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1. Introduction

The ambition to achieve an environmentally sustainable, cost-efficient and secure future energy
supply has motivated greater use of renewable resources such as wind for electricity generation
(E.C., 2007; DCENR, 2010; DECC, 2011). Renewables deployment requires public support as the
cost of generation is often greater than the market price of electricity so far. Policymakers thus wish
to minimise these costs in order to achieve efficient renewables deployment. Total social costs of
renewables deployment comprises both internal investment costs (capital, operation, maintenance,
etc.), alongside any incurred external costs. Given the dispersed nature of many renewable sources,
such as wind, transmission system upgrade is often required.

To date, separate methodologies have been employed to minimise each of these costs.
Estimation of transmission expansion costs may be carried out as part of a Transmission Expansion
Planning (TEP) model. Transmission expansion planning costs are not directly related to individual
deployment decisions but rather the electricity system as a whole. TEP determines where, how
many and when new devices can be added to a network in order to make its operation viable for a
pre-defined horizon of planning, at a minimum cost (Hemmati et al., 2014). Both determinstic,
single period expansions have been considered, alongside stochastic, multi-period expansion.
van der Weijde and Hobbs (2012) have demonstrated that transmission expansion should be carried
out in a multi-period context, using a stochastic framework to consider future uncertainty regarding
system investment decisions. In practice, transmission planners do not know the private costs
faced by generators and decisions made by a proactive transmission planner based on estimated or
homogeneous generation costs may be subject to bias and thus inefficiency (Farrell and Devine,
2015).

On the other hand, competitive pay-as-bid auctions have been shown to incentivise investors
to reveal their site-specific generation costs such that a least-cost portfolio of renewables may be
deployed (Kylili and Fokaides, 2015; Farrell and Devine, 2015). TEP, to date, has not incorporated
the differentiated costings facilitated by a pay-as-bid auction. Integrating these frameworks may

thus allow for more efficient network expansion.



Internalising dynamic TEP costs into a pay-as-bid auction requires knowledge of collective
site-selection decisions such that TEP costs may be estimated. However, generator bids and
resulting site-selection decisions are determined by TEP costs. Current modelling frameworks are
unable to incorporate this simultaneity. Thus, a new modelling framework is required to integrate
stochastic, multi-period TEP with competitive pay-as-bid wind connection auctions. This paper
provides this contribution, proposing both an auction framework and modelling platform to carry
this out. Auction mechanisms to efficiently allocate connection contracts have been considered in
wind energy deployment, however, the means to most efficiently minimise transmission upgrade
costs has not been considered in this context. We first formulate the investment decision as a
multi-stage game, where policymakers wish to install a given capacity and investors in wind
energy generation respond. We specify connection contract auctions as a pay-as-bid auction, where
transmission externalities are internalised into the bidding strategy.

Transmission costs are predicated on the collective siting decisions of all market players. We
adapt a DC Optimal Power Flow (DCOPF) model to calculate these transmission externalities and
present a formalised auction procedure through which these costs are internalised into generator
bidding strategies. We apply this modelling framework to the IEEE 24-bus test system to illustrate
its application. A scenario-based methodology, drawing on the work of van der Weijde and Hobbs
(2012) is proposed to take into account uncertain dynamic aspects of these spatial externalities.

This paper proceeds as follows. Section 2 offers a review of the literature and motivates the
analysis and Section 3 formally presents the problem faced by a Transmission System Operator,
providing a framework through which a cost minimisation procedure may be enacted. Section
4 we propose an auction methodology to carry this out. Section 5 outlines the assumptions and
data employed for a numerical application to demonstrate the efficiency gains of the multi-stage
procedure proposed in this paper. Each step of the procedure is analysed in turn to demonstrate
the overall contribution of this framework in Section 6. Some concluding comments are offered in

Section 7.



2. Literature Review and Motivation

Efficient renewables deployment requires minimisation of both internal generation and external
costs, including environmental costs and transmission upgrade costs. The minimisation of
transmission cost externalities is carried out by Transmission Expansion Planning (TEP) models.
This literature has evolved in its treatment of how wind investment interacts with transmission
expansion. Initially, much of this literature has considered wind investment decisions in a
centrally-planned framework (e.g. Hemmati et al., 2016; Ugranli and Karatepe, 2014), where
Transmission System Operators (TSOs) dictate locational deployment.

However, generation capacity in liberalised electricity markets is determined by private
investment decisions (van der Weijde and Hobbs, 2012; Munoz et al., 2014). While transmission
expansion has in many cases taken a reactive attitude to accommodate locational investment
decisions (Munoz et al., 2014), recent advances in the TEP literature have focussed on using
transmission planning to steer the generation market towards potentially better social outcomes.
This may be achieved by forward-looking analysis and consideration as to how investors
react to a given transmission investment. A number of TEP models have considered such
investor-transmission planner interactions (Gu et al., 2012; Munoz et al., 2014; Ng et al., 2006;
Roh et al., 2007; Sauma and Oren, 2006; Tor et al., 2008; van der Weijde and Hobbs, 2012).

However, in these works, perfect knowledge of the costs for investors in renewable energy
generation has been assumed known. In reality, in many markets the internal costs of generators
are not known to those charged with assigning renewable contracts and the resulting transmission
investments. This information asymmetry between generators and planners may lead to a
sub-optimal allocation of connection contracts. Information asymmetries may be overcome if
generators signalled their internal investment costs. This may be facilitated by a pay-as-bid auction,
whereby investors in renewable energy generation declare the price required for viable deployment
(Kylili and Fokaides, 2015). However, to date, a pay-as-bid auction has not been integrated with
TEP.

In this paper, we propose a new modelling framework that integrates a stochastic multi-period



TEP with a competitive pay-as-bid connection auction. Determining TEP costs requires knowledge
of collective site-selection decisions which are determined from generators’ bids. However, these
bids may be affected by TEP costs, resulting in a simultaneity of outcomes in site selection.
Current modelling frameworks are unable to incorporate this simultaneity. This paper proposes
an iterative auction and accompanying TEP modelling procedure to identify and internalise
transmission costs into competitive pay-as-bid auctions. To specify this auction framework, the
generator-transmission planner relationship and deployment problem must be analysed formally.

This is carried out in the following section.

3. Problem formulation

Table 1: Sets

Sets for auction framework

se S Set of target capacity scenarios

1€ A Set of all possible sites

a;—y C A Sites chosen by policymaker at t = 1

as CA Sites chosen by policymaker at £ > 1 and scenario s
tefT Set of timesteps after time period ¢ = 1

t' € T\{t} Setof timesteps after time period ¢ = 1 excluding time ¢

Sets for TEP model

uwelU Set of thermal generating units

g3 eJ Set of network nodes/buses




Table 2: Variables

Variables for auction framework

E[TSC] Expected total societal costs (€/MW)

k; Generator at site 7’s bid (€/MW)

Pa; Probability generator 7’s bid is accepted

dit.a,-1 Yearly external costs for site ¢ at time ¢ for combination of sites in a;—; (€/MW)

ditar., Yearly external costs for site ¢ at time ¢ for combination of sites in a; ; (€E/MW)

a;—y C A Sites chosen by policymaker at ¢ = 1

a;s C A Sites chosen by policymaker at ¢ > 1 and scenario s

pri(l) Probability generator ¢’s bid is accepted given that their bid is the [th lowest ranked
Variables for TEP model

Dq,_,.a,, Total deployment costs associated with sites a;—; and a; ; (€)

nv Investment costs (€)

lsc Load shredding costs (€)

T Electrical impedance of bus j to bus j’

(T % of upgrade for line between bus j to bus j

ls; Load shedding at bus j (MW)

powerﬁ ;  Power produced by thermal generating unit u at bus j (MW)

flow; ;;  Power flow between bus j to bus j' (MW)

power}” Power produced by wind generating units at bus j (MW)

powerd  Active power demand in bus j (MW)

<




Table 3: Parameters

Parameters for auction framework

Qi Capacity at site : (MW)
G Annual generation at site z (MWh)
et Target for installed capacity at time ¢t = 1 (MW)
nget Target for installed capacity at time ¢ > 1 and scenario s (MW)
PCs Probability for capacity target scenario s
r Yearly discount rate (%)
T Length of contract (years) policymaker and generator
F; Internal costs for site ¢ (€)
C Capital cost of building wind generation (€/MW)
O Yearly operational cost for wind generation (€/MW)
N = |A| Number of generators/investors
n Number of accepted bids that generators assume
K Random variable for distribution of unknown bids(€/MW)
I6; Centering parameter for pr;
A Level of influence ranking has on pr;
v Normalisation parameter for pr;

Parameters for TEP model

AW, Available wind power generation at bus j (MW)
VOLL  Value of loss of load (€/MWh)

PjD 0 Active Power demand in bus j (MWh)

prax Maximum limit of power generation for thermal unit © (MWh)

P;;;a;‘, Maximum allowed power limit of transmission for line associated with 1; ; (MWh)
Xj()’ i Initial % electrical impedance of bus j to bus j’

UC; Unit cost of upgrading line between node j to node j' (€)




We follow Farrell and Devine (2015) and consider a competitive pay-as-bid auction for the
allocation of wind connection contracts. Under a competitive pay-as-bid auction, generators reveal
the price at which they are willing to generate electricity and receive this price if successful. This
price is a signal for policymakers to choose the least-cost schedule of deployment.

Throughout this paper we refer to the policymaker as the entity that makes the deployment
decisions. This entity may be a transmission system operator, market operator or some other
body. We also assume that there are N generating sites. At each site we assume there is
one investor willing to generate wind electricity. Hence we assume there are N wind energy
generators/investors.

TEP and pay-as-bid connection auctions may be carried by separate, independent processes
or together in an integrated procedure. When fully integrated, external costs are revealed by the
policymaker and internalised into the generators’ bid. When these objectives are minimised using
separate procedures, a pay-as-bid auction elicits relative costs faced by generators, focussing on
costs internal to the investor’s decision. We formulate the policymaker’s problem and generators’

response considering both of these frameworks in the sections that follow.

3.1. Policymaker’s problem

As van der Weijde and Hobbs (2012) highlight, policymakers must consider deployment
over many time periods, as single period deployment may create a path dependency and result
in suboptimal deployment in subsequent time periods. Policymakers thus wish to meet a wind
deployment target for each time period ¢, subject to minimising the expected discounted sum of
total social costs throughout all time periods, E[T'C]. As future policy targets are uncertain, the

target varies across scenarios when ¢ > 1. The parameter QtTirfet represents the target that must be

met in the first time period (scenario-independent) while Qzasrget represents the target that must be
met for all subsequent time periods (scenario-dependent). The index s € S represents the different
target capacity scenarios.

A spatial arrangement must be chosen by the policymaker to meet these targets. For ¢ = 1

the policymaker chooses a spatial arrangement a,—;. For ¢ > 1 the policymaker must also choose

7



a spatial arrangement a, ; to meet the targets for each of the different target capacity scenarios.
These two variables are subsets of the set A which represents all potential sites. The policymaker’s

deployment decision may be formally represented as

min  E[TC] (1)

at=1,at,s€A

subject to:

> Qi=QlT, )
1€EQL—=1
Z Qz _ Target VS te T (3)
’LEaé t
a1 Nags =0 Vs, t €T, (4)
atsNaps =0 Vs e S;te Tt e T\{t}, )

where ();, a parameter, represents the capacity at site 7.  Constraint (2) ensures the
scenario-independent target is met for time-period ¢ = 1 while constraint (3) ensures that the
targets for all other time periods are met for each scenario. Constraints (4) and (5) ensure that,
under each scenario, if a site is chosen in one time period it cannot be chosen in another time
period.

The expected total societal costs, £[T'SC], differ depending on whether external transmission
costs are internalised into the auction and thus paid by generators. If these costs are paid by the

generators, i.e. they are implicitly included in their bids, then

t+7T—1
E[TSC]= Y Ze "G+ Y Y pee kG, 6)
i€ar=1 t=1 gg% t'=t
1€a¢t, s

where pc, represents the probability associated with scenario s and r represents the discount rate.

The parameter T represents the number of years site 7 will enter a contract with the policymaker



for. This value is the same for each site chosen regardless of when the site is chosen. For example,
if site i is chosen for time period ¢ = 1 then their contract would run from ¢ = 1 tot = T. If
site 7 is chosen for time period ¢ = 2 then their contract would run from ¢t = 2tot = T + 1.
The parameter GG; represents the yearly generation associated with site 7, which is assumed fixed.
The variable k; represents the price generator at site ¢ is willing to receive per unit of electricity
obtained via equation (12).

If external costs are not paid by the generator then the total societal costs are

t+T—1
E[TSC] = ) Z "kiGi+ diga) + Y Y pese” " (kiGi+ diga, ), (T)
i€ar—1 t=1 fg; t'=t
i€at,s

where d;; ,,_, and d;; ., , represent the external costs to be paid by site ¢ in time period if 7 € a;—;
or ¢ € a; respectively. These costs are determined via the objective function of the transmission
expansion model described in Section 4.2. Under this framework, the bid k; is obtained via
equation (13).

When calculating future expected costs, under both frameworks, the policymaker assumes that
the bids the generators submit at time ¢ = 1 are representative of bids submitted in subsequent time
periods. The policymaker also assumes bids are independent. To determine the optimal schedule,
the policymaker must quantify the cost of deployment, both internal costs and external costs, for
each potential arrangement. To carry this out, the policymaker puts in place a pay-as-bid auction.
Generators bid the €/MWh price which they require to invest at site 7. This bid may include or
exclude their share of transmission upgrade cost. Policymakers minimise £[7'SC] by choosing the
least cost combination of bid and external costs. Bidding strategies under each auction specification

will now be outlined.

3.2. Generator bidding strategies in a pay-as-bid auction

We adopt the modelling framework of Farrell and Devine (2015), but with the added dimension

of multiple timesteps, when modelling the optimal bidding strategy of the generator. In a



competitive pay-as-bid auction, generators bid the k; price they are willing to receive per unit of
electricity generated should they win a connection contract. Policymakers choose the combination
of sites from these bids that facilitates cost-minimisation. As the policymaker will offer connection
contracts to the combination of sites that minimises total cost, a lower bid signals lower cost at
that site and thus increases the probability of acceptance for the generator. However, a higher
bid will increase the potential revenue, conditional on acceptance, as the generator will receive a
higher price per unit of electricity generated. As Naert and Weverbergh (1978) and Hao (2000)
discuss, rational bidders will seek to maximise utility derived from profits based on their private
information, including their perception of how others will bid. Bidders may thus seek a markup
by bidding in excess of their private breakeven costs. A Nash equilibrium will result when each
bidder chooses a strategy and no bidder wishes to change their strategy (Hao, 2000).

We assume generators wish to maximise their discounted expected profits. Their expected
profits are the probability that their site is chosen times the discounted net money they would
receive if accepted. These profits differ depending on whether external costs are paid by the
generator or not. If these costs are paid by the generator then profit for installation at site ¢ (7;),
may be defined as .

T
mo=pa;[ »_ e (kG — diga,_,) — F], ®)

t=1
where pa; represents the probability of generator i’s bid being accepted!. This probability is
described in more detail in Section 3.2.1 and it should be noted that pa; is a function of generator

s bid k; relative to all other bids and is assumed independent to the distribution of other sites’

bids. The parameter F; corresponds to the internal cost for site ¢ and is defined as follows:

T
Fi=CQi+Y e 0Q;, ©)
t=1

'As discussed in Section 4, when generators are submitting their bid, they aim for their connection contract to be
accepted for time ¢t = 1. Consequently their probability of acceptance is the probability of their bid being accepted for
time t = 1.
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while C and O are parameters representing the capital and operating costs (€/MW) respectively.

If external costs are not paid by the generator then the profit for the generator at site ¢ is

T

mo=pa;[» e kG — F]. (10)

t=1

Generator ¢ will submit a bid k; to maximise discounted expected profit. In the numerical examples
described in Section 6 the generator’s expected profit was found to have a concave shape (see also

Farrell and Devine (2015)); hence their optimal bid is obtained when

0 T
Ok;

= 0. (11)

Consequently, the optimal bid may be defined as

k,‘ _ E _|_ th;l eirtdiﬂ:yat:l apal ! . (12)
L Zf—l Ge Tt Ok “
when external costs are paid by the generators and
S Opa] ™ (13)
L Zf—l Ge Ok; b

when external costs are not paid by the generators. Equations (12) and (13) show that when external
costs are included in the generators cost, a higher bid will be submitted by the generators, all else

being equal.

3.2.1. Policy cost and bidding strategy: internalised externality

Each generator ¢ assumes n accepted bids meet the policymaker’s capacity target for time ¢ = 1.
Under the framework where 7; includes site i’s share of the total externality, being the n'* smallest
bid or smaller guarantees a successful bid while being (n + 1) smallest bid or larger guarantees
an unsuccessful bid. Thus the probability of being the n'" smallest bid or smaller is equal to the

probability of acceptance. Under this framework expected policy cost is defined by equation (6).
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Characterising the optimal bid by each generator requires information on the costs faced by
generator ¢ and the distribution of all other bids. Following the literature, we assume all other
bids are drawn from a distribution with a Probability Density Function PDF'(K') and Cumulative
Distribution Function CDF(K') (Hao, 2000). Henceforth, for ease of presentation, C DF will
refer to CDF(K).

We define the probability that generator 2’s bid is less than the bid of one of the other generators

as

P(k; < K)=1- CDF, (14)

Similarly, the probability that generator 7’s bid is greater than the bid of one of the other generators
is

P(k; > K) = CDF. (15)

Assuming there are /N independent bids in total, the probability that there is exactly n — 1 bids less

than generator 7’s bid and N — 1 — (n — 1) bids greater is?

(N a 1) (CDF)" (1 — CDF)N-1-(n=b), (16)

n—1
Furthermore the probability that there is n — 1 or less bids less than generator ¢’s bid is

N -1

pai(k;) :< ) (CDF)" (1 — CDF)N-1=(=1)

+<N 1) (CDF)"%(1 — CDF)N-1-(n=2)
n—2
: (17)
+<N ) 1) (CDF)'(1 — CDF)N-1-1)
+<N 0 1) (CDF)°(1 — CDF)N-1=0),
“Note: (z) = (Ij’;!) m
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which is equal to
n—1

pai(k) = (N ; 1) (CDF)'(1—CDF)" (18)

=0

Equation (18) gives us the probability that k; is the nth smallest bid or smaller. To specify the

parameters of equation (12), the partial derivative of equation (18) with respect to k; is required:

Opa; (N - 1) dCDF

-1/ N-1-1_/nr 1. Iiq N—2-1
= z o [z(CDF) (1-CDF) (N—1-1)(CDF)(1-CDF) .

19)

In Section 5, the random bids K are assumed to follow a uniform distribution.

3.2.2. Policy cost and bidding strategy: externality not internalised

Under the framework where 7; does not include site 7’s share of external costs, then being
the n*" smallest bid or smaller does not guarantee a successful bid and policy costs are given by
equation (7). As being the n'" lowest bid might not necessarily mean your bid gets accepted we
follow a procedure similar to Brock and Durlauf (2001) and represent the probability that generator
1’s bid will be accepted given the rank of their bid (i.e., given there are [ bids lower than theirs) by

a hyperbolic tangent function:

pri(l) =

DO |2

(1-— tanh(%)). (20)

This function models the probability of acceptance given the rank of bid such that for low values of
[ there is a high probability of acceptance and similarly for high values of [ there is a low probability
of acceptance. A shift from the high probability regime to the low probability regime occurs over
a range of magnitude A, centered at [ = . The parameter vy ensures that the probabilities are
normalised such that the expected total number of bids accepted is n, i.e., Y, pri(l) = n. See
Figure 1 for a schematic of equation (20).

As A — 0, equation (20) tends towards a stepwise linear function where the probability of
acceptance is equal to one when [ < n and zero when [ > n which results in the same situation as

described in Section 3.2.1 where external costs are internalised. As A — oo, equation (20) tends

13



towards a uniform distribution such that all values of [ (0 < < N — 1) have equal probability.

Figure 1: Probability of acceptance given the rank of bid

Probability of acceptance

Rank of bid

Using this conditional probability, the probability that generator ¢’s bid is accepted is

S - B (N-1
pai(ki Zzgl—tanh /\6))( l )(CDF)I(l—CDF)N1’, @1)

This probability represents the probability of being the I/th ranked bid times the probability of
acceptance given that rank, summed over all possible ranks. Hence, equation (21) gives us the
probability of acceptance when external factors affect the ranking of successful bids. To specify

the parameters of equation (13), the partial derivative of equation (21) with respect to k; is required:

Ipa; _ N~ [~ B\ (N—1\9CDF -1 N1
% _25(1—@@(7))( z ) T {Z(CDF) (1 - CDF) )

—(N -1-0)(CDF)Y(1 - CDF)N—Q—Z] :

14



4. Solving the problem

4.1. Proposed auction framework

This paper will elicit the optimal spatial arrangement of wind connections should TEP costs
be ignored; fully integrated into the auction framework; or minimised by a separate, independent
methodology. In order to integrate a competitive pay-as-bid auction with a TEP model, external
costs must be estimated and incorporated into the bidding procedure. However, a simultaneity
of outcomes exists. Exact transmission costs are determined by the collective siting of added
installations whilst collective siting decisions are determined by the outcome of the auction. The
simultaneity arises as transmission costs must be estimated prior to the final auction procedure for
incorporation into generator bids. We propose the following multi-stage framework to address this

simultaneity.

1. Initially, the policymaker sets a winds deployment target (QtTirlget) and solicits interest from

potential investors. For each potential investment, the policymaker seeks information
regarding location and capacity.?
2. There are many different possible successful combinations that may meet a policy target*.

For each combination, the total cost of deployment (D ) is calculated using a TEP

at=1,0t,s
methodology”.
3. For each possible combination of sites, a; U ay,, that meets the target Q"1 + Q=" the

TEP cost (Dg,_, q,.) is equally disaggregated amongst sites to construct d;;,, and d; q,

3While this presents the possibility of speculative submissions, one may overcome this problem by putting in place
a deposit mechanism or a requirement that all submissions be accompanied by a feasible deployment proposal.

4i.e., there are many combinations that could make up the sets a;—; and a; ; which are subsets of A.

>We employ a computationally efficient TEP modelling framework to handle these numerous iterations. This is
discussed in greater detail in Section 4.2. Future work will extend the model using more intensive search algorithms
to apply the concept to expansion decisions with higher granularity and thus computational burden.

15



portions:

QiDa —1,0¢,s . .
ditary = ﬁ if i€ ap_y, (23)
i€atUat,s ¥
Do, e
ditar, = M if i€ a,. (24)

ZieatUat?s Ql

As the TEP model is optimised over a single time period of one year, d;;,,_, and d;;q,
correspond to yearly external costs.

4. Once the TEP costs are calculated, the policymaker presents these costs to generators. Each
generator then offers bids conditional on each transmission upgrade cost, as explained in
Section 3.2 via equations (12) or (13). Using these submitted bids the policymaker then

chooses the sites that minimise total societal costs as explained in equations (1) - (7).

4.2. Transmission Expansion Planning Model

To obtain the total TEP cost, D, , 4, ., and hence d;;,, portions, we utilise a TEP model.
As mentioned above there are many different combinations that met the policymaker’s target, i.e.,
there are many combinations for the sets a;—; and a; ;. For each of these combinations, the TEP
model is run obtaining a different total deployment cost (D,,_, 4, ,)-

The TEP model used is a DC Optimal Power Flow (DCOPF) model. The model’s objective
is to minimise conventional transmission upgrade costs and load shedding costs subject to power
generation and flow constraints, network transmission constraints in addition to energy balance
constraints. The model is optimised over |J| nodes/buses with |U| thermal generating units. Each
of the thermal generating units are associated with a node. Similarly each of the NV wind generating
sites are associated with a node, which is pre-defined. The sites in the set A; C A are associated
with node j. The amount of electricity capacity available from wind at node j (AW;) depends on

the combination of sites for a;—; and a, ; being examined. More formally:

AW, = > oo (25)

ieAjﬂ(atzlLJat,s)
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The full optimisation problem may be defined as follows with all sets, variables and parameters

described in Tables 1 - 3:

min Dy, , 4, = min inv + lsc (26)
where
my = Z wj,j’ UCjJ‘/, (27)
Jig’
zi0 = X5 — Ui, (28)
Isc = Y Is;VOLL, (29)
J
subject to
0< powerfj ;< P, (30)
5 — 8
flOij/ = u, (31)
Lj,j
’flOUJj"j/‘ S P;;;dj,, (32)
Z flow; j + Zpowerij + power]W +ls; = PJ-DO, (33)
5 u
ls; + power? = P]-DO, (34)
power}/v = AW, (35)

The transmission upgrade cost associated with the line connecting node j to j' is calculated in (27).
The impedance of line connection node j to j' is updated in (28). The load shedding costs (Isc)
are calculated in (29). Equation (30) defines the operational range of generators. Equations (31) to
(33) represents transmission network constraints. The load shedding in node j is calculated in (34).
Wind power is treated as a must-take negative load and is equal to the amount of wind available as
stated in (35). The objective function plus and all the constraints except constraint (31) are linear.
As aresult, the model is a non-linear. The model is also optimised over a single time period of one

year. Similar TEP models can be found in (Alguacil et al., 2003; Maghouli et al., 2009, 2011)
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5. Assumptions and data

5.1. Cost and bid parameters

We apply the modelling framework to a case study to illustrate the efficiencies of an integrated
methodology. The case study is carried out over two time periods (7" = {1,2}). In the current
period (2010-2020), the policymaker is aware that they are bound to meet a target Q% = 800MW
installation target. For the following period (2020-2030), the installation target is uncertain.
Policymakers, however, can place a probability of there being inrges‘ = OMW, 200MW, 400MW,
800MW or 1300MW targets for the subsequent period, in addition to the Q"' target. We assume
an equal probability (pcs = 0.2) for each scenario.

We consider N = 36 potential wind energy generating sites. Nodes 8,11,17 and 20, in the
TEP model, each have nine of these sites associated with them, with each site assuming 100MW

of capacity (Q;) and 2628MWh® of annual generation (G)).

Table 4: Cost and bid parameters

Parameter Value
Internal investment cost parameters

Reference Capital Cost (per MW) €1.76m
Annual operating cost (O) 2% of capital cost
Discount rate (r) 6%
Length of contract (T) 20 years
Bid parameters

Influence parameter for probability of bid acceptance ()\) 0.6
Centering parameter for probability of bid acceptance (53) 10
Number of bids generators assume are accepted (n) 8
Distribution of unknown bids (K) U[60, 80]

Table 4 displays cost and bid parameters values for each site while Table 5 shows how internal
generation costs vary depending on which node/bus they are associated with’. The generation cost
parameters follow those from Doherty and O’Malley (2011) and Farrell et al. (2013). For a more

detailed discussion on the levels for the parameters associated with the probaility of acceptance (A,

®This value assumes a capacity factor of 35%.
"While costs vary from node to node, sites at the same node have the same internal costs.
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B and n) see Farrell and Devine (2015). The upper and lower bounds for the uniform distribution of
unknown bids (K) are chosen such that they roughly correspond to the break-even bids associated
with = 20% of the reference cost value of €1.76m.

Table 5 shows that nodes 8 and 11 enjoy economies of scale. Initial deployment of < 200MW
is carried out at a cost of 80% of the reference value quoted in Table 4, whilst deployment in
excess of 800MW results in further economies of scale that lead to costs incurred being 85% of
the reference value. This allows for insight into scenarios where current period deployment may
not complement long-term deployment optimum and facilitates analysis which can demonstrate
benefits of multi-stage analysis and gives insight into when this modelling framework may be best
employed.

Table 5: Capital costs (C') per node and installed capacity (Costs quoted as % of reference value of €1.76/MW)

100MW  200MW-700MW  800MW-900MW

Node 8 80% 100% 85%
Node 11 80% 100% 85%
Node 17 100% 100% 100%
Node 20 100% 100% 100%

5.2. Transmission system

The TEP model described in Section 4.2 is applied to the IEEE 24-bus (J = {1,2,..,24})
standard test case as depicted in Fig. 2 (Akhavan-Hejazi and Mohsenian-Rad, 2014). This network
includes two areas with 230 kV and 138 kV sub-grids interconnected through power transformers.
The total base load of this system is > _; PjD ¢ = 2850 MW while the generation mix includes
variety of conventional technologies with ) P™* = 3405 MW of installed capacity (Del Rosso
and Eckroad, 2014). It is assumed that no wind capacity pre-exists in the network. However there
are |U| = 32 thermal units. The demand, generation units and network topology data are described
in Tables 12 - 14 respectively in Appendix A.

The transmission upgrade costs (Table 14) are similar to those used in Gao (2010) while the

value of loss of load (VOLL) is assumed to €1000/MWh.
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Figure 2: IEEE 24 bus standard test case
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6. Case study application

We apply the model setup outlined in Sections 3 and 4 to the numerical example specified
in Section 5 to illustrate the effciency improvements offered by the presented framework to both

traditional TEP modelling and pay-as-bid auctions. We consider four different case studies:

1. Assuming externals costs are zero, we compare deployment as a single multi-period problem
versus multiple single period problems.

2. We incorporate external costs into the pay-as-bid auction framework with external costs
being paid by the generators.

3. The pay-as-bid auction is compared with a flat-rate Feed-in-Tariff.

4. We incorporate external costs into the pay-as-bid auction framework but external costs are

not paid by the generators.

6.1. Importance of incorporating multi-period deployment into a pay-as-bid auction

First we test the importance of considering future time periods and, in particular, the impact
explicit incorporation of uncertain future outcomes may have on future deployment paths and
costs of wind deployment in a pay-as-bid auction framework. Table 6 presents results where
the modelling framework is applied for multiple single periods. In this case, the policymaker is
optimising their objective function for each time period independently. Thus, the objective function
of Equation (6) is solved for 7" = {1} where the time period relates to either period 1 or period
2 alone. Table 7 shows results where both time periods are modelled together (i.e. T = {1,2}).

External costs are assumed zero and thus, the TEP model is not used in this case study.
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Table 6: Naive single-period solution: external costs unaccounted for

Capacity target Node

@Mt L Q= g 11 17 20
800MW 200 200 200 200
1000MW 400 200 200 200
1200MW 600 200 200 200
1600MW 900 300 200 200
2100MW 900 800 200 200

As both Tables 6 and 7 illustrate, second period investments must follow those of the first

period. Table 6 shows that investment in a single period framework is driven by the cost efficiencies

associated with installations of < 200MW at each node, thus resulting in a distributed installation

pattern, whilst subsequent installation is concentrated around nodes 8 and 11 to take advantage of

further cost efficiencies.

Table 7: Weighted multi-period solution: external costs unaccounted for

Capacity target Node

@5+ QY 8 11 17 20
800MW 800 O 0 0
1000MW 800 200 O 0
1200MW 800 200 100 100
1600MW 800 800 O 0
2100MW 900 800 200 200

We see that, when multi-period investment is considered, the optimal solution is predicated on

the interaction of future deployment patterns with cost drivers within the system. When potential

future deployment is considered, the efficiencies gained by co-location outweigh the efficiencies

of distributed generation for the presented case study. This is shown in Table 8. First period
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investment is concentrated at node 8, allowing for subsequent installations to be concentrated
at nodes 8 and 11, where economies of scale may be exploited. These benefits may only be
reaped in the second time period and a multi-stage framework is required in order to allow for
such foresight to be incorporated into current-period deployment. Thus, we see that incorporating
a stochastic framework is of considerable benefit when potentially conflicting cost considerations
may be incurred in relation to scale of deployment. In particular, the relative weighting of future
events will dictate current period investment and should preliminary analysis suggest that optimal
path of deployment for additional capacity be different to that for the current period’s target, then
multi-period analysis will lead to efficiency improvement.

It should also be noted that, should time period 1 receive a considerable weighting, then the
stochastic solution will converge on the deployment pattern offered in Table 6. The stochastic
framework presented thus allows for future time periods to be appropriately weighted such that an
appropriate initial period installation may be designed to best serve policymaker expectations. This
improves the efficiency of traditionally employed single-period pay-as-bid connection auctions.

Table 8: Societal costs (millions of euro)

Capacity target (Q.F" + Q=) Single period Multi period

800MW 1,527 1,554
1000MW 1,817 1,782
1200MW 2,076 2,010
1600MW 2,504 2,482
2100MW 3,044 3,055
Weighted Total 2,194 2,177

6.2. Incorporating external costs into the pay-as-bid auction framework: external costs paid by
the generators
To date, pay-as-bid auctions have been implemented with respect to internal generation costs

alone. This case study analyses the importance of incorporating TEP costs into this framework,
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employing the full procedure outlined in Section 4. Table 9 illustrates the optimal solution when
external costs are internalised into the bidder’s bidding strategy, i.e, when the generators’ bid is
determined via equation (12) and total societal costs are calculated via equation (6). Comparing
these results to those of Table 7, we see that this alters the optimal multi-period deployment path.
In particular, the initial 800MW investment shifts from deployment at Node 8 to Node 11. While
this incurs similar first period costs, this shift facilitates second period deployment that avoids
excessive transmission upgrade costs. Comparing Tables 7 and 9 we see greater distribution of
deployment across nodes 17 and 20 when transmission costs are internalised. This is driven by the
fact that transmission upgrade costs are often greater with greater concentration of added capacity
in our case study model. This reflects many real-life scenarios where wind capacity factors may be
concentrated in certain locations, and thus internal costs may motivate concentrated deployment.

Table 9: Weighted multi-period solution: internalised transmission costs

Capacity target Node Total societal cost

QP8 +Qf*y 8 11 17 20 (millions of euro)
800MW 0 800 O 0 1,554
1000MW 100 800 O 100 1,782
1200MW 200 800 100 100 2,010
1600MW 200 900 200 300 2,514
2100MW 800 900 200 200 3,137
Weighted total cost 2199

6.3. Comparison with flat-rate Feed-in-Tariff

One alternative to a pay-as-bid auction is a flat-rate FiT for all generation, commonly employed
in many jurisdictions. This case study compares the cost of deployment under the presented
integrated framework to that where a flat-rate FiT is in place, i.e., where k; is set as a fixed
flat-rate and not by equation (12) or (13). This flat rate is set at the breakeven price associated
with the reference cost in Table 4. This quantifies the value of allowing generators to reveal cost
heterogeneity through a pay-as-bid auction and integrating this with a TEP framework.

Table 10 shows that, when cost heterogeneity is not accounted for, transmission costs alone

drive connection contract allocation. For all presented scenarios of Table 10, total societal costs
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are calculated via equation (6). However, total discounted costs are greater. Total social surplus
is reduced according to two factors. First, internal generation costs are not necessarily minimised,
leading to greater costs of generation than under the fully internalised scenario of Table 7. Indeed,
table 10 shows that this may lead to path dependencies, with even greater divergence from the
optimal path in future time periods.

Furthermore, generator surplus increases under this scenario. As all generators receive the
same remuneration and some have lower costs, there is greater inframarginal rent, extending to
between €8-10/MWh. Thus, TEP optimisation with no pay-as-bid auction reduces overall surplus
as inefficient site selection occurs. Alongside this, there is a transfer of the remaining social surplus
from the consumer to the producer. This is exaggerated in a multi-period context.

Table 10: Deployment: No pay-as-bid auction

Capacity target Node Total societal cost

QX%+ Q" 8 11 17 20 (millions of euro)
800MW 600 200 0 O 1,726
1000MW 600 200 O 200 1,984
1200MW 600 600 O O 2,242
1600MW 600 900 O 100 2,757
2100MW 600 900 O 600 3,402
Weighted total cost 2422

6.4. Incorporating external costs into the pay-as-bid auction framework: external costs not paid
by the generators

As Section 3 and Farrell and Devine (2015) highlight, separate pay-as-bid and TEP
optimisation procedures may create uncertainty as to bid acceptance for the generator. In this
case study we analyse the impact this uncertainty may have on deployment patterns in the problem
framework outlined. In particular, we examine the framework where external costs are not taken
into account in the generators’ bids, i.e., their bids are determined via equation (13) and total
societal costs are calculated via equation (7). We assume all generators have the same beliefs
regarding the influence an external TEP modelling procedure may have on their probability of

acceptance in a pay-as-bid auction.
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While transmission cost integration guides more socially efficient deployment patterns, it also
affects generator bidding strategy. As Section 4 outlines, generators seek a markup, and this is
influenced by the probability of acceptance and the relative ranking of their bid. If generators
have lower costs, they believe their bid has an ex-ante high probability of acceptance and thus may
increase their markup. If outside factors affect the probability of acceptance, such as the outcome
of a separate TEP model, the rank of their bid is not the sole determinant of the probability of
success. Under such circumstances, generators will seek a greater markup as this uncertainty
creates the belief that generators can seek a higher markup and still be amongst the successful
bids. This desire to seek an additional markup is emphasised for bidders of lower costs. This has
the potential to inflate bids and distort the ranking of potential bids.

Table 11 shows the outcome should all generators believe uncertainty will affect their
probability of acceptance. In this case, we see that outcomes are similar as the weighted scenario
of Table 7. However, we see that the re-ranking of bids has shown subtle differences in optimal
deployment for 1000MW and 1200MW scenarios. All costs of deployment are greater due to
higher rent-seeking.

Table 11: Deployment under homogeneous expectation of uncertainty

Capacity target Node Total societal cost

QP8 +Qf*y 8 11 17 20 (millions of euro)
800OMW 0 800 O 0 1,586
1000MW 200 800 O 0 1,819
1200MW 200 800 O 200 2,053
1600MW 300 900 200 200 2,563
2100MW 800 900 200 200 3,183
Weighted total cost 2241

6.5. Summary of case studies

Figure 3 compares the total societal costs for each of the case studies considered in this section.
As expected, when external costs are ignored, societal coats are at a minimum. However, for many

jurisdictions, this assumption is not valid.
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Figure 3: Total societal cost for each case study
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When external costs are included in the policy framework, Figure 3 shows that internalising
external costs into generators’ bids, i.e., where there is certainty in acceptance of bids, leads to a
least cost solution. When the pay-as-bid auction is compared with a flat rate FiT, it is clear to see
that the FiT leads to higher societal costs.

In these analyses we concentrated on the total societal costs and efficiencies in site deployment
for each of the different case studies. In Farrell and Devine (2015) optimal generator bids are
examined. However, as stated already, Farrell and Devine (2015) does not incorporate a TEP

model.

7. Conclusion

In this paper, we have proposed an auction framework to integrate pay-as-bid connection
auctions with transmission expansion planning.  The purpose of this integration is to
overcome information asymmetry, allowing generators to reveal their private installation costs to
policymakers such that both internal generation and transmission upgrade costs may be minimised.

We have also presented an integrated two-stage optimisation framework, which may be used for
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case study or real-world application.

A number of efficiency improvements have been demonstrated through case study illustration.
First, many pay-as-bid wind connection auctions are single period by nature. However, deployment
may impact future deployment patterns. The analysis shows that multi-stage optimisation captures
these future period-effects and is shown to improve efficiency of allocation.

Pay-as-bid auctions are often carried out independently of TEP optimisation. The analysis
shows that quantifying and internalising transmission expansion planning costs into pay-as-bid
auctions guides more socially-efficient investment decisions. This is of particular importance
for existing TEP modelling frameworks which do not consider cost heterogeneity. By
ignoring potential information asymmetries, future transmission planning may be guided towards
facilitating wind deployment that is not least cost. Indeed, generators may take advantage of
informational rents should a homogeneous FiT or other such financial support exist as the analysis
shows that a flat-rate FiT has the highest total societal cost of the case studies considered.

Finally, this paper has shown that full integration using the proposed framework leads to greater
efficiency improvements than separate methodologies. First of all, greater rent-seeking is shown
to occur when methodologies are separate as uncertainty created by a TEP optimisation procedure
that is outside of the auction framework may lead to greater rent-seeking by generators, inflating
bids and the costs of deployment.

The purpose and scope of this paper has been to demonstrate the inefficiencies associated
with commonly employed TEP and pay-as-bid auction frameworks and propose a methodology
to overcome these deficiencies. A stylised example has provided a sufficient platform to carry
this out, highlighting the design features of commonly implemented policy mechanisms that drive
inefficiencies and illustrating how the proposed auction mechanism and modelling framework may
address these issues. Further research on this topic is necessary to expand the applicability of this
modelling framework by relaxing some of the assumptions employed. In particular, this model has
taken the approach of van der Weijde and Hobbs (2012) and considered inter-regional transmission

expansion and thus limited application to a finite number of scenarios. Future work will increase
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the granularity of application, by extending the number of decision stages, deployment bundles
and scenario alternatives.

Nevertheless, while this numerical example is carried out under a number of stylised
assumptions, the importance of the conclusions still hold. Ignoring multi-period deployment
requirements can lead to path-dependencies whereby current period investment decisions lead
to suboptimal future deployment paths, whilst separate TEP and wind connection auctions have
potential to lead to sub-optimal wind deployment. The proposed auction framework can provide

significant efficiency improvements over more traditionally-employed allocation procedures.
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Table 12: The demand data of IEEE- 24 bus network (MW)

Node j P?%
1 108
2 97
3 180
4 74
5 71
6 136
7 125
8 171
9 175
10 195
13 265
14 194
15 317
16 100
18 333
19 181
20 128

Table 13: The thermal unit location and capacity

Generator (u) | Node (j) | P/
1 1 20
2 1 20
3 1 76
4 1 76
5 2 20
6 2 20
7 2 76
8 2 76
9 7 100
10 7 100

11 7 100
12 13 197
13 13 197
14 13 197
15 15 12
16 15 12
17 15 12
18 15 12
19 15 12
20 15 155
21 16 155
22 18 400
23 21 400
24 22 50
25 22 50
26 22 50
27 22 50
28 22 50
29 22 50
30 23 155
31 23 155
32 23 350
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Table 14: The network technical data (IEEE- 24 bus)

Node j

Node j’

0
Xj,j’

UCj7j/

Pmax

¥
1 2 0.0139 | 3.6210 175
1 3 0.2112 | 55.0185 175
1 5 0.0845 | 22.0126 175
2 4 0.1267 | 33.0059 175
2 6 0.192 | 50.0168 175
3 9 0.119 | 31.0000 175
3 24 0.0839 | 21.8563 400
4 9 0.1037 | 27.0143 175
5 10 0.0833 | 21.7000 175
6 10 0.0605 | 15.7605 | 300
7 8 0.0614 | 15.9950 175
8 9 0.1651 | 43.0092 175
8 10 0.1651 | 43.0092 175
9 11 0.0839 | 21.8563 | 400
9 12 0.0839 | 21.8563 | 400
10 11 0.0839 | 21.8563 | 400
10 12 0.0839 | 21.38563 | 400
11 13 0.0476 | 105.6766 | 300
11 14 0.0418 | 92.8000 | 300
12 13 0.0476 | 105.6766 | 300
12 23 0.0966 | 214.4612 | 300
13 23 0.0865 | 192.0383 | 300
14 16 0.0389 | 86.3617 | 400
15 16 0.0173 | 38.4077 300
15 21 0.0245 | 54.3923 | 600
15 24 0.0519 | 115.2230 | 300
16 17 0.0259 | 57.5005 400
16 19 0.0231 | 51.2842 | 300
17 18 0.0144 | 31.9694 | 300
17 22 0.1053 | 233.7761 | 300
18 21 0.0129 | 28.6392 | 600
19 20 0.0198 | 43.9579 600
20 23 0.0108 | 23.9770 | 600
21 22 0.0678 | 150.5225 | 300
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