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1. Introduction

The ambition to achieve an environmentally sustainable, cost-efficient and secure future energy

supply has motivated greater use of renewable resources such as wind for electricity generation

(E.C., 2007; DCENR, 2010; DECC, 2011). Renewables deployment requires public support as the

cost of generation is often greater than the market price of electricity so far. Policymakers thus wish

to minimise these costs in order to achieve efficient renewables deployment. Total social costs of

renewables deployment comprises both internal investment costs (capital, operation, maintenance,

etc.), alongside any incurred external costs. Given the dispersed nature of many renewable sources,

such as wind, transmission system upgrade is often required.

To date, separate methodologies have been employed to minimise each of these costs.

Estimation of transmission expansion costs may be carried out as part of a Transmission Expansion

Planning (TEP) model. Transmission expansion planning costs are not directly related to individual

deployment decisions but rather the electricity system as a whole. TEP determines where, how

many and when new devices can be added to a network in order to make its operation viable for a

pre-defined horizon of planning, at a minimum cost (Hemmati et al., 2014). Both determinstic,

single period expansions have been considered, alongside stochastic, multi-period expansion.

van der Weijde and Hobbs (2012) have demonstrated that transmission expansion should be carried

out in a multi-period context, using a stochastic framework to consider future uncertainty regarding

system investment decisions. In practice, transmission planners do not know the private costs

faced by generators and decisions made by a proactive transmission planner based on estimated or

homogeneous generation costs may be subject to bias and thus inefficiency (Farrell and Devine,

2015).

On the other hand, competitive pay-as-bid auctions have been shown to incentivise investors

to reveal their site-specific generation costs such that a least-cost portfolio of renewables may be

deployed (Kylili and Fokaides, 2015; Farrell and Devine, 2015). TEP, to date, has not incorporated

the differentiated costings facilitated by a pay-as-bid auction. Integrating these frameworks may

thus allow for more efficient network expansion.
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Internalising dynamic TEP costs into a pay-as-bid auction requires knowledge of collective

site-selection decisions such that TEP costs may be estimated. However, generator bids and

resulting site-selection decisions are determined by TEP costs. Current modelling frameworks are

unable to incorporate this simultaneity. Thus, a new modelling framework is required to integrate

stochastic, multi-period TEP with competitive pay-as-bid wind connection auctions. This paper

provides this contribution, proposing both an auction framework and modelling platform to carry

this out. Auction mechanisms to efficiently allocate connection contracts have been considered in

wind energy deployment, however, the means to most efficiently minimise transmission upgrade

costs has not been considered in this context. We first formulate the investment decision as a

multi-stage game, where policymakers wish to install a given capacity and investors in wind

energy generation respond. We specify connection contract auctions as a pay-as-bid auction, where

transmission externalities are internalised into the bidding strategy.

Transmission costs are predicated on the collective siting decisions of all market players. We

adapt a DC Optimal Power Flow (DCOPF) model to calculate these transmission externalities and

present a formalised auction procedure through which these costs are internalised into generator

bidding strategies. We apply this modelling framework to the IEEE 24-bus test system to illustrate

its application. A scenario-based methodology, drawing on the work of van der Weijde and Hobbs

(2012) is proposed to take into account uncertain dynamic aspects of these spatial externalities.

This paper proceeds as follows. Section 2 offers a review of the literature and motivates the

analysis and Section 3 formally presents the problem faced by a Transmission System Operator,

providing a framework through which a cost minimisation procedure may be enacted. Section

4 we propose an auction methodology to carry this out. Section 5 outlines the assumptions and

data employed for a numerical application to demonstrate the efficiency gains of the multi-stage

procedure proposed in this paper. Each step of the procedure is analysed in turn to demonstrate

the overall contribution of this framework in Section 6. Some concluding comments are offered in

Section 7.
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2. Literature Review and Motivation

Efficient renewables deployment requires minimisation of both internal generation and external

costs, including environmental costs and transmission upgrade costs. The minimisation of

transmission cost externalities is carried out by Transmission Expansion Planning (TEP) models.

This literature has evolved in its treatment of how wind investment interacts with transmission

expansion. Initially, much of this literature has considered wind investment decisions in a

centrally-planned framework (e.g. Hemmati et al., 2016; Ugranli and Karatepe, 2014), where

Transmission System Operators (TSOs) dictate locational deployment.

However, generation capacity in liberalised electricity markets is determined by private

investment decisions (van der Weijde and Hobbs, 2012; Munoz et al., 2014). While transmission

expansion has in many cases taken a reactive attitude to accommodate locational investment

decisions (Munoz et al., 2014), recent advances in the TEP literature have focussed on using

transmission planning to steer the generation market towards potentially better social outcomes.

This may be achieved by forward-looking analysis and consideration as to how investors

react to a given transmission investment. A number of TEP models have considered such

investor-transmission planner interactions (Gu et al., 2012; Munoz et al., 2014; Ng et al., 2006;

Roh et al., 2007; Sauma and Oren, 2006; Tor et al., 2008; van der Weijde and Hobbs, 2012).

However, in these works, perfect knowledge of the costs for investors in renewable energy

generation has been assumed known. In reality, in many markets the internal costs of generators

are not known to those charged with assigning renewable contracts and the resulting transmission

investments. This information asymmetry between generators and planners may lead to a

sub-optimal allocation of connection contracts. Information asymmetries may be overcome if

generators signalled their internal investment costs. This may be facilitated by a pay-as-bid auction,

whereby investors in renewable energy generation declare the price required for viable deployment

(Kylili and Fokaides, 2015). However, to date, a pay-as-bid auction has not been integrated with

TEP.

In this paper, we propose a new modelling framework that integrates a stochastic multi-period
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TEP with a competitive pay-as-bid connection auction. Determining TEP costs requires knowledge

of collective site-selection decisions which are determined from generators’ bids. However, these

bids may be affected by TEP costs, resulting in a simultaneity of outcomes in site selection.

Current modelling frameworks are unable to incorporate this simultaneity. This paper proposes

an iterative auction and accompanying TEP modelling procedure to identify and internalise

transmission costs into competitive pay-as-bid auctions. To specify this auction framework, the

generator-transmission planner relationship and deployment problem must be analysed formally.

This is carried out in the following section.

3. Problem formulation

Table 1: Sets

Sets for auction framework

s ∈ S Set of target capacity scenarios

i ∈ A Set of all possible sites

at=1 ⊂ A Sites chosen by policymaker at t = 1

at,s ⊂ A Sites chosen by policymaker at t > 1 and scenario s

t ∈ T Set of timesteps after time period t = 1

t′ ∈ T\{t} Set of timesteps after time period t = 1 excluding time t

Sets for TEP model

u ∈ U Set of thermal generating units

j, j′ ∈ J Set of network nodes/buses
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Table 2: Variables

Variables for auction framework

E[TSC] Expected total societal costs (e/MW)

ki Generator at site i’s bid (e/MW)

pai Probability generator i’s bid is accepted

di,t,at=1 Yearly external costs for site i at time t for combination of sites in at=1 (e/MW)

di,t,at,s Yearly external costs for site i at time t for combination of sites in at,s (e/MW)

at=1 ⊂ A Sites chosen by policymaker at t = 1

at,s ⊂ A Sites chosen by policymaker at t > 1 and scenario s

pri(l) Probability generator i’s bid is accepted given that their bid is the lth lowest ranked

Variables for TEP model

Dat=1,at,s Total deployment costs associated with sites at=1 and at,s (e)

inv Investment costs (e)

lsc Load shredding costs (e)

xj,j′ Electrical impedance of bus j to bus j′

ψj,j′ % of upgrade for line between bus j to bus j′

lsj Load shedding at bus j (MW)

powerGu,j Power produced by thermal generating unit u at bus j (MW)

flowj,j′ Power flow between bus j to bus j′ (MW)

powerWj Power produced by wind generating units at bus j (MW)

powerdj Active power demand in bus j (MW)
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Table 3: Parameters

Parameters for auction framework

Qi Capacity at site i (MW)

Gi Annual generation at site i (MWh)

QTarget
t=1 Target for installed capacity at time t = 1 (MW)

QTarget
t,s Target for installed capacity at time t > 1 and scenario s (MW)

pcs Probability for capacity target scenario s

r Yearly discount rate (%)

T̄ Length of contract (years) policymaker and generator

Fi Internal costs for site i (e)

C Capital cost of building wind generation (e/MW)

O Yearly operational cost for wind generation (e/MW)

N = |A| Number of generators/investors

n Number of accepted bids that generators assume

K Random variable for distribution of unknown bids(e/MW)

β Centering parameter for pri

λ Level of influence ranking has on pri

γ Normalisation parameter for pri

Parameters for TEP model

AWj Available wind power generation at bus j (MW)

V OLL Value of loss of load (e/MWh)

PD0
j Active Power demand in bus j (MWh)

Pmax
u Maximum limit of power generation for thermal unit u (MWh)

Pmax
ψj,j′

Maximum allowed power limit of transmission for line associated with ψi,j′ (MWh)

X0
j,j′ Initial % electrical impedance of bus j to bus j′

UCj,j′ Unit cost of upgrading line between node j to node j′ (e)
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We follow Farrell and Devine (2015) and consider a competitive pay-as-bid auction for the

allocation of wind connection contracts. Under a competitive pay-as-bid auction, generators reveal

the price at which they are willing to generate electricity and receive this price if successful. This

price is a signal for policymakers to choose the least-cost schedule of deployment.

Throughout this paper we refer to the policymaker as the entity that makes the deployment

decisions. This entity may be a transmission system operator, market operator or some other

body. We also assume that there are N generating sites. At each site we assume there is

one investor willing to generate wind electricity. Hence we assume there are N wind energy

generators/investors.

TEP and pay-as-bid connection auctions may be carried by separate, independent processes

or together in an integrated procedure. When fully integrated, external costs are revealed by the

policymaker and internalised into the generators’ bid. When these objectives are minimised using

separate procedures, a pay-as-bid auction elicits relative costs faced by generators, focussing on

costs internal to the investor’s decision. We formulate the policymaker’s problem and generators’

response considering both of these frameworks in the sections that follow.

3.1. Policymaker’s problem

As van der Weijde and Hobbs (2012) highlight, policymakers must consider deployment

over many time periods, as single period deployment may create a path dependency and result

in suboptimal deployment in subsequent time periods. Policymakers thus wish to meet a wind

deployment target for each time period t, subject to minimising the expected discounted sum of

total social costs throughout all time periods, E[TC]. As future policy targets are uncertain, the

target varies across scenarios when t > 1. The parameter QTarget
t=1 represents the target that must be

met in the first time period (scenario-independent) while QTarget
t,s represents the target that must be

met for all subsequent time periods (scenario-dependent). The index s ∈ S represents the different

target capacity scenarios.

A spatial arrangement must be chosen by the policymaker to meet these targets. For t = 1

the policymaker chooses a spatial arrangement at=1. For t > 1 the policymaker must also choose
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a spatial arrangement at,s to meet the targets for each of the different target capacity scenarios.

These two variables are subsets of the set A which represents all potential sites. The policymaker’s

deployment decision may be formally represented as

min
at=1,at,s∈A

E[TC] (1)

subject to:

∑
i∈at=1

Qi = QTarget
t=1 , (2)

∑
i∈as,t

Qi = QTarget
t,s , ∀s, t ∈ T, (3)

at=1 ∩ at,s = ∅ ∀s, t ∈ T, (4)

at,s ∩ at′,s = ∅ ∀s ∈ S, t ∈ T, t′ ∈ T\{t}, (5)

where Qi, a parameter, represents the capacity at site i. Constraint (2) ensures the

scenario-independent target is met for time-period t = 1 while constraint (3) ensures that the

targets for all other time periods are met for each scenario. Constraints (4) and (5) ensure that,

under each scenario, if a site is chosen in one time period it cannot be chosen in another time

period.

The expected total societal costs, E[TSC], differ depending on whether external transmission

costs are internalised into the auction and thus paid by generators. If these costs are paid by the

generators, i.e. they are implicitly included in their bids, then

E[TSC] =
∑
i∈at=1

T̄∑
t=1

e−rtkiGi +
∑
s∈S
t∈T
i∈at,s

t+T̄−1∑
t′=t

pcse
−rt′kiGi, (6)

where pcs represents the probability associated with scenario s and r represents the discount rate.

The parameter T̄ represents the number of years site i will enter a contract with the policymaker
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for. This value is the same for each site chosen regardless of when the site is chosen. For example,

if site i is chosen for time period t = 1 then their contract would run from t = 1 to t = T̄ . If

site i is chosen for time period t = 2 then their contract would run from t = 2 to t = T̄ + 1.

The parameter Gi represents the yearly generation associated with site i, which is assumed fixed.

The variable ki represents the price generator at site i is willing to receive per unit of electricity

obtained via equation (12).

If external costs are not paid by the generator then the total societal costs are

E[TSC] =
∑
i∈at=1

T̄∑
t=1

e−rt(kiGi + di,t,at) +
∑
s∈S
t∈T
i∈at,s

t+T̄−1∑
t′=t

pcse
−rt′(kiGi + di,t′,at,s), (7)

where di,t,at=1 and di,t,at,s represent the external costs to be paid by site i in time period if i ∈ at=1

or i ∈ at,s respectively. These costs are determined via the objective function of the transmission

expansion model described in Section 4.2. Under this framework, the bid ki is obtained via

equation (13).

When calculating future expected costs, under both frameworks, the policymaker assumes that

the bids the generators submit at time t = 1 are representative of bids submitted in subsequent time

periods. The policymaker also assumes bids are independent. To determine the optimal schedule,

the policymaker must quantify the cost of deployment, both internal costs and external costs, for

each potential arrangement. To carry this out, the policymaker puts in place a pay-as-bid auction.

Generators bid the e/MWh price which they require to invest at site i. This bid may include or

exclude their share of transmission upgrade cost. Policymakers minimiseE[TSC] by choosing the

least cost combination of bid and external costs. Bidding strategies under each auction specification

will now be outlined.

3.2. Generator bidding strategies in a pay-as-bid auction

We adopt the modelling framework of Farrell and Devine (2015), but with the added dimension

of multiple timesteps, when modelling the optimal bidding strategy of the generator. In a
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competitive pay-as-bid auction, generators bid the ki price they are willing to receive per unit of

electricity generated should they win a connection contract. Policymakers choose the combination

of sites from these bids that facilitates cost-minimisation. As the policymaker will offer connection

contracts to the combination of sites that minimises total cost, a lower bid signals lower cost at

that site and thus increases the probability of acceptance for the generator. However, a higher

bid will increase the potential revenue, conditional on acceptance, as the generator will receive a

higher price per unit of electricity generated. As Naert and Weverbergh (1978) and Hao (2000)

discuss, rational bidders will seek to maximise utility derived from profits based on their private

information, including their perception of how others will bid. Bidders may thus seek a markup

by bidding in excess of their private breakeven costs. A Nash equilibrium will result when each

bidder chooses a strategy and no bidder wishes to change their strategy (Hao, 2000).

We assume generators wish to maximise their discounted expected profits. Their expected

profits are the probability that their site is chosen times the discounted net money they would

receive if accepted. These profits differ depending on whether external costs are paid by the

generator or not. If these costs are paid by the generator then profit for installation at site i (πi),

may be defined as

πi = pai
[ T̄∑
t=1

e−rt(kiGi − di,t,at=1)− Fi
]
, (8)

where pai represents the probability of generator i’s bid being accepted1. This probability is

described in more detail in Section 3.2.1 and it should be noted that pai is a function of generator

i’s bid ki relative to all other bids and is assumed independent to the distribution of other sites’

bids. The parameter Fi corresponds to the internal cost for site i and is defined as follows:

Fi = CQi +
T̄∑
t=1

e−rtOQi, (9)

1As discussed in Section 4, when generators are submitting their bid, they aim for their connection contract to be
accepted for time t = 1. Consequently their probability of acceptance is the probability of their bid being accepted for
time t = 1.
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while C and O are parameters representing the capital and operating costs (e/MW) respectively.

If external costs are not paid by the generator then the profit for the generator at site i is

πi = pai
[ T̄∑
t=1

e−rtkiGi − Fi
]
. (10)

Generator iwill submit a bid ki to maximise discounted expected profit. In the numerical examples

described in Section 6 the generator’s expected profit was found to have a concave shape (see also

Farrell and Devine (2015)); hence their optimal bid is obtained when

∂πi
∂ki

= 0. (11)

Consequently, the optimal bid may be defined as

ki =
Fi +

∑T̄
t=1 e

−rtdi,t,at=1∑T̄
t=1 Gie−rt

−
[
∂pai
∂ki

]−1

pai, (12)

when external costs are paid by the generators and

ki =
Fi∑T̄

t=1 Gie−rt
−
[
∂pai
∂ki

]−1

pai, (13)

when external costs are not paid by the generators. Equations (12) and (13) show that when external

costs are included in the generators cost, a higher bid will be submitted by the generators, all else

being equal.

3.2.1. Policy cost and bidding strategy: internalised externality

Each generator i assumes n accepted bids meet the policymaker’s capacity target for time t = 1.

Under the framework where πi includes site i’s share of the total externality, being the nth smallest

bid or smaller guarantees a successful bid while being (n + 1)th smallest bid or larger guarantees

an unsuccessful bid. Thus the probability of being the nth smallest bid or smaller is equal to the

probability of acceptance. Under this framework expected policy cost is defined by equation (6).
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Characterising the optimal bid by each generator requires information on the costs faced by

generator i and the distribution of all other bids. Following the literature, we assume all other

bids are drawn from a distribution with a Probability Density Function PDF (K) and Cumulative

Distribution Function CDF (K) (Hao, 2000). Henceforth, for ease of presentation, CDF will

refer to CDF (K).

We define the probability that generator i’s bid is less than the bid of one of the other generators

as

P (ki ≤ K) = 1− CDF, (14)

Similarly, the probability that generator i’s bid is greater than the bid of one of the other generators

is

P (ki ≥ K) = CDF. (15)

Assuming there are N independent bids in total, the probability that there is exactly n−1 bids less

than generator i’s bid and N − 1− (n− 1) bids greater is2

(
N − 1

n− 1

)
(CDF )n−1(1− CDF )N−1−(n−1). (16)

Furthermore the probability that there is n− 1 or less bids less than generator i’s bid is

pai(ki) =

(
N − 1

n− 1

)
(CDF )n−1(1− CDF )N−1−(n−1)

+

(
N − 1

n− 2

)
(CDF )n−2(1− CDF )N−1−(n−2)

...

+

(
N − 1

1

)
(CDF )1(1− CDF )N−1−(1)

+

(
N − 1

0

)
(CDF )0(1− CDF )N−1−(0),

(17)

2Note:
(
x
y

)
= x !

(x−y) !y ! .
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which is equal to

pai(ki) =
n−1∑
l=0

(
N − 1

l

)
(CDF )l(1− CDF )N−1−l. (18)

Equation (18) gives us the probability that ki is the nth smallest bid or smaller. To specify the

parameters of equation (12), the partial derivative of equation (18) with respect to ki is required:

∂pai
∂ki

=
n−1∑
l=0

(
N − 1

l

)
∂CDF

∂ki

[
l(CDF )l−1(1−CDF )N−1−l−(N−1−l)(CDF )l(1−CDF )N−2−l

]
.

(19)

In Section 5, the random bids K are assumed to follow a uniform distribution.

3.2.2. Policy cost and bidding strategy: externality not internalised

Under the framework where πi does not include site i’s share of external costs, then being

the nth smallest bid or smaller does not guarantee a successful bid and policy costs are given by

equation (7). As being the nth lowest bid might not necessarily mean your bid gets accepted we

follow a procedure similar to Brock and Durlauf (2001) and represent the probability that generator

i’s bid will be accepted given the rank of their bid (i.e., given there are l bids lower than theirs) by

a hyperbolic tangent function:

pri(l) =
γ

2
(1− tanh(

l − β
λ

)). (20)

This function models the probability of acceptance given the rank of bid such that for low values of

l there is a high probability of acceptance and similarly for high values of l there is a low probability

of acceptance. A shift from the high probability regime to the low probability regime occurs over

a range of magnitude λ, centered at l = β. The parameter γ ensures that the probabilities are

normalised such that the expected total number of bids accepted is n, i.e.,
∑

l pri(l) = n. See

Figure 1 for a schematic of equation (20).

As λ → 0, equation (20) tends towards a stepwise linear function where the probability of

acceptance is equal to one when l ≤ n and zero when l > n which results in the same situation as

described in Section 3.2.1 where external costs are internalised. As λ → ∞, equation (20) tends
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towards a uniform distribution such that all values of l (0 ≤ l ≤ N − 1) have equal probability.

Figure 1: Probability of acceptance given the rank of bid
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Using this conditional probability, the probability that generator i’s bid is accepted is

pai(ki) =
N−1∑
l=0

γ

2
(1− tanh(

l − β
λ

))

(
N − 1

l

)
(CDF )l(1− CDF )N−1−l, (21)

This probability represents the probability of being the lth ranked bid times the probability of

acceptance given that rank, summed over all possible ranks. Hence, equation (21) gives us the

probability of acceptance when external factors affect the ranking of successful bids. To specify

the parameters of equation (13), the partial derivative of equation (21) with respect to ki is required:

∂pai
∂ki

=
N−1∑
l=0

γ

2
(1− tanh(

l − β
λ

))

(
N − 1

l

)
∂CDF

∂ki

[
l(CDF )l−1(1− CDF )N−1−l

−(N − 1− l)(CDF )l(1− CDF )N−2−l
]
.

(22)
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4. Solving the problem

4.1. Proposed auction framework

This paper will elicit the optimal spatial arrangement of wind connections should TEP costs

be ignored; fully integrated into the auction framework; or minimised by a separate, independent

methodology. In order to integrate a competitive pay-as-bid auction with a TEP model, external

costs must be estimated and incorporated into the bidding procedure. However, a simultaneity

of outcomes exists. Exact transmission costs are determined by the collective siting of added

installations whilst collective siting decisions are determined by the outcome of the auction. The

simultaneity arises as transmission costs must be estimated prior to the final auction procedure for

incorporation into generator bids. We propose the following multi-stage framework to address this

simultaneity.

1. Initially, the policymaker sets a winds deployment target (QTarget
t=1 ) and solicits interest from

potential investors. For each potential investment, the policymaker seeks information

regarding location and capacity.3

2. There are many different possible successful combinations that may meet a policy target4.

For each combination, the total cost of deployment (Dat=1,at,s) is calculated using a TEP

methodology5.

3. For each possible combination of sites, at ∪ at,s, that meets the target QTarget
t=1 + QTarget

t,s the

TEP cost (Dat=1,at,s) is equally disaggregated amongst sites to construct di,t,at and di,t,at,s

3While this presents the possibility of speculative submissions, one may overcome this problem by putting in place
a deposit mechanism or a requirement that all submissions be accompanied by a feasible deployment proposal.

4i.e., there are many combinations that could make up the sets at=1 and at,s which are subsets of A.
5We employ a computationally efficient TEP modelling framework to handle these numerous iterations. This is

discussed in greater detail in Section 4.2. Future work will extend the model using more intensive search algorithms
to apply the concept to expansion decisions with higher granularity and thus computational burden.
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portions:

di,t,at=1 =
QiDat=1,at,s∑
i∈at∪at,s Qi

if i ∈ at=1, (23)

di,t,at,s =
QiDat=1,at,s∑
i∈at∪at,s Qi

if i ∈ at,s. (24)

As the TEP model is optimised over a single time period of one year, di,t,at=1 and di,t,at,s

correspond to yearly external costs.

4. Once the TEP costs are calculated, the policymaker presents these costs to generators. Each

generator then offers bids conditional on each transmission upgrade cost, as explained in

Section 3.2 via equations (12) or (13). Using these submitted bids the policymaker then

chooses the sites that minimise total societal costs as explained in equations (1) - (7).

4.2. Transmission Expansion Planning Model

To obtain the total TEP cost, Dat=1,at,s , and hence di,t,at portions, we utilise a TEP model.

As mentioned above there are many different combinations that met the policymaker’s target, i.e.,

there are many combinations for the sets at=1 and at,s. For each of these combinations, the TEP

model is run obtaining a different total deployment cost (Dat=1,at,s).

The TEP model used is a DC Optimal Power Flow (DCOPF) model. The model’s objective

is to minimise conventional transmission upgrade costs and load shedding costs subject to power

generation and flow constraints, network transmission constraints in addition to energy balance

constraints. The model is optimised over |J | nodes/buses with |U | thermal generating units. Each

of the thermal generating units are associated with a node. Similarly each of theN wind generating

sites are associated with a node, which is pre-defined. The sites in the set Aj ⊂ A are associated

with node j. The amount of electricity capacity available from wind at node j (AWj) depends on

the combination of sites for at=1 and at,s being examined. More formally:

AWj =
∑

i∈Aj∩(at=1∪at,s)

Qi. (25)
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The full optimisation problem may be defined as follows with all sets, variables and parameters

described in Tables 1 - 3:

min Dat=1,at,s = min inv + lsc (26)

where

inv =
∑
j,j′

ψj,j′UCj,j′ , (27)

xj,j′ = X0
j,j′ − ψj,j′ , (28)

lsc =
∑
j

lsjV OLL, (29)

subject to

0 ≤ powerGu,j ≤ Pmax
u , (30)

flowj,j′ =
δj − δj′
xj,j′

, (31)

|flowj,j′ | ≤ Pmax
ψj,j′

, (32)∑
j′

flowj,j′ +
∑
u

powerGu,j + powerWj + lsj = PD0
j , (33)

lsj + powerdj = PD0
j , (34)

powerWj = AWj. (35)

The transmission upgrade cost associated with the line connecting node j to j′ is calculated in (27).

The impedance of line connection node j to j′ is updated in (28). The load shedding costs (lsc)

are calculated in (29). Equation (30) defines the operational range of generators. Equations (31) to

(33) represents transmission network constraints. The load shedding in node j is calculated in (34).

Wind power is treated as a must-take negative load and is equal to the amount of wind available as

stated in (35). The objective function plus and all the constraints except constraint (31) are linear.

As a result, the model is a non-linear. The model is also optimised over a single time period of one

year. Similar TEP models can be found in (Alguacil et al., 2003; Maghouli et al., 2009, 2011)
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5. Assumptions and data

5.1. Cost and bid parameters

We apply the modelling framework to a case study to illustrate the efficiencies of an integrated

methodology. The case study is carried out over two time periods (T = {1, 2}). In the current

period (2010-2020), the policymaker is aware that they are bound to meet a targetQTarget
t=1 = 800MW

installation target. For the following period (2020-2030), the installation target is uncertain.

Policymakers, however, can place a probability of there being QTarget
t=2,s = 0MW, 200MW, 400MW,

800MW or 1300MW targets for the subsequent period, in addition to the QTarget
t=1 target. We assume

an equal probability (pcs = 0.2) for each scenario.

We consider N = 36 potential wind energy generating sites. Nodes 8,11,17 and 20, in the

TEP model, each have nine of these sites associated with them, with each site assuming 100MW

of capacity (Qi) and 2628MWh6 of annual generation (Gi).

Table 4: Cost and bid parameters

Parameter Value
Internal investment cost parameters
Reference Capital Cost (per MW) e1.76m
Annual operating cost (O) 2% of capital cost
Discount rate (r) 6%
Length of contract (T̄ ) 20 years

Bid parameters
Influence parameter for probability of bid acceptance (λ) 0.6
Centering parameter for probability of bid acceptance (β) 10
Number of bids generators assume are accepted (n) 8
Distribution of unknown bids (K) U [60, 80]

Table 4 displays cost and bid parameters values for each site while Table 5 shows how internal

generation costs vary depending on which node/bus they are associated with7. The generation cost

parameters follow those from Doherty and O’Malley (2011) and Farrell et al. (2013). For a more

detailed discussion on the levels for the parameters associated with the probaility of acceptance (λ,

6This value assumes a capacity factor of 35%.
7While costs vary from node to node, sites at the same node have the same internal costs.
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β and n) see Farrell and Devine (2015). The upper and lower bounds for the uniform distribution of

unknown bids (K) are chosen such that they roughly correspond to the break-even bids associated

with ± 20% of the reference cost value of e1.76m.

Table 5 shows that nodes 8 and 11 enjoy economies of scale. Initial deployment of ≤ 200MW

is carried out at a cost of 80% of the reference value quoted in Table 4, whilst deployment in

excess of 800MW results in further economies of scale that lead to costs incurred being 85% of

the reference value. This allows for insight into scenarios where current period deployment may

not complement long-term deployment optimum and facilitates analysis which can demonstrate

benefits of multi-stage analysis and gives insight into when this modelling framework may be best

employed.

Table 5: Capital costs (C) per node and installed capacity (Costs quoted as % of reference value of e1.76/MW)

100MW 200MW-700MW 800MW-900MW

Node 8 80% 100% 85%
Node 11 80% 100% 85%
Node 17 100% 100% 100%
Node 20 100% 100% 100%

5.2. Transmission system

The TEP model described in Section 4.2 is applied to the IEEE 24-bus (J = {1, 2, .., 24})

standard test case as depicted in Fig. 2 (Akhavan-Hejazi and Mohsenian-Rad, 2014). This network

includes two areas with 230 kV and 138 kV sub-grids interconnected through power transformers.

The total base load of this system is
∑

j P
D0
j = 2850 MW while the generation mix includes

variety of conventional technologies with
∑

u P
max
u = 3405 MW of installed capacity (Del Rosso

and Eckroad, 2014). It is assumed that no wind capacity pre-exists in the network. However there

are |U | = 32 thermal units. The demand, generation units and network topology data are described

in Tables 12 - 14 respectively in Appendix A.

The transmission upgrade costs (Table 14) are similar to those used in Gao (2010) while the

value of loss of load (V OLL) is assumed to e1000/MWh.
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Figure 2: IEEE 24 bus standard test case
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6. Case study application

We apply the model setup outlined in Sections 3 and 4 to the numerical example specified

in Section 5 to illustrate the effciency improvements offered by the presented framework to both

traditional TEP modelling and pay-as-bid auctions. We consider four different case studies:

1. Assuming externals costs are zero, we compare deployment as a single multi-period problem

versus multiple single period problems.

2. We incorporate external costs into the pay-as-bid auction framework with external costs

being paid by the generators.

3. The pay-as-bid auction is compared with a flat-rate Feed-in-Tariff.

4. We incorporate external costs into the pay-as-bid auction framework but external costs are

not paid by the generators.

6.1. Importance of incorporating multi-period deployment into a pay-as-bid auction

First we test the importance of considering future time periods and, in particular, the impact

explicit incorporation of uncertain future outcomes may have on future deployment paths and

costs of wind deployment in a pay-as-bid auction framework. Table 6 presents results where

the modelling framework is applied for multiple single periods. In this case, the policymaker is

optimising their objective function for each time period independently. Thus, the objective function

of Equation (6) is solved for T = {1} where the time period relates to either period 1 or period

2 alone. Table 7 shows results where both time periods are modelled together (i.e. T = {1, 2}).

External costs are assumed zero and thus, the TEP model is not used in this case study.
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Table 6: Naive single-period solution: external costs unaccounted for

Capacity target Node

(QTarget
t=1 +QTarget

t,s ) 8 11 17 20

800MW 200 200 200 200

1000MW 400 200 200 200

1200MW 600 200 200 200

1600MW 900 300 200 200

2100MW 900 800 200 200

As both Tables 6 and 7 illustrate, second period investments must follow those of the first

period. Table 6 shows that investment in a single period framework is driven by the cost efficiencies

associated with installations of ≤ 200MW at each node, thus resulting in a distributed installation

pattern, whilst subsequent installation is concentrated around nodes 8 and 11 to take advantage of

further cost efficiencies.

Table 7: Weighted multi-period solution: external costs unaccounted for

Capacity target Node

(QTarget
t=1 +QTarget

t,s ) 8 11 17 20

800MW 800 0 0 0

1000MW 800 200 0 0

1200MW 800 200 100 100

1600MW 800 800 0 0

2100MW 900 800 200 200

We see that, when multi-period investment is considered, the optimal solution is predicated on

the interaction of future deployment patterns with cost drivers within the system. When potential

future deployment is considered, the efficiencies gained by co-location outweigh the efficiencies

of distributed generation for the presented case study. This is shown in Table 8. First period
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investment is concentrated at node 8, allowing for subsequent installations to be concentrated

at nodes 8 and 11, where economies of scale may be exploited. These benefits may only be

reaped in the second time period and a multi-stage framework is required in order to allow for

such foresight to be incorporated into current-period deployment. Thus, we see that incorporating

a stochastic framework is of considerable benefit when potentially conflicting cost considerations

may be incurred in relation to scale of deployment. In particular, the relative weighting of future

events will dictate current period investment and should preliminary analysis suggest that optimal

path of deployment for additional capacity be different to that for the current period’s target, then

multi-period analysis will lead to efficiency improvement.

It should also be noted that, should time period 1 receive a considerable weighting, then the

stochastic solution will converge on the deployment pattern offered in Table 6. The stochastic

framework presented thus allows for future time periods to be appropriately weighted such that an

appropriate initial period installation may be designed to best serve policymaker expectations. This

improves the efficiency of traditionally employed single-period pay-as-bid connection auctions.

Table 8: Societal costs (millions of euro)

Capacity target (QTarget
t=1 +QTarget

t,s ) Single period Multi period

800MW 1,527 1,554

1000MW 1,817 1,782

1200MW 2,076 2,010

1600MW 2,504 2,482

2100MW 3,044 3,055

Weighted Total 2,194 2,177

6.2. Incorporating external costs into the pay-as-bid auction framework: external costs paid by

the generators

To date, pay-as-bid auctions have been implemented with respect to internal generation costs

alone. This case study analyses the importance of incorporating TEP costs into this framework,
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employing the full procedure outlined in Section 4. Table 9 illustrates the optimal solution when

external costs are internalised into the bidder’s bidding strategy, i.e, when the generators’ bid is

determined via equation (12) and total societal costs are calculated via equation (6). Comparing

these results to those of Table 7, we see that this alters the optimal multi-period deployment path.

In particular, the initial 800MW investment shifts from deployment at Node 8 to Node 11. While

this incurs similar first period costs, this shift facilitates second period deployment that avoids

excessive transmission upgrade costs. Comparing Tables 7 and 9 we see greater distribution of

deployment across nodes 17 and 20 when transmission costs are internalised. This is driven by the

fact that transmission upgrade costs are often greater with greater concentration of added capacity

in our case study model. This reflects many real-life scenarios where wind capacity factors may be

concentrated in certain locations, and thus internal costs may motivate concentrated deployment.

Table 9: Weighted multi-period solution: internalised transmission costs

Capacity target Node Total societal cost
(QTarget

t=1 +QTarget
t,s ) 8 11 17 20 (millions of euro)

800MW 0 800 0 0 1,554
1000MW 100 800 0 100 1,782
1200MW 200 800 100 100 2,010
1600MW 200 900 200 300 2,514
2100MW 800 900 200 200 3,137

Weighted total cost 2199

6.3. Comparison with flat-rate Feed-in-Tariff

One alternative to a pay-as-bid auction is a flat-rate FiT for all generation, commonly employed

in many jurisdictions. This case study compares the cost of deployment under the presented

integrated framework to that where a flat-rate FiT is in place, i.e., where ki is set as a fixed

flat-rate and not by equation (12) or (13). This flat rate is set at the breakeven price associated

with the reference cost in Table 4. This quantifies the value of allowing generators to reveal cost

heterogeneity through a pay-as-bid auction and integrating this with a TEP framework.

Table 10 shows that, when cost heterogeneity is not accounted for, transmission costs alone

drive connection contract allocation. For all presented scenarios of Table 10, total societal costs
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are calculated via equation (6). However, total discounted costs are greater. Total social surplus

is reduced according to two factors. First, internal generation costs are not necessarily minimised,

leading to greater costs of generation than under the fully internalised scenario of Table 7. Indeed,

table 10 shows that this may lead to path dependencies, with even greater divergence from the

optimal path in future time periods.

Furthermore, generator surplus increases under this scenario. As all generators receive the

same remuneration and some have lower costs, there is greater inframarginal rent, extending to

between e8-10/MWh. Thus, TEP optimisation with no pay-as-bid auction reduces overall surplus

as inefficient site selection occurs. Alongside this, there is a transfer of the remaining social surplus

from the consumer to the producer. This is exaggerated in a multi-period context.

Table 10: Deployment: No pay-as-bid auction

Capacity target Node Total societal cost
(QTarget

t=1 +QTarget
t,s ) 8 11 17 20 (millions of euro)

800MW 600 200 0 0 1,726
1000MW 600 200 0 200 1,984
1200MW 600 600 0 0 2,242
1600MW 600 900 0 100 2,757
2100MW 600 900 0 600 3,402

Weighted total cost 2422

6.4. Incorporating external costs into the pay-as-bid auction framework: external costs not paid

by the generators

As Section 3 and Farrell and Devine (2015) highlight, separate pay-as-bid and TEP

optimisation procedures may create uncertainty as to bid acceptance for the generator. In this

case study we analyse the impact this uncertainty may have on deployment patterns in the problem

framework outlined. In particular, we examine the framework where external costs are not taken

into account in the generators’ bids, i.e., their bids are determined via equation (13) and total

societal costs are calculated via equation (7). We assume all generators have the same beliefs

regarding the influence an external TEP modelling procedure may have on their probability of

acceptance in a pay-as-bid auction.
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While transmission cost integration guides more socially efficient deployment patterns, it also

affects generator bidding strategy. As Section 4 outlines, generators seek a markup, and this is

influenced by the probability of acceptance and the relative ranking of their bid. If generators

have lower costs, they believe their bid has an ex-ante high probability of acceptance and thus may

increase their markup. If outside factors affect the probability of acceptance, such as the outcome

of a separate TEP model, the rank of their bid is not the sole determinant of the probability of

success. Under such circumstances, generators will seek a greater markup as this uncertainty

creates the belief that generators can seek a higher markup and still be amongst the successful

bids. This desire to seek an additional markup is emphasised for bidders of lower costs. This has

the potential to inflate bids and distort the ranking of potential bids.

Table 11 shows the outcome should all generators believe uncertainty will affect their

probability of acceptance. In this case, we see that outcomes are similar as the weighted scenario

of Table 7. However, we see that the re-ranking of bids has shown subtle differences in optimal

deployment for 1000MW and 1200MW scenarios. All costs of deployment are greater due to

higher rent-seeking.

Table 11: Deployment under homogeneous expectation of uncertainty

Capacity target Node Total societal cost
(QTarget

t=1 +QTarget
t,s ) 8 11 17 20 (millions of euro)

800MW 0 800 0 0 1,586
1000MW 200 800 0 0 1,819
1200MW 200 800 0 200 2,053
1600MW 300 900 200 200 2,563
2100MW 800 900 200 200 3,183

Weighted total cost 2241

6.5. Summary of case studies

Figure 3 compares the total societal costs for each of the case studies considered in this section.

As expected, when external costs are ignored, societal coats are at a minimum. However, for many

jurisdictions, this assumption is not valid.
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Figure 3: Total societal cost for each case study

When external costs are included in the policy framework, Figure 3 shows that internalising

external costs into generators’ bids, i.e., where there is certainty in acceptance of bids, leads to a

least cost solution. When the pay-as-bid auction is compared with a flat rate FiT, it is clear to see

that the FiT leads to higher societal costs.

In these analyses we concentrated on the total societal costs and efficiencies in site deployment

for each of the different case studies. In Farrell and Devine (2015) optimal generator bids are

examined. However, as stated already, Farrell and Devine (2015) does not incorporate a TEP

model.

7. Conclusion

In this paper, we have proposed an auction framework to integrate pay-as-bid connection

auctions with transmission expansion planning. The purpose of this integration is to

overcome information asymmetry, allowing generators to reveal their private installation costs to

policymakers such that both internal generation and transmission upgrade costs may be minimised.

We have also presented an integrated two-stage optimisation framework, which may be used for
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case study or real-world application.

A number of efficiency improvements have been demonstrated through case study illustration.

First, many pay-as-bid wind connection auctions are single period by nature. However, deployment

may impact future deployment patterns. The analysis shows that multi-stage optimisation captures

these future period-effects and is shown to improve efficiency of allocation.

Pay-as-bid auctions are often carried out independently of TEP optimisation. The analysis

shows that quantifying and internalising transmission expansion planning costs into pay-as-bid

auctions guides more socially-efficient investment decisions. This is of particular importance

for existing TEP modelling frameworks which do not consider cost heterogeneity. By

ignoring potential information asymmetries, future transmission planning may be guided towards

facilitating wind deployment that is not least cost. Indeed, generators may take advantage of

informational rents should a homogeneous FiT or other such financial support exist as the analysis

shows that a flat-rate FiT has the highest total societal cost of the case studies considered.

Finally, this paper has shown that full integration using the proposed framework leads to greater

efficiency improvements than separate methodologies. First of all, greater rent-seeking is shown

to occur when methodologies are separate as uncertainty created by a TEP optimisation procedure

that is outside of the auction framework may lead to greater rent-seeking by generators, inflating

bids and the costs of deployment.

The purpose and scope of this paper has been to demonstrate the inefficiencies associated

with commonly employed TEP and pay-as-bid auction frameworks and propose a methodology

to overcome these deficiencies. A stylised example has provided a sufficient platform to carry

this out, highlighting the design features of commonly implemented policy mechanisms that drive

inefficiencies and illustrating how the proposed auction mechanism and modelling framework may

address these issues. Further research on this topic is necessary to expand the applicability of this

modelling framework by relaxing some of the assumptions employed. In particular, this model has

taken the approach of van der Weijde and Hobbs (2012) and considered inter-regional transmission

expansion and thus limited application to a finite number of scenarios. Future work will increase
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the granularity of application, by extending the number of decision stages, deployment bundles

and scenario alternatives.

Nevertheless, while this numerical example is carried out under a number of stylised

assumptions, the importance of the conclusions still hold. Ignoring multi-period deployment

requirements can lead to path-dependencies whereby current period investment decisions lead

to suboptimal future deployment paths, whilst separate TEP and wind connection auctions have

potential to lead to sub-optimal wind deployment. The proposed auction framework can provide

significant efficiency improvements over more traditionally-employed allocation procedures.
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Table 12: The demand data of IEEE- 24 bus network (MW)

Node j PD0
j

1 108
2 97
3 180
4 74
5 71
6 136
7 125
8 171
9 175

10 195
13 265
14 194
15 317
16 100
18 333
19 181
20 128

Table 13: The thermal unit location and capacity

Generator (u) Node (j) Pmax
u

1 1 20
2 1 20
3 1 76
4 1 76
5 2 20
6 2 20
7 2 76
8 2 76
9 7 100

10 7 100
11 7 100
12 13 197
13 13 197
14 13 197
15 15 12
16 15 12
17 15 12
18 15 12
19 15 12
20 15 155
21 16 155
22 18 400
23 21 400
24 22 50
25 22 50
26 22 50
27 22 50
28 22 50
29 22 50
30 23 155
31 23 155
32 23 350
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Table 14: The network technical data (IEEE- 24 bus)

Node j Node j′ X0
j,j′ UCj,j′ Pmax

ψj,j′

1 2 0.0139 3.6210 175
1 3 0.2112 55.0185 175
1 5 0.0845 22.0126 175
2 4 0.1267 33.0059 175
2 6 0.192 50.0168 175
3 9 0.119 31.0000 175
3 24 0.0839 21.8563 400
4 9 0.1037 27.0143 175
5 10 0.0833 21.7000 175
6 10 0.0605 15.7605 300
7 8 0.0614 15.9950 175
8 9 0.1651 43.0092 175
8 10 0.1651 43.0092 175
9 11 0.0839 21.8563 400
9 12 0.0839 21.8563 400

10 11 0.0839 21.8563 400
10 12 0.0839 21.38563 400
11 13 0.0476 105.6766 300
11 14 0.0418 92.8000 300
12 13 0.0476 105.6766 300
12 23 0.0966 214.4612 300
13 23 0.0865 192.0383 300
14 16 0.0389 86.3617 400
15 16 0.0173 38.4077 300
15 21 0.0245 54.3923 600
15 24 0.0519 115.2230 300
16 17 0.0259 57.5005 400
16 19 0.0231 51.2842 300
17 18 0.0144 31.9694 300
17 22 0.1053 233.7761 300
18 21 0.0129 28.6392 600
19 20 0.0198 43.9579 600
20 23 0.0108 23.9770 600
21 22 0.0678 150.5225 300

34



 

 
 

 

 
  

Year Number 
Title/Author(s) 
ESRI Authors/Co-authors Italicised 

2015 522 Surplus Identification with Non-Linear Returns 
Peter D. Lunn*and Jason J. Somerville† 
 

 
 
 

521 

 

520 

 

519 

 

518 

 

Water Quality and Recreational Angling Demand in Ireland 
John Curtis 

 
Predicting International Higher Education Students’ Satisfaction with their Study 
in Ireland 
Mairead Finn and Merike Darmody 
 
What Factors Drive Inequalities in Carbon Tax Incidence? Decomposing 
Socioeconomic Inequalities in Carbon Tax Incidence in Ireland   
Niall Farrell  
 
A Menu Approach to Revealing Generator Reliability Using a Stochastic Bilevel 
Mathematical Program                                                                                                  
Mel T. Devine and Muireann Á. Lynch 

 517 How Do External Costs Affect Pay-As-Bid Renewable Energy Connection 
Auctions? 
Niall Farrell and Mel T. Devine   
 

 516 Income-Related Subsidies for Universal Health Insurance Premia: Exploring 
Alternatives using the SWITCH Model                                                                         
Tim Callan, Brian Colgan and John R Walsh 

 
 

514 Review of the Droichead Pilot Programme                                                                   
Joanne Banks, Paul Conway, Merike Darmody, Aisling Leavy, Emer Smyth and 
Dorothy Watson                                                                            

 513 Firm-Level Estimates of Fuel Substitution: An Application to Carbon Pricing 
Marie Hyland and Stefanie Haller 

 512 Academic Achievement among Immigrant Children in Irish Primary School 
Frances McGinnity, Merike Darmody and Aisling Murray 

   

   

   

   


	Cover page WP523
	Body WP523
	Last Page WP 523

