firms seek to minimise their costs by moving towards countries or industries with lower levels of stringency. Labour costs are included in this model, to control for differing labour costs across countries over time, which may otherwise be driving the change in a firm's number of employees.

Total factor productivity measures the component of output that arises from factors other than capital and labour. This is often regarded as the impact of technology innovation on firm performance. In this case, energy taxes may have a positive or negative effect, depending on which of the previously outlined theories of environmental regulation are seen to hold. This model controls for additional TFP determinants such as education levels, the gap between actual and potential GDP (output gap), and the import intensity of the specific sector. While import intensity and education, representing higher human capital levels, would be expected to increase TFP, we expect the output gap variable to have a negative sign. Although firms may be expected to innovate and reorganise when operating in a country with an increasing output gap, there may be a loss of knowledge capital in such countries, which tend also to have high unemployment levels. Moreover, some forms of labour input that tend to increase in a capacity-constrained economy (e.g. overtime working) may be omitted from the measure of labour inputs and thereby boost TFP when the output gap is shrinking. On balance, these effects are likely to imply that increasing the output gap will negatively influence firms' TFP levels. Electricity prices are also included and are expected to have a negative effect on TFP.

Return on capital employed is included as a profitability indicator. Energy taxes would be expected to decrease profitability under the assumption that taxes act as an additional costs on doing business. Finally, our fourth company behaviour variable is investment. If energy taxes have similar effects to taxes on capital, there would be an expected negative sign on these coefficients in the investment model, as firms substitute capital for labour. The pollution haven hypothesis also points towards negative effects on investment. However, the Porter Hypothesis would suggest that firms facing increased regulation would have an incentive to innovate and invest in new technology in order to improve productivity. This would suggest increases in investment due to energy taxes. However, it is necessary to empirically examine these in further detail in order to test the competing theoretical stories.

In order to control for unobserved time- and company-specific heterogeneity, we use panel regression analysis. We allow for sectoral variations in energy tax effects by including sector-tax interaction terms for energy tax levels and lagged tax levels.

Many of the variables included exhibit some intertemporal persistence or are nonstationary (e.g. investment, employment), so estimating the models in levels would be expected to lead to substantial residual serial correlation. To avoid this, we estimate the regressions in first differences. The coefficients may thus be viewed as representing equilibrium values.

4. Results

Since the focus of interest for this research is on tax effects, we first present estimates of the tax effects by sector for each model. Later in the section we discuss other explanatory variables.

Tax effects

Sectoral variations in tax effects feature prominently in all four models. These are calculated for each sector by adding the tax coefficients and the tax-sector interaction coefficients for both the current period and lagged taxes. The results for TFP are shown in Figure 1 below. The figure shows the percent change in the TPF growth rate for each sector associated with a 1% tax increase. Thus a 10% tax increase would be associated with a 10% fall in the TFP growth rate for the tobacco sector. If TFP in

this sector would otherwise grow by 2%, this implies a lower growth rate of 1.8% due to the tax change.

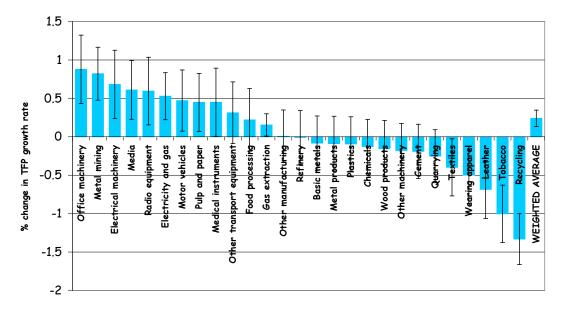


Figure 1: Average partial effect of 1% rise in energy taxes on TFP growth by sector

TFP growth is positively associated with energy taxes in some sectors, but reduced in others. This provides some evidence for Porter Hypothesis effects, but only for selected sectors. Primary resource sectors such as coal, metal, oil and gas extraction benefited from higher TFP growth, along with a range of manufacturing sectors producing energy-using goods (e.g. office machinery, electrical machinery, radio equipment). Electricity and gas generation and the media sector also showed a positive effect. Many sectors showed no statistically significant effect (standard errors were relatively high in this model), but wearing apparel, leather, tobacco and recycling showed a negative association with energy taxes. The average effect of a tax change on TFP growth, weighting sectoral effects by the output shares of these sectors in Europe, is positive.² This suggests that *ceteris paribus* a marginal tax increase would lead to a small but statistically significant improvement in TFP growth for these sectors in Europe.

² The sector shares were obtained from the OECD STAN database.

The relationship between energy taxes and employment for different sectors is set out in Figure 2 below.

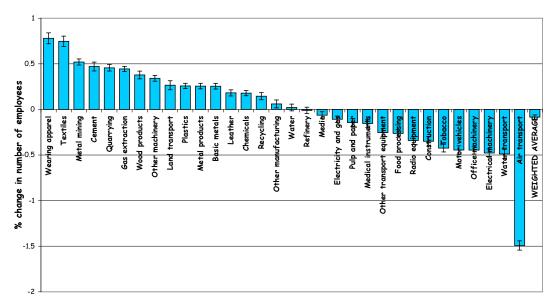


Figure 2: Average partial effect of 1% rise in energy taxes on firms' employment by sector

In this case, standard errors are much lower and most sectors exhibit a significant effect. Some sectors show a positive employment effect relating to energy taxes; notably wearing apparel, textiles, and primary resource sectors. Air transport shows a strongly negative association, with a 10% tax rise being associated with a 15% reduction in employment. Other sectors exhibit weaker positive or negative effects. In this case, the average effect (weighted by sectoral employment shares in Europe) is negative. Overall, then, a marginal increase in energy taxes is associated with lower employment for this set of sectors in Europe.

Air transport also features a large and significant effect in relation to corporate investment (Figure 3 below). In this case the effect is positive, with a hypothetical 10% tax rise being associated with a 20% increase in fixed investment. Basic metals, refining and water transport also have relatively large positive coefficients, while tobacco has a very large negative association and the recycling and leather sectors have smaller negative coefficients. The average effect, weighted by total sectoral investment, is not significantly different from zero. This implies that energy taxes at

the margin do not have a statistically significant effect on total investment levels in this sample.

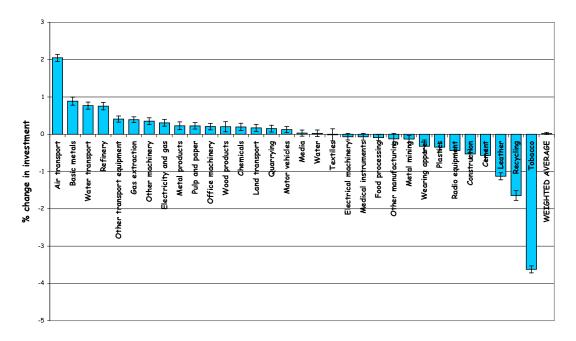


Figure 3: Average partial effect of 1% rise in energy taxes on firms' investment by sector

Our final model examined the association between energy taxes and company profitability, proxied by the return on capital employed. This relationship proves to be positive in most cases, with the strongest relationship being for air transport. Only a few sectors – water transport, refining, wood products, coal and peat extraction, food processing and quarrying having significant negative coefficients. The average effect, weighting sectoral effects by the output shares of these sectors in Europe, is positive and statistically significant. This suggests that a marginal increase in energy taxes would increase profitability on average.

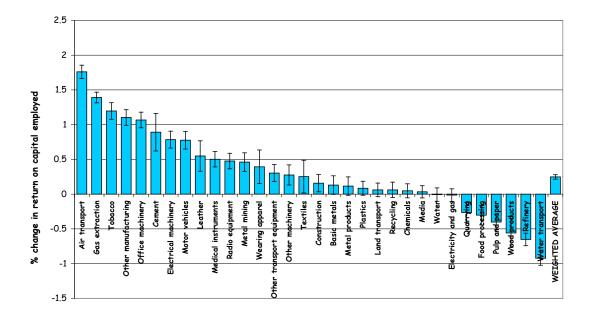


Figure 4: Average partial effect of 1% rise in energy taxes on firms' return on capital employed by sector

We considered whether the sectoral pattern of energy tax effects shown above might be driven by broader sectoral characteristics such as energy intensity or technology intensity. However, grouping sectors by these classifications did not reveal any obvious association with the tax effects. The impact of energy taxes on TFP, employment, investment and profitability vary by sector even amongst industries which have similar energy and technology use.

Other effects

Since we have estimated these models in differences, we only observe effects for factors that vary over time. All models allow for ETS participation effects, and the relevant coefficients are shown in Table 1 below. We find no significant association between ETS participation and employment or investment. However, both TFP growth and return on capital employed were lower in ETS participant firms, *ceteris paribus*. For a firm with a TFP growth rate of 2%, participation in the ETS would be associated with 0.12% lower TFP growth.

Table 1: ETS participation effects		
Dependent variable	ETS effect	Robust standard error
TFP growth	-0.0616***	0.0196
ln(employment)	0.0173	0.0142
ln(investment)	0.00161	0.0249
ln(Return on capital employed)	-0.0673***	0.0185

Lower productivity and profitability among ETS firms is consistent with the view that the scheme increased firms' costs without inducing significant Porter Hypothesis effects. With the dataset we are using here, it is not possible to tell whether a different design or level of stringency for the ETS would have changed this conclusion.

Finally, we can report a range of secondary results. In the TFP model, sectoral import intensity, national education level and labour costs were not significant (we had expected the first two factors to have a positive effect on TFP and the third to have a negative effect). Labour cost was, as expected, negative and highly significant in the employment model. Returning to the TFP model, the output gap and electricity prices both showed highly significant negative effects, which was in line with our expectations.

5. Conclusions

In this paper, we study the impact of energy taxes and the EU ETS on a large number of firms in Europe between 1996 and 2007. To the best of our knowledge, we are the first to do so. We estimate the effect on the change in total factor productivity (a proxy for technological progress), on employment, on investment, and on the returns to capital (a proxy for accounting profits). The following results emerge. First, as one would expect, results vary dramatically between sectors, not just in the size of the estimated effects but also in their signs. Second, total factor productivity accelerates with higher carbon taxes. Although the effect is insignificant in large parts of the economy, and negative in some sectors, the positive impact in a number of sectors dominates. This finding supports the Porter Hypothesis. Regulation spurs innovation. Third, energy taxes reduce employment. There is a significant impact on employment in almost all sectors. The most important effect is a large shift in labour between sectors, but the overall effect is negative. While energy taxes create jobs, more jobs are destroyed. Fourth, energy taxes increase investment. The impact is again significant in most sectors, and the most notable effect is a shift in investment between sectors. The aggregate effect is positive, however. This suggests that businesses respond to energy taxes by substituting labour for capital. This is in sharp contrast to the findings by Koetse et al. (2008). Fifth, energy taxes increase the returns to capital. Again, differences between sectors are pronounced, but the average effect is positive. This finding reinforces the results for investment.

We obtain different results for the EU ETS. The effect on productivity and profits are negative, while the effect on labour and investment are insignificant. These results are indicative only, as our data only cover the experimental phase of the ETS and we were unable to define a permit price. Future research, using data from the second phase of the ETS, should reinvestigate this.

Acknowledgments

Helpful comments were received from Barry Anderson, Frank Convery and other participants at an ESRI seminar. This study was funded by the Environmental Protection Agency under the ERTDI programme.

References

- Anger, N. and Oberndorfer, U. (2008): 'Firm performance and employment in the EU emissions trading scheme: An empirical assessment for Germany.' *Energy Policy* 36, 12-22.
- Enevoldsen, M., Ryelund, A. and Skou, M. (2007): 'The Impact of Energy Taxes on Competitiveness, Output and Exports: a panel regression study of 56 European Sectors', Work Package 3 in *Competitiveness Effects of Environmental Tax Reforms*, Final Report to the European Commission, DG Research and DG Taxation and Customs Union.
- Henderson, D.J. and Millimet, D.L. (2005): 'Environmental regulation and US statelevel production'. *Economics Letters* 87, 47–53
- Koetse, M.J., de Groot, H.L.F and Florax, R.J.G.M. (2008): 'Capital-Energy Substitution and Shifts in Factor Demand: A Meta-Analysis.' *Energy Economics* 30(5), 2236-2251.

- Leiter, A. M., Parolini, A. and Winner, H. (2009): 'Environmental Regulation and Investment: Evidence from European Industries'. Working Paper 2009-04, University of Innsbruck, Austria.
- Martin, R., de Preux, L.B. and Wagner, U.J. (2009): 'The Impacts of the Climate Change Levy on Business: Evidence from Microdata'. CEP Discussion Paper No. 917. London School of Economics and Political Science, London, United Kingdom.
- Olley, S.G., and Pakes A. (1996): 'The Dynamics of Productivity in the Telecommunications Equipment Industry,' *Econometrica*, 64(6), 1263–1297.

Porter, M.E. (1991): 'America's Green Strategy'. Scientific American 264(4): 96

- Porter, M.E. and van der Linde, C. (1995): , Towards a New Conception of the Environment-Competitiveness Relationship, *Journal of Economic Perspectives* 9(4): 97-118.
- Veith, S., Werner, J.R. and Zimmermann, J. (2009): 'Capital market response to emissions rights returns: Evidence from the European power sector'. *Energy Economics 31*, 605-613.
- Wagner, M. (2003): 'The Porter Hypothesis Revisited: A Literature Review of Theoretical Models and Empirical Tests'. Centre for Sustainability Management, Universitat Luneburg, Germany.

Tables

Dependent variables		Independent variables	
Total Factor Productivity (InTFP)	Olley-Pakes method. Log TFP in first differences	Tax rate (lntax_rate)	Log of energy taxes by sector and country, first differences. Includes taxes on petrol, diesel, gas, electricity etc.
Employment (lnL)	Log number of employees in a firm in year t, in first differences.	Lagged Tax rate (lntax_rate t-1)	Log of energy taxes, 1 period lag. First differences.
Return on Capital Employed	Return on capital employment in year t, in first differences	Import Intensity	Imports/ (Production – Exports + Imports)
Investment	Log change in tangible fixed assets minus depreciation, in first differences	Education	Tertiary education attainment for age group 25-64, as a percentage of the population of that age group in each country.
		Output Gap	Deviations of actual GDP from potential GDP as a percentage of potential GDP
		Electricity price (ln elec price)	Electricity prices per country (€ per kWH)
		Labour Cost	Total Labour Costs as a percentage of Output, per country

Table 2: Variable definitions

ETS	Emissions Trading Scheme
	dummy variable, 1 if sector
	covered by ETS, 0 otherwise

Table 3: Variable means

	TFP	Employment	Return On Capital Employed	Investment
Independent Variables	227942 obs.	649809 obs.	506682 obs.	427483 obs.
Tax rate	0.004	0.003	0.004	0.004
Lagged Tax rate	0.004	0.003	0.004	0.004
Labour Cost	0.589	0.623		
Education	19.742			
Output Gap	-0.093			
Electricity price	0.070			
Import Intensity	0.277			

Annex A: Regression results

Table 4: Total factor productivity	regression	results,	OLS p	anel regression	ı in first	differences;
dependent variable: ln(TFP _{it})						

Variables and statistics	Coef.	Robust standard error
Ltax_rate	0.935***	0.109
Ltax_rate-1	0.257***	0.0539
import_intensity	0.0268	0.0228
education	-0.0552	0.0331
output_gap	-0.166***	0.0568
Lelectricityprice	-0.129***	0.0382
labourcost	-1.77	2.9
ETS	-0.0616***	0.0196
NACExTax11	-1.04***	0.00638
NACExTax13	-0.371***	0.104
NACExTax14	-1***	0.104
NACExTax15	-1.01***	0.0808
NACExTax16	-2.95***	0.0588
NACExTax17	-1.04***	0.121
NACExTax18	-1.09***	0.12
NACExTax19	-1.49***	0.127
NACExTax20	-0.956***	0.118
NACExTax21	-0.79***	0.0732
NACExTax22	-0.63***	0.0751
NACExTax23	-0.823***	0.106
NACExTax24	-0.956***	0.108
NACExTax25	-0.945***	0.109
NACExTax26	-0.97***	0.108
NACExTax27	-0.924***	0.11
NACExTax28	-0.926***	0.111
NACExTax29	-0.963***	0.107
NACExTax30	-0.795***	0.112
NACExTax31	-0.631***	0.115
NACExTax32	-0.782***	0.111
NACExTax33	-0.875***	0.116
NACExTax34	-0.804***	0.0696
NACExTax35	-0.688***	0.071

Variables and statistics	Coef.	Robust standard error
NACExTax36	-0.974***	0.0966
NACExTax37	-1.72***	0.09
NACExTax40	-0.655***	0.0765
NACExTax14	-0.443***	0.0117
NACExTax15	0.0366	0.266
NACExTax16	0.753***	0.258
NACExTax17	-0.554***	0.0529
NACExTax18	-0.597***	0.0528
NACExTax19	-0.391***	0.0374
NACExTax20	-0.391***	0.0383
NACExTax21	0.0464	0.235
NACExTax22	0.0475	0.236
NACExTax23	-0.378***	0.0417
NACExTax24	-0.363***	0.0317
NACExTax25	-0.34***	0.0257
NACExTax26	-0.413***	0.0495
NACExTax27	-0.351***	0.0241
NACExTax28	-0.355***	0.0236
NACExTax29	-0.407***	0.0268
NACExTax30	0.482*	0.266
NACExTax31	0.121	0.262
NACExTax32	0.185	0.261
NACExTax33	0.131	0.26
NACExTax34	0.0835	0.273
NACExTax35	-0.191	0.275
NACExTax36	-0.211***	0.0747
NACExTax37	-0.802***	0.0677
NACExTax40	-0.00815	0.0479
D1998	0.378***	0.0983
D1999	0.363***	0.103
D2000	0.359***	0.117
D2001	0.168***	0.0498
D2003	-0.0209*	0.0103
D2004	0.178***	0.0634
D2005	-0.0453*	0.0232
Constant	-0.0438**	0.016

Coef.	Robust standard error	
65,	,787 firms	
227,942		
	1	
3.5		
7		
0.0156		
0.0004		
0.0077		
	65	

in log terms. *, ** and *** denote significant at the 10%, 5% and 1% level respectively. t-statistics are heteroscedasticity-robust and allow for clustering at sector level.

Variables and statistics	Coef.	Robust standard error
Ltax_rate	0.299***	0.0234
Ltax_rate-1	-0.062***	0.0113
labourcost	-2.29***	0.296
ETS	0.0173	0.0142
NACExTax11	-0.294***	0.00741
NACExTax13	-0.172***	0.013
NACExTax14	-0.0279	0.0178
NACExTax15	-0.328***	0.0242
NACExTax16	0.434***	0.0242
NACExTax17	0.0702**	0.0333
NACExTax18	0.0421	0.0368
NACExTax19	-0.162***	0.0127
NACExTax20	-0.224***	0.014
NACExTax21	-0.297***	0.0223
NACExTax22	-0.35***	0.0236
NACExTax23	-0.329***	0.021
NACExTax24	-0.222***	0.00984
NACExTax25	-0.168***	0.00964
NACExTax26	-0.0538*	0.0301
NACExTax27	-0.199***	0.00909
NACExTax28	-0.211***	0.00932
NACExTax29	-0.171***	0.0112
NACExTax30	-0.504***	0.0206
NACExTax31	-0.648***	0.0221
NACExTax32	-0.671***	0.0198
NACExTax33	-0.429***	0.0205
NACExTax34	-0.616***	0.0255
NACExTax35	-0.379***	0.0265
NACExTax36	-0.29***	0.0246
NACExTax37	-0.315***	0.0228
NACExTax40	-0.358***	0.0218
NACExTax41	-0.355***	0.0239
NACExTax45	-0.583*** 0.0308	
NACExTax60	-0.271***	0.0287
NACExTax61	-0.659***	0.029

Table 5: Employment regression results, OLS panel regression in first differences, dependent variable: $ln(employment_{it})$

Variables and statistics	Coef.	Robust standard error
NACExTax62	-0.861***	0.0299
NACExTax11	0.501***	0.00686
NACExTax13	0.455***	0.0167
NACExTax14	0.246***	0.0158
NACExTax15	-0.172***	0.0237
NACExTax16	-1.1***	0.0231
NACExTax17	0.439***	0.0382
NACExTax18	0.5***	0.0395
NACExTax19	0.106***	0.0166
NACExTax20	0.364***	0.0301
NACExTax21	-0.0845***	0.0229
NACExTax22	0.0489***	0.0148
NACExTax23	0.0806***	0.00946
NACExTax24	0.163***	0.00866
NACExTax25	0.189***	0.00898
NACExTax26	0.287***	0.0274
NACExTax27	0.216***	0.0132
NACExTax28	0.23***	0.0129
NACExTax29	0.275***	0.0139
NACExTax30	-0.18***	0.0276
NACExTax31	-0.0673**	0.0297
NACExTax32	0.0927***	0.027
NACExTax33	0.0369	0.0272
NACExTax34	-0.0669**	0.0284
NACExTax35	-0.112***	0.0293
NACExTax36	0.113***	0.0245
NACExTax37	0.222***	0.0175
NACExTax40	0.0121	0.0126
NACExTax41	0.139***	0.0101
NACExTax45	-0.00434	0.0342
NACExTax60	0.299***	0.0304
NACExTax61	-0.0668**	0.031
NACExTax62	-0.868***	0.0319
D1998	0.101	0.0128
D1999	0.0445	0.0129
D2000	0.147	0.0115

Variables and statistics	Coef.	Robust standard error	
D2001	0.144	0.0122	
D2002	0.0656	0.00897	
D2003	0.0386	0.0113	
D2004	-0.014	0.0131	
Constant	-0.0115	0.00956	
Sample	164,570 firms		
Observations	649,809		
Min. periods	1		
Avg. periods	3.9		
Max. periods	8		
R ² within	0.0160		
R ² between	0.0073		
R ² overall	0.0048		

Note: All variables are in first differences apart from the constant, and variables with an L prefix are in log terms. *, ** and *** denote significant at the 10%, 5% and 1% level respectively. t-statistics are heteroscedasticity-robust and allow for clustering at sector level.

Variables and statistics	Coef.	Robust standard error
Ltax_rate	-0.155***	0.0427
Ltax_rate-1	-0.298***	0.0486
ETS	-0.0673***	0.0185
NACExTax11	0.375***	0.026
NACExTax13	-1.37***	0.0308
NACExTax14	-0.224***	0.0673
NACExTax15	0.512***	0.0981
NACExTax16	0.766***	0.0849
NACExTax17	-0.289***	0.105
NACExTax18	-0.298**	0.112
NACExTax19	0.2	0.127
NACExTax20	-0.337**	0.136
NACExTax21	0.157***	0.0419
NACExTax22	0.342***	0.0305
NACExTax23	-0.162***	0.057
NACExTax24	-0.0174	0.0634
NACExTax25	-0.0315	0.0598
NACExTax26	-0.0686	0.13
NACExTax27	-0.0535	0.0882
NACExTax28	-0.0356	0.0843
NACExTax29	0.129*	0.0737
NACExTax30	0.416***	0.0599
NACExTax31	0.715***	0.0754
NACExTax32	0.396***	0.062
NACExTax33	0.295***	0.0598
NACExTax34	0.611***	0.0592
NACExTax35	0.404***	0.054
NACExTax36	0.98***	0.0477
NACExTax37	0.649***	0.08
NACExTax40	0.267***	0.0534
NACExTax41	0.147***	0.0534
NACExTax45	-0.000523	0.0556
NACExTax60	0.514***	0.0528
NACExTax61	0.0725	0.058
NACExTax62	1.2***	0.047

Table 6: Return on capital employed, OLS panel regression in first differences, dependent variable: $\ln(ROCE_{it})$

Variables and statistics	Coef.	Robust standard error
NACExTax11	1.47***	0.0314
NACExTax13	2.29***	0.113
NACExTax14	0.412***	0.111
NACExTax15	-0.362***	0.0748
NACExTax16	0.884***	0.0519
NACExTax17	0.995***	0.2
NACExTax18	1.14***	0.204
NACExTax19	0.801***	0.166
NACExTax20	0.23	0.147
NACExTax21	-0.106	0.0825
NACExTax22	0.144***	0.0505
NACExTax23	-0.0366	0.0271
NACExTax24	0.518***	0.0446
NACExTax25	0.569***	0.0483
NACExTax26	1.41***	0.229
NACExTax27	0.637***	0.0758
NACExTax28	0.605***	0.0785
NACExTax29	0.6***	0.106
NACExTax30	1.1***	0.0695
NACExTax31	0.523***	0.0703
NACExTax32	0.533***	0.0662
NACExTax33	0.66***	0.0672
NACExTax34	0.619***	0.0923
NACExTax35	0.352***	0.0872
NACExTax36	0.577***	0.0775
NACExTax37	-0.135***	0.0415
NACExTax40	0.171***	0.0354
NACExTax41	0.299***	0.0474
NACExTax45	0.611***	0.0894
NACExTax60	-0.000539	0.0508
NACExTax61	-0.542***	0.0525
NACExTax62	1.02***	0.0528
D1999	-0.404***	0.0918
D2000	-0.21***	0.0505
D2001	-0.213***	0.0296
D2002	-0.251***	0.0355

Variables and statistics	Coef.	Robust standard error
D2003	-0.292***	0.0411
D2004	-0.23***	0.0463
D2005	-0.236***	0.0465
Constant	0.15***	0.0432
Sample	162,	771 firms
Observations	506,682	
Min. periods	1	
Avg. periods	3.1	
Max. periods	8	
R ² within	0.0082	
R ² between	0	0.0027
R ² overall	0	0.0064

Note: All variables are in first differences apart from the constant, and variables with an L prefix are in log terms. *, ** and *** denote significant at the 10%, 5% and 1% level respectively. t-statistics are heteroscedasticity-robust and allow for clustering at sector level.

Variables and statistics	Coef.	Robust standard error
Ltax_rate	-1.68***	0.0303
Ltax_rate-1	1.92***	0.0554
ETS	0.00161	0.0249
NACExTax11	1.93***	0.0257
NACExTax13	-0.225***	0.0469
NACExTax14	1.65***	0.0535
NACExTax15	1.73***	0.0296
NACExTax16	1.45***	0.0498
NACExTax17	1.68***	0.103
NACExTax18	1.13***	0.115
NACExTax19	1.27***	0.0325
NACExTax20	1.9***	0.0954
NACExTax21	1.67***	0.0385
NACExTax22	1.73***	0.0305
NACExTax23	2.37***	0.0364
NACExTax24	1.93***	0.048
NACExTax25	1.38***	0.0404
NACExTax26	0.847***	0.129
NACExTax27	2.43***	0.0586
NACExTax28	1.87***	0.0544
NACExTax29	1.85***	0.0622
NACExTax30	1.31***	0.0383
NACExTax31	1.49***	0.0376
NACExTax32	1.14***	0.0398
NACExTax33	1.31***	0.041
NACExTax34	2***	0.0346
NACExTax35	1.94***	0.0374
NACExTax36	1.49***	0.0911
NACExTax37	0.307***	0.0725
NACExTax40	1.95***	0.0301
NACExTax41	1.75***	0.0311
NACExTax45	1.26***	0.0627
NACExTax60	1.45***	0.0493
NACExTax61	1.41***	0.0498
NACExTax62	2.62***	0.0446

Table 7: Investment, OLS panel regression in first differences, dependent variable: $ln(investment_{it})$

Variables and statistics	Coef.	Robust standard error
NACExTax11	-1.78***	0.039
NACExTax13	-0.141***	0.0462
NACExTax14	-1.73***	0.0353
NACExTax15	-2.05***	0.037
NACExTax16	-5.31***	0.0466
NACExTax17	-1.93***	0.105
NACExTax18	-1.69***	0.105
NACExTax19	-2.63***	0.0615
NACExTax20	-1.93***	0.0713
NACExTax21	-1.68***	0.044
NACExTax22	-1.94***	0.0431
NACExTax23	-1.85***	0.0669
NACExTax24	-1.97***	0.0595
NACExTax25	-1.96***	0.0615
NACExTax26	-1.65***	0.0461
NACExTax27	-1.78***	0.065
NACExTax28	-1.88***	0.0622
NACExTax29	-1.73***	0.0165
NACExTax30	-1.34***	0.0467
NACExTax31	-1.8***	0.0457
NACExTax32	-1.81***	0.0481
NACExTax33	-1.61***	0.0498
NACExTax34	-2.11***	0.0368
NACExTax35	-1.77***	0.037
NACExTax36	-1.85***	0.0966
NACExTax37	-2.18***	0.0861
NACExTax40	-1.88***	0.0554
NACExTax41	-1.96***	0.0556
NACExTax45	-2.03***	0.0796
NACExTax60	-1.52***	0.0488
NACExTax61	-0.877***	0.0507
NACExTax62	-0.802***	0.0533
D1999	-0.0204	0.0395
D2000	-0.0842**	0.0412
D2001	-0.196***	0.0368
D2002	-0.113**	0.0468

Variables and statistics	Coef.	Robust standard error
D2003	-0.151***	0.0354
D2004	-0.074*	0.037
D2005	-0.148***	0.0367
Constant	0.166***	0.0371
Sample	138,7	76 firms
Observations	42	7,483
Min. periods		1
Avg. periods		3.1
Max. periods	8	
R ² within	0.0017	
R ² between	0.	0002
R ² overall	0.	0012

Note: All variables are in first differences apart from the constant, and variables with an L prefix are in log terms. *, ** and *** denote significant at the 10%, 5% and 1% level respectively. t-statistics are heteroscedasticity-robust and allow for clustering at sector level.

Year	Number	Title/Author(s) ESRI Authors/Co-authors <i>Italicised</i>
2009		
2007	328	The Association Between Income Inequality and Mental Health: Social Cohesion or Social Infrastructure <i>Richard Layte</i> and <i>Bertrand Maître</i>
	327	A Computational Theory of Exchange: Willingness to pay, willingness to accept and the endowment effect <i>Pete Lunn</i> and Mary Lunn
	326	Fiscal Policy for Recovery John Fitz Gerald
	325	The EU 20/20/2020 Targets: An Overview of the EMF22 Assessment Christoph Böhringer, Thomas F. Rutherford, and <i>Richard</i> <i>S.J. Tol</i>
	324	Counting Only the Hits? The Risk of Underestimating the Costs of Stringent Climate Policy Massimo Tavoni, <i>Richard S.J. Tol</i>
	323	International Cooperation on Climate Change Adaptation from an Economic Perspective Kelly C. de Bruin, Rob B. Dellink and <i>Richard S.J. Tol</i>
	322	What Role for Property Taxes in Ireland? T. Callan, C. Keane and J.R. Walsh
	321	The Public-Private Sector Pay Gap in Ireland: What Lies Beneath? <i>Elish Kelly, Seamus McGuinness, Philip O'Connell</i>
	320	A Code of Practice for Grocery Goods Undertakings and An Ombudsman: How to Do a Lot of Harm by Trying to Do a Little Good <i>Paul K Gorecki</i>
	319	Negative Equity in the Irish Housing Market David Duffy
	318	Estimating the Impact of Immigration on Wages in Ireland <i>Alan Barrett, Adele Bergin</i> and <i>Elish Kelly</i>

317	Assessing the Impact of Wage Bargaining and Worker Preferences on the Gender Pay Gap in Ireland Using the National Employment Survey 2003 <i>Seamus McGuinness, Elish Kelly, Philip O'Connell, Tim</i> <i>Callan</i>
316	Mismatch in the Graduate Labour Market Among Immigrants and Second-Generation Ethnic Minority Groups <i>Delma Byrne</i> and <i>Seamus McGuinness</i>
315	Managing Housing Bubbles in Regional Economies under EMU: Ireland and Spain <i>Thomas Conefrey</i> and <i>John Fitz Gerald</i>
314	Job Mismatches and Labour Market Outcomes Kostas Mavromaras, <i>Seamus McGuinness,</i> Nigel O'Leary, Peter Sloane and Yin King Fok
313	Immigrants and Employer-provided Training <i>Alan Barrett, Séamus McGuinness,</i> Martin O'Brien and <i>Philip O'Connell</i>
312	Did the Celtic Tiger Decrease Socio-Economic Differentials in Perinatal Mortality in Ireland? <i>Richard Layte</i> and <i>Barbara Clyne</i>
311	Exploring International Differences in Rates of Return to Education: Evidence from EU SILC Maria A. Davia, <i>Seamus McGuinness</i> and <i>Philip, J. O'Connell</i>
310	Car Ownership and Mode of Transport to Work in Ireland <i>Nicola Commins</i> and <i>Anne Nolan</i>
309	Recent Trends in the Caesarean Section Rate in Ireland 1999-2006 <i>Aoife Brick</i> and <i>Richard Layte</i>
308	Price Inflation and Income Distribution Anne Jennings, Seán Lyons and Richard S.J. Tol
307	Overskilling Dynamics and Education Pathways Kostas Mavromaras, <i>Seamus McGuinness</i> , Yin King Fok
306	What Determines the Attractiveness of the European Union to the Location of R&D Multinational Firms? <i>Iulia Siedschlag, Donal Smith, Camelia Turcu, Xiaoheng</i> <i>Zhang</i>

305	Do Foreign Mergers and Acquisitions Boost Firm Productivity? <i>Marc Schiffbauer, Iulia Siedschlag, Frances Ruane</i>
304	Inclusion or Diversion in Higher Education in the Republic of Ireland? Delma Byrne
303	Welfare Regime and Social Class Variation in Poverty and Economic Vulnerability in Europe: An Analysis of EU-SILC Christopher T. Whelan and <i>Bertrand Maître</i>
302	Understanding the Socio-Economic Distribution and Consequences of Patterns of Multiple Deprivation: An Application of Self-Organising Maps Christopher T. Whelan, Mario Lucchini, Maurizio Pisati and <i>Bertrand Maître</i>
301	Estimating the Impact of Metro North Edgar Morgenroth
300	Explaining Structural Change in Cardiovascular Mortality in Ireland 1995-2005: A Time Series Analysis <i>Richard Layte, Sinead O'Hara</i> and Kathleen Bennett
299	EU Climate Change Policy 2013-2020: Using the Clean Development Mechanism More Effectively <i>Paul K Gorecki, Seán Lyons</i> and <i>Richard S.J. Tol</i>
298	Irish Public Capital Spending in a Recession Edgar Morgenroth
297	Exporting and Ownership Contributions to Irish Manufacturing Productivity Growth Anne Marie Gleeson, <i>Frances Ruane</i>
296	Eligibility for Free Primary Care and Avoidable Hospitalisations in Ireland <i>Anne Nolan</i>
295	Managing Household Waste in Ireland: Behavioural Parameters and Policy Options John Curtis, Seán Lyons and Abigail O'Callaghan-Platt
294	Labour Market Mismatch Among UK Graduates; An Analysis Using REFLEX Data <i>Seamus McGuinness</i> and <i>Peter J. Sloane</i>

293	Towards Regional Environmental Accounts for Ireland <i>Richard S.J. Tol , Nicola Commins, Niamh Crilly, Sean Lyons</i> and <i>Edgar Morgenroth</i>
292	EU Climate Change Policy 2013-2020: Thoughts on Property Rights and Market Choices <i>Paul K. Gorecki, Sean Lyons</i> and <i>Richard S.J. Tol</i>
291	Measuring House Price Change David Duffy
290	Intra-and Extra-Union Flexibility in Meeting the European Union's Emission Reduction Targets <i>Richard S.J. Tol</i>
289	The Determinants and Effects of Training at Work: Bringing the Workplace Back In <i>Philip J. O'Connell</i> and <i>Delma Byrne</i>
288	Climate Feedbacks on the Terrestrial Biosphere and the Economics of Climate Policy: An Application of <i>FUND Richard S.J. Tol</i>
287	The Behaviour of the Irish Economy: Insights from the HERMES macro-economic model Adele Bergin, Thomas Conefrey, John FitzGerald and Ide Kearney
286	Mapping Patterns of Multiple Deprivation Using Self-Organising Maps: An Application to EU-SILC Data for Ireland Maurizio Pisati, <i>Christopher T. Whelan</i> , Mario Lucchini and <i>Bertrand Maître</i>
285	The Feasibility of Low Concentration Targets: An Application of FUND <i>Richard S.J. Tol</i>
284	Policy Options to Reduce Ireland's GHG Emissions
	Instrument choice: the pros and cons of alternative policy instruments Thomas Legge and <i>Sue Scott</i>
283	Accounting for Taste: An Examination of Socioeconomic Gradients in Attendance at Arts Events <i>Pete Lunn</i> and <i>Elish Kelly</i>
282	The Economic Impact of Ocean Acidification on Coral

	Reefs Luke M. Brander, Katrin Rehdanz, <i>Richard S.J. Tol</i> , and Pieter J.H. van Beukering
281	Assessing the impact of biodiversity on tourism flows: A model for tourist behaviour and its policy implications Giulia Macagno, Maria Loureiro, Paulo A.L.D. Nunes and <i>Richard S.J. Tol</i>
280	Advertising to boost energy efficiency: the Power of One campaign and natural gas consumption <i>Seán Diffney, Seán Lyons</i> and <i>Laura Malaguzzi Valeri</i>
279	International Transmission of Business Cycles Between Ireland and its Trading Partners Jean Goggin and Iulia Siedschlag
278	Optimal Global Dynamic Carbon Taxation David Anthoff
277	Energy Use and Appliance Ownership in Ireland Eimear Leahy and Seán Lyons
276	Discounting for Climate Change David Anthoff, Richard S.J. Tol and Gary W. Yohe
275	Projecting the Future Numbers of Migrant Workers in the Health and Social Care Sectors in Ireland <i>Alan Barrett</i> and Anna Rust
274	Economic Costs of Extratropical Storms under Climate Change: An application of FUND Daiju Narita, <i>Richard S.J. Tol, David Anthoff</i>
273	The Macro-Economic Impact of Changing the Rate of Corporation Tax <i>Thomas Conefrey</i> and <i>John D. Fitz Gerald</i>
272	The Games We Used to Play An Application of Survival Analysis to the Sporting Life- course <i>Pete Lunn</i>
271	Exploring the Economic Geography of Ireland Edgar Morgenroth

270	Benchmarking, Social Partnership and Higher Remuneration: Wage Settling Institutions and the Public- Private Sector Wage Gap in Ireland <i>Elish Kelly, Seamus McGuinness, Philip O'Connell</i>
269	A Dynamic Analysis of Household Car Ownership in Ireland <i>Anne Nolan</i>
268	The Determinants of Mode of Transport to Work in the Greater Dublin Area <i>Nicola Commins</i> and <i>Anne Nolan</i>
267	Resonances from <i>Economic Development</i> for Current Economic Policymaking <i>Frances Ruane</i>
266	The Impact of Wage Bargaining Regime on Firm-Level Competitiveness and Wage Inequality: The Case of Ireland Seamus McGuinness, Elish Kelly and Philip O'Connell
265	Poverty in Ireland in Comparative European Perspective Christopher T. Whelan and Bertrand Maître
264	A Hedonic Analysis of the Value of Rail Transport in the Greater Dublin Area <i>Karen Mayor, Seán Lyons, David Duffy</i> and <i>Richard</i> <i>S.J. Tol</i>
263	Comparing Poverty Indicators in an Enlarged EU <i>Christopher T. Whelan</i> and <i>Bertrand Maître</i>
262	Fuel Poverty in Ireland: Extent, Affected Groups and Policy Issues <i>Sue Scott, Seán Lyons, Claire Keane,</i> Donal McCarthy and <i>Richard S.J. Tol</i>
261	The Misperception of Inflation by Irish Consumers <i>David Duffy</i> and <i>Pete Lunn</i>
260	The Direct Impact of Climate Change on Regional Labour Productivity Tord Kjellstrom, R Sari Kovats, Simon J. Lloyd, Tom Holt, <i>Richard S.J. Tol</i>
259	Damage Costs of Climate Change through Intensification of Tropical Cyclone Activities: An Application of FUND

Daiju Narita, Richard S. J. Tol and David Anthoff

258	Are Over-educated People Insiders or Outsiders? A Case of Job Search Methods and Over-education in UK Aleksander Kucel, <i>Delma Byrne</i>
257	Metrics for Aggregating the Climate Effect of Different Emissions: A Unifying Framework <i>Richard S.J. Tol,</i> Terje K. Berntsen, Brian C. O'Neill, Jan S. Fuglestvedt, Keith P. Shine, Yves Balkanski and Laszlo Makra
256	Intra-Union Flexibility of Non-ETS Emission Reduction Obligations in the European Union <i>Richard S.J. Tol</i>
255	The Economic Impact of Climate Change Richard S.J. Tol
254	Measuring International Inequity Aversion <i>Richard S.J. Tol</i>
253	Using a Census to Assess the Reliability of a National Household Survey for Migration Research: The Case of Ireland <i>Alan Barrett</i> and <i>Elish Kelly</i>
252	Risk Aversion, Time Preference, and the Social Cost of Carbon David Anthoff, Richard S.J. Tol and Gary W. Yohe
251	The Impact of a Carbon Tax on Economic Growth and Carbon Dioxide Emissions in Ireland <i>Thomas Conefrey, John D. Fitz Gerald, Laura Malaguzzi</i> <i>Valeri</i> and <i>Richard S.J. Tol</i>
250	The Distributional Implications of a Carbon Tax in Ireland <i>Tim Callan, Sean Lyons, Susan Scott, Richard S.J. Tol</i> and Stefano Verde
249	Measuring Material Deprivation in the Enlarged EU <i>Christopher T. Whelan, Brian Nolan</i> and <i>Bertrand Maître</i>
248	Marginal Abatement Costs on Carbon-Dioxide Emissions: A Meta-Analysis Onno Kuik, Luke Brander and <i>Richard S.J. Tol</i>
247	Incorporating GHG Emission Costs in the Economic Appraisal of Projects Supported by State Development

Agencies *Richard S.J. Tol* and *Seán Lyons*

246	A Carton Tax for Ireland Richard S.J. Tol, Tim Callan, Thomas Conefrey, John D. Fitz Gerald, Seán Lyons, Laura Malaguzzi Valeri and
245	Susan Scott Non-cash Benefits and the Distribution of Economic Welfare Tim Callan and Claire Keane
244	Scenarios of Carbon Dioxide Emissions from Aviation <i>Karen Mayor</i> and <i>Richard S.J. Tol</i>
243	The Effect of the Euro on Export Patterns: Empirical Evidence from Industry Data <i>Gavin Murphy</i> and <i>Iulia Siedschlag</i>
242	The Economic Returns to Field of Study and Competencies Among Higher Education Graduates in Ireland <i>Elish Kelly, Philip O'Connell</i> and <i>Emer Smyth</i>
241	European Climate Policy and Aviation Emissions <i>Karen Mayor</i> and <i>Richard S.J. Tol</i>
240	Aviation and the Environment in the Context of the EU- US Open Skies Agreement <i>Karen Mayor</i> and <i>Richard S.J. Tol</i>
239	Yuppie Kvetch? Work-life Conflict and Social Class in Western Europe <i>Frances McGinnity</i> and <i>Emma Calvert</i>
238	Immigrants and Welfare Programmes: Exploring the Interactions between Immigrant Characteristics, Immigrant Welfare Dependence and Welfare Policy <i>Alan Barrett</i> and Yvonne McCarthy
237	How Local is Hospital Treatment? An Exploratory Analysis of Public/Private Variation in Location of Treatment in Irish Acute Public Hospitals Jacqueline O'Reilly and Miriam M. Wiley
236	The Immigrant Earnings Disadvantage Across the Earnings and Skills Distributions: The Case of Immigrants from the EU's New Member States in Ireland <i>Alan Barrett, Seamus McGuinness</i> and <i>Martin</i> <i>O'Brien</i>

235	Europeanisation of Inequality and European Reference Groups <i>Christopher T. Whelan</i> and <i>Bertrand Maître</i>
234	Managing Capital Flows: Experiences from Central and Eastern Europe Jürgen von Hagen and <i>Iulia Siedschlag</i>
233	ICT Diffusion, Innovation Systems, Globalisation and Regional Economic Dynamics: Theory and Empirical Evidence Charlie Karlsson, Gunther Maier, Michaela Trippl, <i>Iulia</i> <i>Siedschlag,</i> Robert Owen and <i>Gavin Murphy</i>
232	Welfare and Competition Effects of Electricity Interconnection between Great Britain and Ireland Laura Malaguzzi Valeri
231	Is FDI into China Crowding Out the FDI into the European Union? Laura Resmini and <i>Iulia Siedschlag</i>
230	Estimating the Economic Cost of Disability in Ireland John Cullinan, Brenda Gannon and <i>Seán Lyons</i>
229	Controlling the Cost of Controlling the Climate: The Irish Government's Climate Change Strategy Colm McCarthy, <i>Sue Scott</i>
228	The Impact of Climate Change on the Balanced- Growth-Equivalent: An Application of <i>FUND</i> <i>David Anthoff</i> , <i>Richard S.J. Tol</i>
227	Changing Returns to Education During a Boom? The Case of Ireland Seamus McGuinness, Frances McGinnity, Philip O'Connell
226	'New' and 'Old' Social Risks: Life Cycle and Social Class Perspectives on Social Exclusion in Ireland <i>Christopher T. Whelan</i> and <i>Bertrand Maître</i>
225	The Climate Preferences of Irish Tourists by Purpose of Travel <i>Seán Lyons, Karen Mayor</i> and <i>Richard S.J. Tol</i>
224	A Hirsch Measure for the Quality of Research Supervision, and an Illustration with Trade Economists

		Frances P. Ruane and Richard S.J. Tol
	223	Environmental Accounts for the Republic of Ireland: 1990-2005 <i>Seán Lyons, Karen Mayor</i> and <i>Richard S.J. Tol</i>
2007	222	Assessing Vulnerability of Selected Sectors under Environmental Tax Reform: The issue of pricing power J. Fitz Gerald, M. Keeney and S. Scott
	221	Climate Policy Versus Development Aid Richard S.J. Tol
	220	Exports and Productivity – Comparable Evidence for 14 Countries <i>The International Study Group on Exports and</i> <i>Productivity</i>
	219	Energy-Using Appliances and Energy-Saving Features: Determinants of Ownership in Ireland Joe O'Doherty, <i>Seán Lyons</i> and <i>Richard S.J. Tol</i>
	218	The Public/Private Mix in Irish Acute Public Hospitals: Trends and Implications Jacqueline O'Reilly and Miriam M. Wiley
	217	Regret About the Timing of First Sexual Intercourse: The Role of Age and Context <i>Richard Layte</i> , Hannah McGee
	216	Determinants of Water Connection Type and Ownership of Water-Using Appliances in Ireland Joe O'Doherty, <i>Seán Lyons</i> and <i>Richard S.J. Tol</i>
	215	Unemployment – Stage or Stigma? Being Unemployed During an Economic Boom <i>Emer Smyth</i>
	214	The Value of Lost Load <i>Richard S.J. Tol</i>
	213	Adolescents' Educational Attainment and School Experiences in Contemporary Ireland <i>Merike Darmody, Selina McCoy, Emer Smyth</i>
	212	Acting Up or Opting Out? Truancy in Irish Secondary

Schools Merike Darmody, Emer Smyth and Selina McCoy

211	Where do MNEs Expand Production: Location Choices of the Pharmaceutical Industry in Europe after 1992 <i>Frances P. Ruane</i> , Xiaoheng Zhang
210	Holiday Destinations: Understanding the Travel Choices of Irish Tourists <i>Seán Lyons, Karen Mayor</i> and <i>Richard S.J. Tol</i>
209	The Effectiveness of Competition Policy and the Price-Cost Margin: Evidence from Panel Data Patrick McCloughan, <i>Seán Lyons</i> and William Batt
208	Tax Structure and Female Labour Market Participation: Evidence from Ireland <i>Tim Callan</i> , A. Van Soest, <i>J.R. Walsh</i>
207	Distributional Effects of Public Education Transfers in Seven European Countries <i>Tim Callan,</i> Tim Smeeding and Panos Tsakloglou