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Abstract

We propose a parallel solver for linear systems of equations arising from the application of Primal Dual
Interior Point methods to Dynamic Optimal Power Flow problems. Our solver is based on the Generalized
Minimal Residual method in combination with an additive Schwarz domain decomposition method as
preconditioner. This preconditioner exploits the structure of Dynamic Optimal Power Flow problems
which, after linearization, is given as block-tridiagonal matrix with large diagonal blocks and only few off-
diagonal entries. These entries correspond to intertemporal couplings due to ramping and energy storage
constraints and are partially neglected in order to induce parallelism. We test our method on a large-scale
optimization problem based on data of the German transmission grid and show that a significant parallel
speedup can be obtained.

1 Introduction

In many countries, the energy sector continues to undergo substantial changes. The expansion of renewable
energy sources (RES) necessitates an extensive structural rearrangement of the power system with the
power grid taking center stage. While todays power grid infrastructure has been designed for centralized
and controllable power generation in conventional power plants, the RES expansion leads to an increasingly
uncertain, volatile and decentralized generation. In order to ensure a dependable grid operation and to
maintain todays security of supply in the light of these developments, especially in times of peak generation
or demand, methods are needed which are able to consider a high resolution of regional and temporal input
data. Inevitably, this requirement leads to a target conflict between model complexity and computational
intensity on the one hand and model accuracy on the other hand [18]. It is therefore a central challenge to
provide efficient methods for power grid optimization, including an accurate consideration of non-linear
and non-convex AC power flow constraints.

The problem of finding the optimal operating state of a given power grid, also known as Optimal
Power Flow (OPF), is stated as the minimization of a cost function with respect to a vector of continuous
optimization variables like node voltages, generated active power and generated reactive power, see e.g.,
[22], [14]. A feasible vector has to satisfy the AC power flow equations based on Kirchhoff’s circuit law
in order to guarantee that the power demand is covered by the generated power. In addition, a set of
inequalities has to be fulfilled to ensure that no technical restrictions, like transmission line limits, are
violated.

For the problem of Dynamic Optimal Power Flow (DOPF), one considers several OPF problems, each
corresponding to one specific point in time. Here, the power demand is time-dependent and one has to
take into account additional constraints that couple optimization variables corresponding to different time
steps. Among others, these couplings are introduced by energy storage facilities and ramping constraints
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for conventional power plants [23]. Since DOPF is a large-scale non-linear optimization problem, solving
it on a parallel computer architecture is of crucial importance.

In this context, Primal Dual Interior Point Methods (PDIPM) have proven to be among the most
powerful optimization algorithms because their number of iterations to obtain convergence is rather
insensitive to the problem size. Moreover, the main computational effort when applying PDIPM lies
in the solution of linear systems of equations which is a suitable task to be carried out in parallel on
multi-core CPUs.

There exist a few works on parallel solution of linear systems that arise from PDIPM applied to
DOPF. One such approach is based on parallel matrix factorization by means of Schur complement
techniques [7], [23]. Other strategies use Benders Decomposition to decompose the complete optimization
problem into smaller ones [1].

Our contribution in this paper is the use of Schwarz Domain Decomposition Methods as preconditioner
for Krylov-type iterative methods for solving linear systems of equations in parallel. The original Schwarz
method was formulated in 1870 as theoretical tool for proving existence of elliptic PDEs on complicated
domains [17]. Later on, modifications of it have been used as stand-alone iterative methods for solving
PDEs and have become a standard technique for preconditioning Krylov-type methods in context of
PDEs [19].

We apply these techniques for DOPF by decomposing the time period of interest into several smaller
subdomains, which allows the use of multiple cores for computation. All modifications are done on an
algebraic level and allow the use of Inexact Interior Point Methods, which may further reduce the overall
computational effort.

We apply our method to a large scale DOPF problem that is based on data of the German transmission
grid and show that we can achieve a significant speedup compared to the sequential and parallel state of
the art direct solver Mumps [2].

This paper is structured in the following way: In Section 2, we describe the DOPF problem, followed
by a brief review on the application of PDIPM in Section 3. In Section 4, we formulate an additive Schwarz
method for solving linear systems that arise in the context of DOPF. In Section 5, we investigate the
numerical behavior of our method based on two test cases, followed by a critical review of our approach
in Section 6. We conclude this work in Section 7.

2 Dynamic Optimal Power Flow

In this section, we formulate the previously described DOPF problem in a mathematically rigorous way.
This formulation has already been stated in more detail by several authors, e.g. in [23], [11] and [16]. We
remark that we consider a continuous formulation of the DOPF problem without any discrete decision
variables. A nonlinear mixed-integer formulation of OPF is considered, e.g., in [20].

2.1 Formulation of DOPF

In order to formulate the DOPF problem for a given time period of interest [0, T ], we consider a uniform
partition 0 = T1 < T2 < . . . < TNT = T with constant step size τ = Tt − Tt−1 for all t ∈ T \ {1}, where
T := {1, . . . , NT }.

The power grid, consisting of NB nodes denoted by B := {1, . . . , NB} and NE transmission lines
denoted by E ⊂ B × B, is described by an admittance matrix

Y = G+ jB ∈ CNB×NB with G,B ∈ RNB×NB and j =
√
−1. (2.1)

It holds Y = Y T and Ylk = Ykl 6= 0 if and only if there is a branch connecting node k and l, i.e., kl ∈ E
and lk ∈ E . Therefore, Y is a sparse matrix for most real world power grids.

The complex voltage at node k ∈ B for time step t ∈ T is given by

V tk = Etk + jF tk (2.2)

with real part Etk ∈ R and imaginary part F tk ∈ R. We write Et := [Etk]k∈B and F t := [F tk]k∈B.
Furthermore, we define by C := {1, . . . , NC} the set of conventional power plants, by R := {1, . . . , NR}

the set of renewable energy sources, by S := {1, . . . , NS} the set of storage facilities, by LS := {1, . . . , NLS}
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the set of load shedding possibilities, by DC := {1, . . . , NDC} the set of virtual generators for modeling
DC transmission lines and by V := {1, . . . , NV} the set of virtual generators for modeling the import /
export of power from / to neighboring countries.

The resulting vector of variables corresponding to active power and energy for time step t is given by

P t =

(
[P tg,i]i∈C [P tr,i]i∈R [P tsg,i]i∈S [P tsl,i]i∈S [SOCti ]i∈S . . .

. . . [P tl,i]i∈LS [P tdc+,i]i∈DC [P tdc−,i]i∈DC [P tex,i]i∈V [P tim,i]i∈V

)
∈ RNP . (2.3)

The definitions of the individual components of P t are stated in Appendix A.
In a similar way, the vector of reactive power injections is defined by

Qt =
(
[Qtg,i]i∈C [Qtr,i]i∈R [Qtsg,i]i∈S [Qtl,i]i∈LS

)
∈ RNQ . (2.4)

Every variable related to active and reactive power can be assigned to a specific grid node by means of
power injection / extraction matrices CP ∈ {−1, 0, 1}NB×NP and CQ ∈ {−1, 1}NB×NQ . Since the states
of charge SOC of storage facilities do not directly influence the power flow equations, the corresponding
rows in CP are equal to the zero vector.

2.1.1 Constraints

Denoting the active and reactive power load at node k for time step t by Ltp,k and Ltq,k, respectively, the
AC power flow equations are given by [21]

CPP
t − Ltp − Pfp(Et, F t) = 0 ∈ RNB , (2.5)

CQQ
t − Ltq − Pfq(Et, F t) = 0 ∈ RNB , (2.6)

with

Pfp,k(E,F ) =

NB∑
l=1

Gkl(EkEl + FkFl) +Bkl(FkFl − EkEl), k ∈ B, (2.7)

Pfq,k(E,F ) =

NB∑
l=1

Gkl(FkEl − EkEl)−Bkl(EkEl + FkFl), k ∈ B, (2.8)

where we skipped the index t. Pfp,k and Pfq,k can also be written in terms of active and reactive power
flow pkl, qkl over all lines incident to node k [22]:

Pfp,k(E,F ) =
∑

l 6=k,Ykl 6=0

pkl(Ek, El, Fk, Fl), (2.9)

Pfq,k(E,F ) =
∑

l 6=k,Ykl 6=0

qkl(Ek, El, Fk, Fl). (2.10)

In the following, we denote the equations (2.5), (2.6) by

AC(Et, F t, P t, Qt) = 0. (2.11)

Due to technical restrictions arising from power plants, renewable energy sources, storage facilities and
DC transmission lines, one has to impose lower and upper bounds for active and reactive power injections,
given by

P tmin ≤ P t ≤ P tmax, and Qmin ≤ Qt ≤ Qmax. (2.12)

For our test cases, only bounds corresponding to power injected by renewable energy sources, P tr , and load
shedding, P tl , depend on the time step t. The node voltages and the active power flow over transmission
lines have to be bounded by

U2
min ≤ (Et)2 + (F t)2 ≤ U2

max (2.13)

and
pkl(E

t
k, E

t
l , F

t
k, F

t
l ) ≤ Pfmax,kl for all kl ∈ E , (2.14)
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respectively. Additionally, we impose ramping constraints for conventional power plants to bound the
rate of change for injected power between consecutive time steps by

P tg − P t+1
g ≤ τPrmax and P t+1

g − P tg ≤ τPrmax for t = 1, . . . , NT − 1. (2.15)

Besides the power flow equations (2.11), one has to take into account equality constraints for the slack
bus, given by F t1 = 0 for all t, and for virtual generators k, l ∈ DC modeling a DC line kl:

P tdc+,k = −νDCP tdc−,l and P tdc+,l = −νDCP tdc−,k. (2.16)

Here, line losses are taken into account by means of the factor νDC ∈ (0, 1).

The extracted reactive power due to load shedding is modeled by the equality constraint Qtl,i =
Ltq,k
Ltp,k

P tl,i
for i ∈ LS and k ∈ B is the node, to which the load shedding process is assigned.

Finally, an additional set of equality constraints has to be imposed for modeling the state of charge,
SOCti , of storage facilities. These constraints are given by

SOCt+1
i = SOCti + τ(νlP

t
sl,i − ν−1g P tsg,i), i ∈ S (2.17)

with factors νl, νg ∈ (0, 1) describing the efficiency of the loading process P tsl,i and generation process

P tsg,i, respectively.

2.1.2 Cost Function

The cost function f accounts for costs related to active power processes for the complete time interval
[0, T ] and is composed by contributions from each time step t ∈ T [6]:

f(P ) =

NT∑
t=1

τft(P
t) (2.18)

with

ft(P
t) =

∑
i∈C

(aC,i,2(P tg,i)
2 + aC,i,1P

t
g,i) +

∑
i∈R

(aR,i,2(P tr,i)
2 + aR,i,1P

t
r,i)

+
∑
i∈V

(aex,i,2(P tex,i)
2 + aex,i,1P

t
ex,i) +

∑
i∈V

(aim,i,2(P tim,i)
2 + aim,i,1P

t
im,i)

+
∑
i∈LS

(aLS,i,2(P tl,i)
2 + aLS,i,1P

t
l,i) (2.19)

and coefficients a∗,∗,∗ ∈ R.

2.1.3 Optimization Problem

With the definitions of the previous sections at hand, the DOPF problem can be stated in an abstract
way as

min
x

f(x) s.t.

gtI(x
t) = 0, t = 1, . . . ,NT

gtS(xt+1, xt) = 0, t = 1, . . . ,NT − 1

htI(x
t) ≤ 0, t = 1, . . . ,NT

htR(xt+1, xt) ≤ 0, t = 1, . . . ,NT − 1,

(2.20)

where the vector of optimization variables is given by

x = [xt]t∈T ∈ Rn
x

and xt =
(
Et F t P t Qt

)
∈ Rn

x,t

. (2.21)

It holds nx,t = 2NB +NP +NQ and nx = NT n
x,t.

4



Note that the ramping constraints hR induced by (2.15) and storage constraints gS induced by (2.17)
establish the only couplings between variables of different time steps. Without them, a solution to (2.20)
could be computed by solving NT independent OPF problems. The optimization problem (2.20) is non-
linear due to the AC equations and due to the voltage and line flow inequality constraints. Further, the
latter ones and the AC equations are the sources of non-convexity in (2.20).

To simplify the notation in the following sections, we rewrite the optimization problem (2.20) as

min
x
f(x) s.t. g(x) = 0, h(x) ≤ 0 (2.22)

with quadratic functions

f : Rn
x

→ R, g : Rn
x

→ Rn
λ

, h : Rn
x

→ Rn
µ

. (2.23)

3 Primal Dual Interior Point Method for DOPF

In this section, we briefly describe the application of a Primal Dual Interior Point Method (PDIPM) for
DOPF, as it is done in the package MATPOWER [24] and in [6].

3.1 Formulation of PDIPM

For the general optimization problem (2.22), the corresponding Lagrangian function is given by

L : Rn
x

× Rn
λ

× Rn
µ

→ R, (x, λ, µ) 7→ f(x) + λT g(x) + µTh(x). (3.1)

Assuming additional constraint qualifications like (LICQ), for every local minimum x∗ of (2.22),
there exist corresponding Lagrangian multipliers λ∗, µ∗ such that (x∗, λ∗, µ∗) solves the following KKT-
conditions [6]:

F0(x, s, λ, µ) =


∇xL(x, λ, µ)

g(x)
h(x) + s
Sµ

 = 0, s, µ ≥ 0, (3.2)

with a vector of slack variables s ∈ Rnµ and S ∈ Rnµ×nµ denoting a diagonal matrix with diagonal
elements Skk = sk.

We use the PDIPM for solving (3.2), which requires computing solutions (x(k), x(k), λ(k), µ(k))of

Fγ(x, s, λ, µ) = F0(x, s, λ, µ)−
(
0 0 0 γe

)T
= 0, s, µ ≥ 0, (3.3)

for a sequence of barrier parameters γk = σ (µ(k−1))T s(k−1)

nµ with centering parameter σ = 0.1 and comple-

mentary gap (µ(k−1))T s(k−1), see [6], [24] and [9]. Here, e = (1, . . . , 1) ∈ Rnµ .

Remark We use a very basic PDIPM implementation without any globalization strategy and with a
step size control that only ensures (s(k), µ(k)) > 0 for all k. Since we focus on parallel linear algebra
techniques for DOPF problems, a locally convergent algorithm is sufficient for our purpose.

3.2 KKT Matrix in PDIPM

In every iteration of PDIPM, one has to solve the linear system

∇Fγk(x(k), s(k), λ(k), µ(k))∆(k) = −Fγk(x(k), s(k), λ(k), µ(k)). (3.4)

In the following, we omit the iteration index k. Assuming that s, µ > 0, the Newton system (3.4) can be
transformed into a reduced, symmetric saddle point form(

∇2
xxL(x, λ, µ) + (∇h(x))TΣ(∇h(x)) (∇g(x))T

∇g(x) 0

)
︸ ︷︷ ︸

=:A(x,s,λ,µ)=:A

(
∆x
∆λ

)
=

(
rx
rλ

)
(3.5)
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with diagonal matrix Σ = diag(µ1

s1
, . . . , µnµsnµ

).
When dealing with linear systems arising from PDIPM, one generally has to face the problem of ill-

conditioning induced by the sequence of scaling matrices Σ(k). If strict complementary holds at the KKT

point x∗ and if x(k) → x∗, one can show that Σ
(k)
ii → ∞ for increasing PDIPM iteration index k if hi

is an active inequality. On the other hand, Σ
(k)
ii → 0 if hi is inactive [12]. For this reason, many IPM

software packages (like IPOPT [8]) use direct methods such as LDLT -factorizations to solve the arising
linear systems.

In contrast, iterative linear solvers like GMRES [15] are very sensitive to ill-conditioned matrices,
unless a good preconditioner is used. In exchange, they offer a higher potential of parallelization and
allow the use of inexact Interior Point methods, see Section 3.3.

The distribution of the spectrum σ(K) = {λ ∈ C, λ is eigenvalue of K} of a matrix K is an indicator
for the convergence behavior of GMRES applied to Kv = b. By rule of thumb, a spectrum which is
clustered away from 0 is beneficial for the speed of convergence of GMRES.

For general non-linear optimization problems with corresponding KKT matrix

K =

(
H BT

B 0

)
, H ∈ Rn

x×nx , B ∈ Rn
λ×nx , nλ ≤ nx, (3.6)

the so called constraint preconditioner is an example of a widely used preconditioner. It is given by

K̃ =

(
H̃ BT

B 0

)
, (3.7)

with H̃ being an approximation to H that is easy to factorize, e.g., H̃ = diag(H) [12].
One can show that σ(K̃−1K) = {1} ∪ σ̃ with |σ̃| = nx−nλ [10]. Therefore, at most nx−nλ eigenvalues

of K̃−1K are not equal to 1. The distribution of these remaining eigenvalues depends on how well H̃
approximates H on the nullspace of B.

In Section 4, we describe how to exploit the special structure given by (2.20) to construct a parallel
preconditioner. Furthermore, we will see that there is a close relation between our proposed preconditioner
and the constraint preconditioner defined above, see Section 4.4.

3.3 Inexact PDIPM

In contrast to direct methods, iterative solvers allow solving linear systems with prescribed accuracy.
One can exploit this fact by means of inexact Interior Point methods. Within these methods, the linear
systems corresponding to the first PDIPM iterations are solved with a rather low accuracy and therefore
a low number of iterations. As the PDIPM iterate approaches the exact solution, the accuracy of the
linear solver is increased. We use the approach from [4] for determining the accuracy in each PDIPM
iteration. Here, (3.4) has to be solved with residual r̃(k), i.e,

∇Fγk(x(k), s(k), λ(k), µ(k))∆(k) = −Fγk(x(k), s(k), λ(k), µ(k)) + r̃(k), (3.8)

that satisfies ‖r̃(k)‖2 ≤ η̃k
(µ(k))T s(k)

nµ with forcing sequence η̃k ∈ (0, 1). With this choice, the update step

∆(k) satisfies
∇F0(x(k), s(k), λ(k), µ(k))∆(k) = −F0(x(k), s(k), λ(k), µ(k)) + r(k) (3.9)

with ‖r(k)‖2 ≤ (γk+ η̃k)‖F0(x(k), s(k), λ(k), µ(k))‖2. Therefore, ”γk+ η̃k can be viewed as forcing sequence
of inexact Newton methods” [4]. We use η̃k = 0.1 and stop the linear solver additionally if it reaches
a relative residual norm of 10−10. When using a direct solver, we observed a relative residual norm of
similar magnitude.

Remark Since we solve the reduced linear system (3.5), the obtained residual is not equal to the pre-
scribed residual r̃(k) of the unreduced system (3.4). However, one can show that the l2-norms of both
residuals coincide, see Appendix C.
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3.4 Termination criteria for PDIPM

We use the following criteria for monitoring the progress of PDIPM [24]:

cfeas(x, s, λ, µ) :=
max{‖g(x)‖∞,maxi{hi(x)}}

1 + max{‖x‖∞, ‖s‖∞}
(3.10)

cgrad(x, s, λ, µ) :=
‖∇xL(x, λ, µ)‖∞

1 + max{‖λ‖∞, ‖µ‖∞}
(3.11)

ccomp(x, s, λ, µ) :=
(µT s)

1 + ‖x‖∞
(3.12)

ccost(x, s, λ, µ) :=
|f(x)− f(x−)|

1 + |f(x−)|
(3.13)

with x− denoting the previous iterate.
For our test cases, numerical experiments show that in each IPM step the complementary condition

ccomp is several orders of magnitude higher than the other criteria. In order to keep the number of IPM
iterations rather short, we choose a termination tolerance εcomp for ccomp that is higher than the tolerances
for the other conditions, e.g. 10−2εcomp = εfeas = εgrad = εcost. Of course, this approach may lead to
suboptimal approximate solutions. One can get an indicator for the resulting error in the cost function
by means of the following result:

Lemma 3.1. Let z∗ = (x∗, s∗, λ∗, µ∗) solve (3.2) and let z̃ = (x̃, s̃, λ̃, µ̃) be such that

F0(x̃, s̃, λ̃, µ̃) =
(

0 0 0 ∗
)T

(3.14)

with s̃, µ̃ ≥ 0. Then it holds

f(x̃)− f(x∗) =
1

2
(s̃T µ̃+ s̃Tµ∗ − µ̃T s∗) + ∆ (3.15)

with ∆ = 1
12 maxt∈[0,1] l

′′′(t) and

l(t) = L ((x∗, λ∗, µ∗ + te) , e = (x̃− x∗, λ̃− λ∗, µ̃− µ∗). (3.16)

Proof See Appendix B.

Assuming that the k-th PDIPM iterate z(k) is a good approximation to z∗ with cfeas(z
(k)) and cgrad(z

(k))
being small, one might apply Lemma 3.1, neglect the third-order term ∆ = O(‖e‖3) and approximate
(s(k))Tµ∗−(µ(k))T s∗ ≈ (s(k))Tµ(k+1)−(µ(k))T s(k+1). This leads to an error indicator for the cost function
at iteration k given by

f(x(k))− f(x∗) ≈ 1

2
((s(k))Tµ(k) + (s(k))Tµ(k+1) − (µ(k))T s(k+1)) =: Ek. (3.17)

Ek can be used to decide when to terminate the PDIPM algorithm in order to compute the optimal
value with some prescribed accuracy, under the assumption that cfeas, cgrad, ccost already satisfy their
respective tolerances.

4 Schwarz Domain Decomposition Method for DOPF

The key idea behind Schwarz domain decomposition methods for DOPF problems is the decomposition of
the entire set of time steps T into several smaller subsets. Then, one can define corresponding submatrices
of the global matrix A defined in (3.5) that have smaller dimension and therefore are faster to factorize.
Furthermore, the factorization of these submatrices can be done in parallel. After computing subsolutions
corresponding to these submatrices, one can reconstruct an approximate solution for the global system
(3.5), which is used as preconditioner within a Krylov-type iterative solver.
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In Section 4.1, we present the formulation of the additive Schwarz Method (ASM) in the context of
DOPF problems. In Section 4.2, we briefly describe some issues related to its implementation. Section
4.3 is intended to provide a deeper insight into the subproblems that have to be solved when applying
ASM. Finally, we describe the relation between ASM and the above mentioned constraint preconditioner
in Section 4.4.

4.1 Mathematical Formulation of Additive Schwarz Method

To apply ASM as preconditioner for the KKT matrix A = A(x, s, λ, µ) ∈ Rn×n defined by (3.5), we
decompose the set of time steps T = {1, . . . , NT } into q non-overlapping subdomains:

T =

q⋃
l=1

T̃l, T̃l ∩ T̃k = ∅ for k 6= l, T̃l = {t̃−l , t̃
−
l + 1, . . . , t̃+l }. (4.1)

Afterward, each subdomain T̃l is augmented by additional sol time steps on both ends, yielding an
overlapping decomposition of T (see Figure 1):

T =

q⋃
l=1

Tl, Tl := {t−l , t
−
l + 1, . . . , t+l }, (4.2)

with

t−l =

{
t̃−l − sol, l > 1

t̃−l , l = 1
, t+l =

{
t̃+l + sol, l < q

t̃+l , l = q
. (4.3)

Typically, sol ∈ {1, 2}.
In the following, let nλ,t be the number of equality constraints corresponding to time step t, i.e.

λt ∈ Rnλ,t with λt = (λtI , λ
t
S) denoting the Lagrangian multipliers corresponding to gtI and gtS , respectively.

Then, we define nxl :=
∑
t∈Tl n

x,t, nλl =
∑
t∈Tl n

λ,t and nl = nxl + nλl , n = nx + nλ. Analogously,

µt = (µtI , µ
t
R) ∈ Rnµ,t denotes the Lagrangian multipliers for the inequality constraints htI and htR.

st = (stI , s
t
R) ∈ Rnµ,t denotes the corresponding slack variables. In the following, for all expressions

involving ,̃ Tl is replaced by T̃l.
When restricting optimization variables to their respective components contained in Tl, we write

x[l] = [xt]t∈Tl , (4.4)

λ[l] =

[(
λtI
λtS

)
t∈Tl

]
, (4.5)

µI,[l] = [µtI ]t∈Tl , µR,[l] = [µtR]t∈Tl∪{t−l −1}
, (4.6)

sI,[l] = [stI ]t∈Tl , sR,[l] = [stR]t∈Tl∪{t−l −1}
. (4.7)

Figure 1: Decomposition of time steps with overlap sol = 1.
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The constraint functions g and h are restricted accordingly by

g[l](x[l], x
t+l +1) =

[(
gtI(x

t)
gtS(xt+1, xt)

)
t∈Tl

]
(4.8)

hI,[l](x[l]) = [htI(x
t)]t∈Tl , (4.9)

hR,[l](x[l], x
t−l −1, xt

+
l +1) = [htR(xt+1, xt)]t∈Tl∪{t−l −1}

, (4.10)

h[l](x[l], x
t−l −1, xt

+
l +1) =

(
hI,[l](x[l])

hR,[l](x[l], x
t−l −1, xt

+
l +1)

)
(4.11)

and the local scaling matrices are defined by

ΣI,[l] = diag

(
µI,[l],1

sI,[l],1
, . . . ,

µI,[l],|µI,[l]|

sI,[l],|µI,[l]|

)
, (4.12)

ΣR,[l] = diag

(
µR,[l],1

sR,[l],1
, . . . ,

µR,[l],|µR,[l]|

sR,[l],|µR,[l]|

)
, (4.13)

Σ[l] =

(
ΣI,[l] 0

0 ΣR,[l]

)
. (4.14)

For l = 1, . . . , q we define by (
∆x
∆λ

)
[l]

:=

(
∆x[l]
∆λ[l]

)
∈ Rnl (4.15)

the components of the solution vector of (3.5) that can be assigned to time steps in Tl. Let further
Rl ∈ {0, 1}nl×n be the restriction matrix corresponding to subset Tl such that

Rl

(
∆x
∆λ

)
=

(
∆x
∆λ

)
[l]

, Rl =

(
Rxl 0
0 Rλl

)
(4.16)

holds with local restriction matrices of the form

Rxl =
(
0 Inxl 0

)
∈ {0, 1}n

x
l ×n

x

, Rλl =
(
0 Inλl 0

)
∈ {0, 1}n

λ
l ×n

λ

. (4.17)

Here, Im denotes the identity matrix in Rm and the size of the zero matrices may vary for each restriction
matrix and each l. Analogously, R̃l is defined as restriction operator with respect to the non-overlapping
subdomain T̃l.

With these definitions at hand, one can define local submatrices of A by

Al := RlAR
T
l . (4.18)

In Section 4.3, we analyze the structure of these submatrices.
In the following, we assume that all submatrices Al are non-singular. Then the multiplicative Schwarz

Method (MSM) for approximately solving Av = b is given by [19]:

Algorithm 1. Multiplicative Schwarz Method v = MSM(b)

Set v0 = 0

For l = 1, . . . , q

vl = vl−1 +RTl A
−1
l Rl(b−Avl−1)

Return v = vq

In every iteration l, the current error with respect to the exact solution, el−1 = v∗ − vl−1, satisfies
Ael−1 = rl−1 with residual rl−1 = b−Avl−1. By restricting rl−1 to subdomain Tl and solving with A−1l ,
one obtains an approximation ẽl := A−1l Rlrl−1 to the exact error Rlel−1 on subdomain Tl. Prolongation
with RTl yields a correction dl = RTl ẽl to the current approximation vl−1. Thus, the multiplicative
Schwarz method can be seen as defect correction algorithm.

Unfortunately, the MSM is a sequential algorithm. In order to parallelize it, one omits residual updates
in each iteration, yielding the ASM [19]:
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Algorithm 2. Additive Schwarz Method v = ASM(b)

Set v0 = 0

For l = 1, . . . , q

vl = vl−1 +RTl A
−1
l Rlb

Return v = vq

which can be written as

v = MASMb with MASM :=

q∑
l=1

RTl A
−1
l Rl.

The right preconditioned linear system for solving Av = b is then given by

AMASMu = b, v = MASMu. (4.19)

Since MASM is symmetric but in general not positive definite, we use the Generalized Minimal Residual
(GMRES) method for solving the non-symmetric system (4.19). In general, ASM computes a less accurate
approximation to the solution of Av = b and therefore requires an increased number of GMRES iterations
compared to MSM given by algorithm 1. However, ASM offers a higher potential of parallelization, which
results usually in better parallel scaling.

Remark By means of coloring techniques, it is also possible to parallelize the multiplicative Schwarz
method up to a certain degree, see [19].

4.2 Implementation

In our implementation, we use one core per subdomain Tl and distribute A such that every core stores
R̃lA in its local memory. R̃lA contains the non-overlapping portion of rows of Al = RlAR

T
l .

To set up MASM once, every process first has to form its local submatrix Al, i.e., in this step the
overlapping part of Al has to be communicated to process l by process l − 1 and l + 1. Afterward, each
process computes an LU-factorization of Al, i.e., Al = LlUl. This step doesn’t involve any inter-process
communication and can be done in parallel.

Applying ASM as preconditioner of an iterative method requires computation of vk = MASMbk in
each iteration k. For this step, each process l first restricts b to its overlapping part bl := Rlb, which
requires communication with process l − 1 and l + 1. The computation of A−1l bl is done by one forward
and backward solve with Ll and Ul, respectively. This step does not involve any communication. As final
step, the local solution vl := A−1l bl is prolonged back to update the global solution vector v. This step
again requires communicating the overlapping part of vl to process l − 1 and l + 1.

One can further improve the performance of ASM by using the so called restricted version of ASM [5],
which is given by

MrASM :=

p∑
l=1

R̃Tl A
−1
l Rl. (4.20)

For this preconditioner, just the non-overlapping part of the local solution vl is prolonged instead of
the entire (overlapping) vector. Experiments show a beneficial behavior in terms of GMRES iterations
compared to standard ASM [5]. Furthermore, prolongation by R̃l doesn’t involve any communication.

So far, we have assumed that the local submatrices Al are non-singular. If the LU-factorization of one
of these submatrices fails, one can transform it to Al + εInl with a small stabilization parameter ε > 0.
Since this modification is done inside the preconditioner, it only affects the number of required GMRES
iterations but not the obtained approximate solution to (3.5).
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4.3 Structure of Local KKT Matrices

In this section, we investigate the structure of the local submatrices Al. For convenience, let 1 < l < q.
For l = 1 and l = q the same results hold with minor modifications. By definition,

Al(x, s, λ, µ)

=RlA(x, s, λ, µ)RTl

=

(
Rxl
(
∇2
xxL(x, λ, µ) + (∇xh(x))TΣ(∇xh(x))

)
(Rxl )T Rxl (∇xg(x))T (Rλl )T

Rλl (∇xg(x)) (Rxl )T 0

)
. (4.21)

The off-diagonal blocks are given by

Rλl (∇xg(x)) (Rxl )T = ∇x[l]
g[l](x[l], x

t+l +1). (4.22)

After some algebra, we further obtain

Rxl (∇xh(x))TΣ(∇xh(x))(Rxl )T

=
∑
t∈Tl

Rxl (∇htI(xt))TΣtI(∇htI(xt))(Rxl )T

+

t+l∑
t=t−l −1

Rxl (∇htR(xt+1, xt))TΣtR(∇htR(xt+1, xt))(Rxl )T

=(∇x[l]
h[l](x[l], x

t−l −1, xt
+
l +1))TΣ[l](∇x[l]

h[l](x[l], x
t−l −1, xt

+
l +1)) (4.23)

Note that h[l] is a function of xt for t ∈ Tl ∪ {t−l − 1} ∪ {t+l + 1}, while g[l] is a function of xt for

t ∈ Tl ∪ {t+l + 1}. In the following, we consider them as functions of x[l] with some fixed vectors v−, v+

in place of xt
−
l −1 and xt

+
l +1.

We define the local Lagrangian function by

L[l](x[l], λ[l], µ[l]) =
∑
t∈Tl

τft(x
t) + λT[l]g[l](x[l]) + µT[l]h[l](x[l]). (4.24)

Since all temporal couplings are linear, ∇2
xxL is block diagonal and it holds

Rxl ∇2
xxL(x, λ, µ)(Rxl )T = ∇2

x[l]x[l]
L(x, λ, µ) = ∇2

x[l]x[l]
L[l](x[l], λ[l], µ[l]). (4.25)

Thus, Al can be written as

Al(x, s, λ, µ) =

(
H[l](x[l], λ[l], µ[l]) (∇g[l](x[l]))T
∇g[l](x[l]) 0

)
(4.26)

with H[l](x[l], λ[l], µ[l]) = ∇2
x[l]x[l]

L[l](x[l], λ[l], µ[l]) + (∇h[l](x[l]))TΣ[l](∇h[l](x[l])).
Therefore, Al is the KKT matrix obtained when PDIPM is applied to the optimization problem

corresponding to the Lagrangian function L[l]. This problem has the form of (2.20) with T being replaced
by Tl and additional ”boundary conditions” v−, v+ being imposed:

min
(xt)t∈Tl

∑
t∈Tl

τf(xt) s.t.

gtI(x
t) = 0, t ∈ Tl

gtS(xt+1, xt) = 0, t ∈ Tl \ {t+l }

g
t+l
S (v+, xt

+
l ) = 0

htI(x
t) ≤ 0, t ∈ Tl

htR(xt+1, xt) ≤ 0, t ∈ Tl \ {t+l }

h
t−l −1
R (xt

−
l , v−) ≤ 0

h
t+l
R (v+, xt

+
l ) ≤ 0.

(4.27)
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4.4 Relationship between ASM and Constraint Preconditioner

We consider the DOPF problem (2.20) without storage facilities, i.e. without equality constraints gtS . Let

Ãl := R̃lAR̃
T
l ∈ Rñl×ñl (4.28)

be the restriction of A to the non-overlapping subdomain T̃l = {t̃−l , . . . , t̃
+
l }, i.e., sol = 0. In this case, the

corresponding ASM preconditioner,

M̃ASM =

q∑
l=1

R̃Tl Ã
−1
l R̃l, (4.29)

reduces to a block Jacobi method with omitted couplings between variables assigned to t̃+l and t̃−l+1 for

each subdomain l. Since these couplings only arise in the (1, 1)-block of A, namely in (∇h)TΣ(∇h),
M̃ASM has the form of a constraint preconditioner for A:

M̃ASM =

(
H̃ (∇g)T

∇g 0

)−1
. (4.30)

As pointed out in Section 3.2, 1 is an eigenvalue of M̃ASMA of multiplicity 2nλ and the remaining nx−nλ
eigenvalues are solutions of a generalized eigenvalue problem of the following form [10]:

ZT (∇2
xxL+ (∇h)TΣ(∇h)︸ ︷︷ ︸

=:H

)Zv = λZT H̃Zv. (4.31)

For a low number of subdomains q, one might expect H̃ to be a good approximation to H, leading to a
clustered spectrum S(M̃ASMA) close to one. However, the more subdomains, the more neglected couplings
and the less accurate does H̃ approximate H. This results in a more scattered eigenvalue distribution of
M̃ASMA, but still a large number of eigenvalues are equal to 1. The corresponding behavior of GMRES
preconditioned by M̃ASM compared to MASM is illustrated by the numerical example in Section 5.1.

5 Numerical Experiments

In this section, we present some results for our previously proposed method applied to two different DOPF
problems. The considered power grid topology and generation system represent the German transmission
grid including 380kV, 220kV and some 110kV transmission lines. The data is based on scenario B for the
year 2023, provided by the German Network Regulatory Body (”Bundesnetzagentur”). The whole grid
consists of 1215 nodes, 1292 AC lines, 8 DC lines, 406 conventional power plants, 1405 renewable energy
sources and 57 storage facilities.

We consider a time period of 32 days with a temporal resolution of 1h, i.e. NT = 768, leading to
a linear system of dimension nx + nλ ≈ 6.7 · 106. We use a 24h profile for power load and renewable
feed-in that is concatenated to obtain a profile for the complete time interval. The ramping constraints
bound the change in power generation of conventional plants by 40% of their respective maximum power
generation per hour, i.e. Prmax,i = 0.4Pmax,i. More details about our data and parameter values can be
found in [11].

For solving (2.20), we use the PDIPM algorithm mips which is written in Matlab code and part of
MATPOWER [24]. In this algorithm, we replace the standard Matlab backslash operator \ for solving
linear systems by our own linear solver. This solver consists of GMRES with a right preconditioner given
by the restricted version of ASM. For computing LU-factorizations of the local systems Al, we use the
software package Mumps [2]. Our solver is written in C++ and makes use of the KSPFGMRES and
PCASM methods provided by PETSc [3], which is compiled in Release mode with the gcc compiler of
version 4.9.1. Inter-process communication is realized by means of the Message Passing Interface (MPI).
All tests are performed on a Linux computing node with 8 Intel(R) Xeon(R) CPU E7-8880 v2 @ 2.50GHz
CPUs, each consisting of 15 cores. The complete node has 4TB of RAM.

We set the PDIPM termination criteria εfeas = εgrad = εcost = 10−5, εcomp = 10−3 and solve the aris-
ing linear systems with residual tolerance as described in Section 3.3. GMRES is used without restarting
and the maximum number of iterations is set to 400. The overlap sol is set to 1 for all tests.
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q 1 2 4 8 16 32 64 100

ASM [#] 2.8 2.7 3.2 3.0 3.1 3.1 3.3

CP [#] 49.0 57.3 64.1 66.8 68.5

ASM [sec] 153.2 74.5 38.1 18.8 9.0 4.9 4.0

CP [sec] 470.9 286.2 187.4 118.4 67.7

Mumps [sec] 208.1 155.3 128.7 118.7 113.8 109.7

Table 1: Case 1: Average number of GMRES iterations and solution time for GMRES+ASM, GM-

RES+CP and Mumps

5.1 Test Case 1 - Grid without Storage Facilities

For the first test case, storage facilities are not taken into account. Therefore, ramping constraints
establish the only couplings between variables of different time steps. We apply ASM and compare its
performance with a block Jacobi preconditioner and the parallel direct solver given by Mumps. As shown
in Section 3.3, the block Jacobi preconditioner has the form of a constraint preconditioner (CP) if no
intertemporal couplings are induced by equality constraints.

mips needs 43 iterations to satisfy the criteria defined above and the initial value 3.03 · 105 of the cost
function is decreased to 3.72 · 104. Due to the very ill-conditioned matrix in the final steps, it was not
possible to reach the accuracy in solving the linear system that is necessary to run mips until ccomp is
arbitrarily small. When using a direct solver, we obtained a minimal value of ccomp = 1.34 · 10−5 after 45
PDIPM steps. Taking this as a reference, the predicted difference in the cost function according to Section
3.2, E43 = 5.6·10−3, is of the same order of magnitude as the ”exact” difference f(x43)−f(x45) = 1.0·10−3.
Therefore, the relative error in the cost function is of order 10−8.

In Table 1, the average number of GMRES iterations per PDIPM step is shown for ASM and CP
being used as preconditioner, respectively, for a varying number of subdomains q. One can observe that
the number of GMRES+ASM iterations is almost insensitive to q. This behavior is quite uncommon for
domain decomposition methods without coarse grid correction [19].

On the other hand, CP is not able to maintain a stable number of iterations for increasing q. Since in
test case 1, CP is formally equivalent to ASM with zero overlap (see Section 3.3), it seems that adding a
minimal amount of overlap completely changes the quality of the preconditioner in terms of approximating
A−1. The better this approximation, the fewer iterations are needed for GMRES to obtain a prescribed
accuracy. We remark that increasing the overlap to moderate sizes sol = 2, 3, 4 did not lead to a further
reduction of required GMRES iterations.

Table 1 additionally lists the average solution times Tq for different solvers and different numbers of
subdomains q. Figure 2 shows the parallel speedup, sq := T1

Tq
, of parallel Mumps, GMRES+CP and GM-

RES+ASM with respect to sequential Mumps for solving the linear systems. Due to the stable number
of iterations, GMRES+ASM scales quite well for an increasing number of subdomains q and achieves a
maximum speedup of 50 for q = 100. In contrast, parallel Mumps attains a maximal speedup of 2 for
q = 32 and CP performs hardly better.

Remark We note that we observed a linear complexity O(NT ) with respect to the problem size for
the sequential Mumps solver. Therefore, it was not possible to obtain a parallel efficiency eq =

sq
q , for

GMRES+ASM greater than 0.5, although the number of iterations was independent of q. This is due
to the additional computational overhead for applying a Krylov solver and a reduction of complexity for
computing LU-factorizations that scales only linear with the matrix size.

Further, CP with q = 32 does not achieve the desired tolerance in the final IPM steps within 400
GMRES iterations and ccomp = 5.6 · 10−3 can be obtained as minimal complementary criterion. We
therefore did not test CP for q > 32.
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Figure 2: Case 1: Parallel Speedup for GMRES+ASM, GMRES+CP and Mumps

k 1 10 20 30 40 50

Ieff 61.5 7.3 5.0 2.8 2.0 1.4

Table 2: Case 2: Effectiveness of error estimator at different PDIPM iterations

5.2 Test Case 2 - Grid with Storage Facilities

We now consider the full model as described in Section 2.1 and compare GMRES+ASM with the parallel
Mumps solver. In this case, mips needs 50 iterations to satisfy the criteria defined above and the initial
value 2.92 · 105 of the cost function is decreased to 3.25 · 104, which is around 13% lower than in case 1.
As in case 1, it was not possible to run mips in combination with GMRES+ASM until ccomp is arbitrarily
small. When using a direct solver, we obtained a minimal value of ccomp = 2.67 · 10−6 after 54 PDIPM
steps.

In Figure 3, the error in the cost function, f(xk) − f(x54), is plotted for each PDIPM step k (black,
solid). One can see that the error in the cost function obtained for ccomp ≈ 10−3 at k = 50 is again quite
small, namely of order 10−2, yielding a relative error around 10−8. Figure 3 and Table 2 further show the
estimated difference Ek (red, solid) and the effectiveness Ieff,k = Ek

f(xk)−f(x54)
of the error estimator (red,

dashed). Here, a value of 1 for Ieff would be optimal. In accordance with Lemma 3.1, Ieff,k approaches
1 for an increasing iteration index k.

10 20 30 40 50

10−2
100
102

106

PDIPM step

exact
est.
Ieff

Figure 3: Case 2: Exact and estimated difference in cost function per PDIPM step

Table 3 lists the average number of GMRES+ASM iterations and solution times compared to Mumps.
In contrast to case 1, the number of iterations grows with increasing q, which results in a lower parallel
speedup, see Figure 4. For q = 64, the additional overhead due to GMRES exceeds the time gained by
factorizing smaller submatrices and the speedup decreases. However, the maximal speedup obtained by
GMRES+ASM for q = 32 is still about a factor 4 higher than the one obtained by parallel Mumps.

To get further insight, Figure 5 and 6 show the number of GMRES iterations and speedup sq for
each linear system that has to be solved in the course of PDIPM. It is interesting to note that number
of iterations during the first, say, 20 PDIPM iterations is still rather insensitive to q. Therefore, these
linear systems can be solved with a maximum speedup between 25 and 40 for q = 64. However, for
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q 1 2 4 8 16 32 64

ASM [#] 8.3 10.0 13.1 19.5 32.4 77.0

ASM [sec] 213.8 103.2 61.8 37.5 28.9 46.4

Mumps [sec] 246.5 176.2 143.5 127.3 119.2 115.2

Table 3: Case 2: Average number of GMRES iterations and solution time for GMRES+ASM and Mumps

k > 20 the approximation quality of ASM seems to decrease for increasing q and for increasing k, which
has a negative effect on the speedup. In the next section, we give a possible explanation for the different
behavior of ASM in case 1 and 2.
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Figure 4: Case 2: Parallel speedup for GMRES+ASM and Mumps
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Figure 5: Case 2: GMRES iterations per PDIPM step for different q

5.3 Comparison of Case 1 and Case 2

Neglecting a certain amount of intertemporal couplings (matrix entries) in the global system matrix A,
is the crucial point for deriving the local submatrices that are used in ASM. On the one hand, the more
couplings are neglected (larger q), the worse should be the approximation quality of ASM. On the other
hand, neglecting matrix entries of large magnitude should also decrease the approximation quality more
strongly, than do matrix entries of low magnitude.

In the following, we consider the intertemporal couplings induced by ramping constraints htR(xt+1, xt) ≤
0. These couplings enter the global system matrix A via (∇h(x))TΣ(∇h(x)), i.e., their magnitude is pro-

portional to the corresponding entries σtR = [
µtR,i
stR,i

]NRi=1, NR = 2|C| in Σ. As mentioned in Section 3.2, these

entries converge to ∞ if the corresponding inequalities are active at the exact KKT point. We define a
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Figure 6: Case 2: Parallel speedup per PDIPM step for different q
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Figure 7: Strength of intertemporal couplings per PDIPM step

measure for the strength of the intertemporal couplings between time steps t and t+ 1 by

σ̄t,t+1 :=
1

NR

NR∑
i=1

σtR,i > 0. (5.1)

In Figure 7, the values of σ̄t,t+1 for case 1 (red) and case 2 (black) are plotted for t = 1, . . . , 24 at each
PDIPM iteration k. In case 2, these values are several orders of magnitude higher than in case 1, especially
in the latter phase of PDIPM. This indicates a stronger coupling between different time steps and might
be an explanation for the different behavior of ASM in both cases.

We note that there are still several pairs of consecutive time steps with σ̄t,t+1 being smaller than 1.
In our future work, we want to exploit this fact by means of a decomposition of T according to points
with low values of σ̄t,t+1. This decomposition might have to be updated in each PDIPM iteration.

6 Critical Review

In the last section, we described how the performance of our solver depends on the strength of intertem-
poral ramping constraints. For simplicity, we assumed a maximal change in active power generation per
hour of 40% of the respective maximal possible power injection for each conventional power plant. In
practice, these factors depend on the specific type of the given power plants and more realistic values most
certainly have an influence on our solver. Furthermore, we concatenated 24h load and renewable profiles
in order to get the corresponding profiles for 32 days. Using more realistic profiles with potentially higher
variances can also affect the strength of ramping constraints. Therefore, making our methodology more
robust against diversifying problem characteristics will be one of our main goals in future work.

16



7 Conclusion

In this work we proposed a way of solving linear systems arising from Dynamic Optimal Power Flow
(DOPF) problems in parallel by means of overlapping Schwarz domain decomposition methods. It was
shown how to apply these methods in the context of DOPF and that the obtained submatrices correspond
to localized formulations of DOPF with additional boundary conditions. Numerical tests on two large-
scale, real-world DOPF problems showed that the combination of the Generalized Minimal Residual
method (GMRES) and the Additive Schwarz Method (ASM) outperforms parallel Mumps and leads to
a maximal obtained parallel speedup factor of 50 and 8, respectively, compared to the sequential Mumps
solver. Such efficient optimization methods, including an accurate consideration of non-linear and non-
convex AC power flow constraints are highly important to ensure a dependable power grid operation
in the face of an increasingly uncertain, volatile and decentralized power generation. Furthermore, we
outlined how the performance of our solver depends on problem characteristics such as the strength of
intertemporal couplings.

Future enhancements of the proposed algorithm will include its extension to power generation and
transmission expansion planning problems since particularly grid expansion is key for maintaining todays
level of supply security in the long term [13]. However, determining an optimal grid expansion leads to
large-scale mixed-integer nonlinear optimization problems (MINLP) which result in a yet higher complex-
ity than the problems in focus of this paper. Solving such problems will require the attention and joint
efforts of different disciplines, including mathematics, economics and electrical engineering.
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A List of Variables

P tg : vector of injected active power by conventional plants (A.1)

P tr : vector of injected active power by renewable energy sources (A.2)

P tsg : vector of injected active power by storage facilities (A.3)

P tsl : vector of extracted active power by storage facilities (A.4)

SOCt : vector of stored energy in storage facilities (A.5)

P tl : vector of active load sheds (A.6)

P tdc+ : vector of injected active power by dc lines (A.7)

P tdc− : vector of extracted active power by dc lines (A.8)

P tex : vector of extracted active power by export (A.9)

P tim : vector of injected active power by import (A.10)

Qtg : vector of injected reactive power by conventional plants (A.11)

Qtr : vector of injected reactive power by renewable energy sources (A.12)

Qtsg : vector of injected reactive power by storage facilities (A.13)

Qtl : vector of reactive load sheds (A.14)
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B Proof of Lemma 3.1

Lemma 3.1 Let z∗ = (x∗, s∗, λ∗, µ∗) be a solution of (3.2) and let z̃ = (x̃, s̃, λ̃, µ̃) solve (3.2) with some
given residual, i.e.

F0(x̃, s̃, λ̃, µ̃) =
(
rx rλ rµ rcomp

)T
and s̃, µ̃ ≥ 0. Then it holds

f(x̃)− f(x∗) = ∆comp + ∆res + ∆lin

with

∆comp =
1

2
(s̃T µ̃+ s̃Tµ∗ − µ̃T s∗) (B.1)

∆res =
1

2
(rTx (x̃− x∗)− rTλ (λ̃+ λ∗)− rTµ (µ̃+ µ∗)) (B.2)

∆lin =
1

12
max
t∈[0,1]

l′′′(t) (B.3)

l(t) = L(x∗ + t(x̃− x∗), λ∗ + t(λ̃− λ∗), µ∗ + t(µ̃− µ∗)). (B.4)

Proof It holds

f(x̃)− f(x∗) = L(z̃)− λ̃T g(x̃)− µ̃Th(x̃)− L(z∗)

= l(1)− l(0)− (λ̃T rλ + µ̃T (rµ − s̃))︸ ︷︷ ︸
=:r

=

∫ 1

0

l′(t)dt− r

=
1

2
[l′(1) + l′(0)] + ∆lin − r, (B.5)

where we applied trapezoidal rule for approximating the integral. ∆lin denotes the corresponding error.
The last line can further be written as

1

2
(l′(1) + l′(0)) + ∆lin − r

=
1

2

(∇xL(z̃)︸ ︷︷ ︸
=rTx

,∇λL(z̃)︸ ︷︷ ︸
=rTλ

,∇µL(z̃)︸ ︷︷ ︸
=rTµ−s̃T

) + (∇xL(z∗)︸ ︷︷ ︸
=0

,∇λL(z∗)︸ ︷︷ ︸
=0

,∇µL(z∗)︸ ︷︷ ︸
=−(s∗)T

)


x̃− x∗λ̃− λ∗
µ̃− µ∗

+ ∆lin − r

=
1

2
(s̃T µ̃+ s̃Tµ∗ − µ̃T s∗) +

1

2
(rTx (x̃− x∗)− rTλ (λ̃+ λ∗)− rTµ (µ̃+ µ∗)) + ∆lin

=∆comp + ∆res + ∆lin, (B.6)

where (s∗)Tµ∗ = 0 was used. �

C Reduction of KKT Matrix

The linear system (3.4) arising in each PDIPM step is of the form
H 0 JTg JTh
0 M 0 S
Jg 0 0 0
Jh I 0 0



x
s
λ
µ

 =


bx
bs
bλ
bµ

 :⇔ Āq = b̄ (C.1)

with positive definite diagonal matrices M,S and identity matrix I ∈ Rnµ×nµ .
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Eliminating s and µ by s = −Σ−1µ + M−1bs and µ = ΣJhx − Σbµ + S−1bs with Σ = S−1M yields
the reduced system (3.5)(

H + JTh ΣJh JTg
Jg 0

)(
x
λ

)
=

(
bx + JTh Σ(bµ +M−1bs)

bλ

)
:⇔ Ap = b. (C.2)

Assume that this system is approximately solved with residual r = (rx, rλ), i.e., Ap̃ = b+r with p̃ = (x̃, λ̃).
Setting q̃ = (x̃, s̃, λ̃, µ̃) with s̃ = −Σ−1µ̃+M−1bs and µ̃ = ΣJhx̃−Σbµ +S−1bs yields a residual r̄ for the
unreduced system

r̄ = Āq̃ − b̄ =


rx
0
rλ
0

 (C.3)

and therefore ‖r̄‖2 = ‖r‖2.
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[11] N. Meyer-Hübner, M. Suriyah, T. Leibfried, V. Slednev, V. Bertsch, W. Fichtner, P. Gerstner,
M. Schick, and V. Heuveline. Time constrained optimal power flow calculations on the german
power grid. In accepted at International ETG Congress, Bonn, pages 1–7, 2015.

[12] Jorge Nocedal and Steve J. Wright. Numerical optimization. Springer Series in Operations Research
and Financial Engineering. Springer, Berlin, 2006.

[13] Christoph Nolden, Martin Schönfelder, Anke Eßer-Frey, Valentin Bertsch, and Wolf Fichtner. Net-
work constraints in techno-economic energy system models: towards more accurate modeling of power
flows in long-term energy system models. Energy Systems, 4(3):267–287, 2013.

[14] William Rosehart, Codruta Roman, and Laleh Behjat. Interior point models for power system
stability problems. European Journal of Operational Research, 171(3):1127 – 1138, 2006. Feature
Cluster: Heuristic and Stochastic Methods in OptimizationFeature Cluster: New Opportunities for
Operations Research.

[15] Youcef Saad and Martin H Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, July 1986.

[16] Martin Schönfelder, Anke Eßer-Frey, Michael Schick, Wolf Fichtner, Vincent Heuveline, and Thomas
Leibfried. New developments in modeling network constraints in techno-economic energy system
expansion planning models. Zeitschrift für Energiewirtschaft, 36(1):27–35, 2012.
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