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Abstract

Using on-site survey data from sea, coarse and game angling sites in Ireland this paper estimates count data models
of recreational angling demand. The models are used to investigate the extent to which anglers are responsive to
differences in water quality, with the water quality metric defined by the EU’s Water Framework Directive. The
analysis shows that angling demand is greater where water quality has a higher ecological status, particularly for
anglers targeting game species. However, for coarse anglers we find the reverse, angling demand is greater in waters
with lower ecological status. On average across the different target species surveyed anglers have a willingness to
pay of e371 for a day’s fishing. The estimated additional benefit of fishing in waters with high versus low ecological
status is e122/day for game anglers but there is a decline in benefit of e93/day for coarse anglers.
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1. Introduction

Marine and inland waterways provide many recreational opportunities including angling, boating, walking and
wildlife viewing. In developed economies as many as half of the adult population participate in water-based recre-
ational activities (Curtis, 2003; Environment Agency, 2009; Outdoor Foundation, 2013). And it is widely recognised
that the enjoyment of water-based recreational activities is enhanced by higher water quality status, including in swim-
ming (Arnold et al., 2013; Wade et al., 2010), boating, canoeing/kayaking, fishing and rowing (Dorevitch et al., 2015,
2011), as well as tourism more generally (Aminu et al., 2014; Lee and Lee, 2015). However, not all recreational users
recognise poor water quality or its associated risks (Burger et al., 1993; Westphal et al., 2008).

Establishing the link between improved water quality status and enhanced recreational experiences is not triv-
ial. In the first instance it is important to have a meaningful water quality indicator recognisable and understood by
recreational users. Both objective and subjective measures of water quality have been successfully used to explain
water-based recreational activity (Poor et al., 2001). Objective measures have included levels of suspended solids
(Egan et al., 2009), levels of harmful bacteria (Parsons et al., 2003) and water clarity (Vesterinen et al., 2010). Sub-
jective measures have also included water clarity (Loomis and Santiago, 2013), as well as Likert scales (Hanley et al.,
2003). Water clarity may be a useful indicator of water quality for activities such as swimming and boating but may
be less useful for anglers who are more interested in fish stocks and catch rates. Fish catch rates are a commonly used
quality indicator within angling recreational demand models (Chen et al., 1999). But catch rates are endogenous, de-
pending on angler skill and fishing pressure. In addition, while water clarity may be a useful quality indicator for game
species, such as trout and salmon that need high quality water habitat, coarse species can thrive in more eutrophic wa-
ters. A more complex indicator of water quality, such as ecological status, may be more useful in recreational angling
demand models.
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The European Union Water Framework Directive (WFD) requires that water bodies be of good ecological status,
a description that covers indicators such as biological quality (i.e. fish, benthic invertebrates, aquatic flora), hydro-
morphological quality, physical-chemical quality, and chemical status. Vesterinen et al. (2010) suggest that ecological
status, as defined within the WFD, may not be a quality indicator easily observable or understood by the public in a
manner that would effect their recreation behaviour. Nonetheless, if recreational behaviour such as angling is affected
by water quality, revealed behaviour of anglers will reflect the underlying ecological status of water bodies. For ex-
ample, without knowledge of WFD status, anglers may visit water bodies with high ecological status more than water
bodies with a poor or bad status. In the United States Egan et al. (2009) find that anglers are responsive to the full
set of water quality measures used by biologists and furthermore, that that changes in these quality measures translate
into changes in the recreational usage patterns and well-being of anglers.

There are five status classes within the WFD’s classification scheme for water quality: high, good, moderate, poor
and bad. These are nominally easy to understand though the water assessment process for classification is multifaceted
and complicated (Directive 2000/60/EC, 2000). The use of WFD ecological status classifications is relatively recent,
being first used to assess Irish river water quality in 2010 (McGarrigle et al., 2010). At the time our angling dataset
was collected the WFD classifications would not have been widely familiar to anglers or the general public. But if
recreational usage patterns of Irish anglers are responsive to the WFD ecological status categories, similar to the Egan
et al. (2009) study, the WFD classifications are an ideal metric for conveying water quality information to prospective
anglers at specific fishing sites.

The primary research question in this paper is whether recreational anglers are responsive to water quality, as
measured by the EU’s WFD classification. Among the earliest studies to consider the benefits of improvements in
water quality for recreational water users are Bockstael et al. (1987, 1989). These studies use a variety of water quality
metrics but when considering recreational anglers the only quality metric available was catch rates. Catch rates may
be thought of as a proxy for water quality conditions but there is no explicit linkage between catch and water quality.
Subsequent studies by Kaoru (1995) and Tay et al. (1996) explicitly model angler demand (site choice and trip length)
as a function of objective water quality measures (e.g fecal coliform bacteria, suspended solids, phosphorus discharge,
biochemical oxygen demand). While their results vary by angling site and quality metric, they establish a clear positive
relationship between higher levels of water quality and angler demand. Ahn et al. (2000) find a similar result for trout
fisheries in the Appalachian mountains but use a water quality metric that is effectively an amalgamation of scientific
assessments of whether streams can support wild or hatchery trout. Their water quality metric has a correspondence
with the status classes within the WFD’s classification scheme. Englin et al. (1997) follow a different approach, jointly
estimating angler demand and catch functions. Their estimated demand model for a trout fishery exhibits a positive
relationship between predicted total catch and the number of trips, whereas predicted catch increases with reduced
turbidity and higher levels of dissolved oxygen. Massey et al. (2006) also use a two equation approach but within the
context of a bioeconomic model. Their result is slightly different, finding that improved water quality (i.e. dissolved
oxygen) increases fish abundance rather than catch rates but like Massey et al. find that anglers are more likely to
visit sites with higher total catch. Revealed preference approaches have also been used to measure the impact of water
pollution events on angler demand, such as an oil spill (Alvarez et al., 2014), while stated preference approaches have
been used to measure the impact of water quality on angling behaviour (Eiswerth et al., 2008).

Finding whether recreational anglers are responsive to the WFD classification system is analogous to the study by
Egan et al. (2009) in the United States. Water quality status may not be observable to an angler, as the WFD status is
not normally posted at fishing sites. Separate from whether WFD status is observable to anglers, an important research
issue is whether ‘good quality’ differs by use type. What swimmers and anglers might consider ‘good quality’ may
differ due to the nature of their activity. In the same way different types of anglers might have diverse views on what
is ‘good quality’ from the perspective of their activity. If so, ‘good quality’ from an angling perspective may not
align with the definition of good water quality measured by WFD status. What we wish to establish is whether water
quality, as defined by WFD status, is a fishery characteristic that can affect anglers’ experience and choices. In Ahn
et al. (2000) the water quality metric is somewhat analogous to the WFD classification, where they find that anglers’
perspective of a ‘good quality’ Appalachian trout fishery aligns well with their water quality metric. It is an empirical
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question whether anglers in other fisheries will be responsive to the WFD classification.

The analysis in the paper provides greater insight into preferences for angling within Ireland but the research
also has wider policy relevance. It indicates the usefulness of the WFD classification system to both anglers and
fishery managers to signal better quality fisheries, ceteris paribus. However, given the diversity in angler preferences,
especially coarse versus game fishers, not all anglers may be affected similarly by improvements in water quality.

2. Methodology

2.1. Data

Angler data were collected by on-site survey at sites around the Republic of Ireland. The survey was undertaken
between March and November 2012 and included the prime angling season with respect to each angling category. In
total 903 anglers were interviewed. The survey collected travel cost data for the intercepted trip, as well as information
on the number of trips in the last 12 months. A full description of the survey design and implementation is available
in Tourism Development International (2013).

Water quality data for the period 2007–2009 from water quality monitoring stations proximate to the angling
survey sites were downloaded from http://gis.epa.ie/. Water quality monitoring and data are summarised in
McGarrigle et al. (2010). We used the WFD ecological status as an indicator of quality and created a dummy quality
variable distinguishing between ‘High/Good/Moderate’ or ‘Poor/Bad’ ecological status.

While the original angler dataset had 903 observations, for reasons outlined below observations were omitted in
model estimation, including 139 observations where the interviewed angler paid the expenses of multiple anglers. A
further 21 observations were omitted where trip length exceeded 14 days on the assumption that the primary purpose
of these trips may not have been solely angling. For example, the longest trip length specified was 120 days. Ten
observations were excluded as they reported no travel cost data. In the estimation of trip demand models observations
were limited to anglers with 26 or less trips per year (i.e. ≤ 1 trip per fortnight). This restriction was made because
the estimated likelihood function using all observations was not concave. There are 100 observations in our dataset
where anglers take more than 26 trips per year (some fish almost every day) and these anglers may have preferences
substantially different than the majority of anglers.

2.2. Model

The travel cost method (TCM) is commonly used to estimate recreational demand models (Martínez-Espiñeira
and Amoako-Tuffour, 2008; Egan et al., 2009; Ovaskainen et al., 2012; Hynes and Greene, 2013). The TCM relies
on the assumption that although access to recreational sites may have no explicit price, individual’s travel costs,
including transportation, accommodation, and sometimes the value of lost wages and time can be used to approximate
an implicit price associated with their recreational activity. Anglers respond to changes in travel costs in the same
way they would respond to changes in an entry fee, so the number of trips to a fishing site and/or their duration should
decrease as travel costs increase.

yi = f (xi) (1)

where yi is individual i’s demand for site trips (or days), and xi represents variables explaining angling demand,
including travel cost, income, angler socioeconomic characteristics and fishing site attributes.

Count models have become the standard in estimating recreational demand models (Martínez-Espiñeira and
Amoako-Tuffour, 2008; Ovaskainen et al., 2012; Hynes and Greene, 2013) following a theoretical underpinning pro-
vided by Hellerstein and Mendelsohn (1993). The count variable, e.g. number of trips or days, comprises non-negative
integers, often all positive, while count data distributions are usually left-skewed and characterised with probability
mass concentrated on a few values. Usually within the literature a series of count models including those based on
the Poisson and negative binomial distributions are estimated. Within the analysis presented here we focus on models
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based on the negative binomial because it is less restrictive than the Poisson.1 The Poisson distribution, which is a
special case of the negative binomial, assumes that the mean and variance are equal but this is rarely found in empirical
studies (Carson, 1991).

There are two features of recreation demand data collected on-site that must be accommodated within model esti-
mation: truncation and endogenous stratification. When the data is collected on-site the distribution of Y is truncated
at zero. The issue of endogenous stratification arises because the likelihood of being sampled is positively related
to the number of trips taken to the site.2 The issue of truncation in count models was addressed by Carson (1991),
whereas endogenous stratification was first addressed by Shaw (1988). Englin and Shonkwiler (1995) developed
an application of a truncated, endogenously stratified negative binomial model, which we follow here. Assuming a
population density function to be a negative binomial with mean λi, the likelihood function for the on-site sample is

L =
∏
i=1
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i

)
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with

E (yi|xi) = λi + 1 + αiλi

Var (yi|xi) = λi

(
1 + αi + αiλi + α2

i λi

) (3)

where Γ (·) is the gamma function, and αi is the over-dispersion parameter. The model is extended into a regression
framework by defining λi as a function of regressor variables, xi. The conventional approach is to model expected
latent demand, λi, as a semi-logarithmic function of price, i.e. travel cost, and other independent variables, such that

lnλi = β0 + β1x1i + β2x2i + . . . (4)

The estimation of the over-dispersion parameter, αi, has been problematic (Cameron and Trivedi, 1986). A com-
mon approach has been to restrict it to a common value for all observations, such that αi = α. Less restrictive
approaches are also used, for example Englin and Shonkwiler (1995) specify αi = α0/λi, whereas Martínez-Espiñeira
and Amoako-Tuffour (2008) apply a more flexible approach specifying αi as a function of visitor characteristics. We
estimate both the restrictive and flexible approaches using STATA™modules NBSTRAT and GNBSTRAT (Hilbe and
Martínez-Espiñeira, 2005; Hilbe, 2005; Martínez-Espiñeira and Hilbe, 2008). For ease of estimation the parameter
ln(αi) rather than αi is estimated and defined as

ln (αi) = γ0 + γ1z1i + γ2z2i + . . . (5)

where z are variables measuring angler characteristics.

2.3. Welfare

Anglers’ consumer surplus is derived by integrating the demand function (4) over the relevant price range and is
given by (6) (Hellerstein and Mendelsohn, 1993).

CS =

∫
λidTC =

−λi

βp
(6)

where βp is the coefficient on the travel cost variable. Frequently angler CS is reported per trip (or per day), as
it has more policy relevance in that format. This is usually calculated as CS = −1/βp implying that the mean
trip denominator relates to all anglers, including those with zero trips demanded during the survey period. There is a

1Martínez-Espiñeira and Amoako-Tuffour (2008) and Cameron and Trivedi (2001) provide an exposition of differences between the Poisson
and negative binomial models.

2Haab and McConnell (2002) discuss in further detail (p.175).
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question whether estimated parameters from truncated demand models can be extrapolated to non-visitors. Hellerstein
(1991) indicate that this is only reasonable if non-visitors have the same demand function as visitors but we have
no way of testing. It may be reasonable to conclude that surveyed anglers have similar preferences to those not
interviewed, however, further research is necessary to determine whether the preferences of occasional anglers are
similar to the angling enthusiast. For surveyed anglers the appropriate denominator is mean trip demand given in
equation 3 and mean consumer surplus per trip (or day) for sampled anglers becomes CS = −λi/βp(λi + 1 + αiλi),
similar to Martínez-Espiñeira and Amoako-Tuffour (2008). We present calculations for both.

2.4. Model specification and variables

Three types of models are estimated in this paper. The first uses solely data on the current or intercepted angling
trip and estimates a demand function for angling days within the trip. The dependent variable is TripDays, defined
as the number of days spent angling on the current trip. The second type of model estimates angling days demanded
per annum. This model employs the same data as the previous model, as well as data on the number of trips taken in
previous 12 months, TripsYear. The dependent variable is DaysYear, which is number of days spent angling in the
past 12 months and calculated as follows: DaysYeari = TripDaysi × TripsYeari.3 In estimating this model we make
the implicit assumption that all angling trips are the same. The third type of model estimates trip demand per annum,
which also assumes that all trips are the same in terms of costs and duration.4 Descriptive statistics for these and other
variables are presented in Table 1.

Table 1: Summary statistics of variables used in models

Variable Mean SD Min Max Description
TripDaysa 2.60 2.73 1.00 14.00 Days angling on current trip
TripsYearb 5.24 5.55 1.00 26.00 No. trips in previous 12 months
DaysYearc 10.69 12.99 1.00 182.00 Fishing days in previous 12 months
DailyCostd 0.19 0.39 0.00 7.00 Per angling day costs, e‘000
DailyCostad je 0.11 0.26 0.00 4.20 Per angling day costs excl. permits & fees
TripCostb 0.29 0.45 0.00 4.20 Travel,angling,food & accommodation
AnnualFeesb,c 0.05 0.17 0.00 1.54 Annual angling fees, e.g. licences
Age65+ 0.13 0.34 0.00 1.00 =1 if aged 65+

Adults3+ 1.59 0.91 1.00 3.00 =1 if 3+ adults in angling group
Income 36.75 24.25 5.00 300.00 Annual gross income, e‘000
MissInc 0.49 0.50 0.00 1.00 =1 if Income not reported
Game 0.36 0.48 0.00 1.00 Angler targets game species
Coarse 0.24 0.43 0.00 1.00 Targets coarse species
S eaBass 0.21 0.41 0.00 1.00 Targets sea fish incl. sea bass
Combo 0.20 0.40 0.00 1.00 Targets multiple fish types
HiWaterQ 0.89 0.31 0.00 1.00 =1 if quality High/Good/Moderate
LowWaterQ 0.11 0.31 0.00 1.00 =1 if quality Poor/Bad
Ireland 0.64 0.48 0.00 1.00 =1 if angler from Republic of Ireland
NIreland 0.10 0.31 0.00 1.00 =1 if angler from Northern Ireland
Elsewhere 0.26 0.44 0.00 1.00 =1 if angler from elsewhere
FishS tock 0.85 0.35 0.00 1.00 =1 if rates fish stocks positively
Club 0.58 0.49 0.00 1.00 =1 if affiliated to angling club
OwnTime 0.07 0.26 0.00 1.00 =1 if angler retired or self-employed
a TripDays is dependent variable for within trip days demand model. Trip costs averaged across angling days,

DailyCost, include expenses such as travel, bait, food, licences, permits and competition fees.
b TripsYear is dependent variable for annual trip demand model. Travel costs are distinguished between costs that

occur on annual basis (AnnualFees) and other trip costs excluding annual fees (TripCost).
c DaysYear is dependent variable for annual angling days demand model. Costs are distinguished between daily costs

(DailyCostad j) and annual fees (AnnualFees).
d DailyCost is calculated as sum of trip angling and travel expenses divided by number of angling days.
e DailyCostad j is calculated similar to DailyCost but excludes expenses for licences, permits (i.e. AnnualFees), which

may relate to the entire angling season. DailyCostad j also excludes competition fees.

3Bowker et al. (1996) and Bhat (2003) have previously employed a similar approach in generating the dependent variable.
4McGrath (2015) take a different approach with the same dataset using anglers’ own estimates of annual angling trip costs whereas the approach

in this paper was to assume that an angler’s estimate of trip costs on the intercepted trip was representative of all trips taken during the year.
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All the estimated models include an interaction term between an angler’s target species and water quality. We use
the relative magnitude between the coefficient estimates on these interaction variables to show the effect of water qual-
ity on angling demand. For example, the relative difference in magnitude of the coefficients on (Game× LowWaterQ)
and (Game × HiWaterQ) will show whether differences in water quality status affect game anglers’ demand. The
reference category in the estimated models are anglers targeting Sea Bass and other sea fish. All survey sites where
Sea Bass were targeted had waters of a High/Good/Moderate ecological status, as defined by WFD.

There are 63 angling sites in our data and these were categorised into 9 groups based on broad spatial proximity
(e.g. west, midlands, south-west, etc.). These spatial variables jointly have explanatory power within the models
estimated but are not reported due to space constraints. These variables are potentially capturing regional character-
istics that affect angling demand but may not be specifically related to angling. For instance, some regions are more
scenic than others and have more tourist amenities to offer, which are factors that could influence angler demand at a
particular site.

Not all anglers provided information about their income. As a means of preserving observations for model estima-
tion we assigned the median sample income level to observations with missing values but included a dummy variable
MissInc in model estimation to identify those observations. While a positive coefficient is expected on the income
variable, there is no a priori expectation for the coefficient on MissInc.

Almost two-thirds of anglers in the sample are resident in the Republic of Ireland and are the reference category in
our estimated models. About 10% live in Northern Ireland and the majority of the balance live in Europe with some
anglers from North America. Anglers that travel longer distances, especially from overseas, might be anticipated to
take trips of longer duration. For this reason we expect positive coefficients on these variables in the model estimating
trip days demanded but negative coefficients for the model estimating annual trip demand, as international anglers are
likely to make fewer trips per year.

Other explanatory variables used during estimation include whether the angler was aged 65 or above, angler group
size and fish stocks. On the assumption that anglers who are retired have more time available to fish we expect a
positive coefficient on the age variable. Because it is often more difficult to coordinate larger group activities we
anticipate that larger groups fish less frequently and therefore anticipate a negative signed coefficient. The fish stock
variable is an angler assessment of fish stocks and we surmise that anglers spend more time fishing if they positively
rate fish stocks.

We specified ln(αi) as a function a number of variables. The first is whether the angler is affiliated to an angling
club (Club), as membership will affect angling access opportunities, independent of travel cost. A second variable is
whether an angler is either retired or self-employed (OwnTime), as anglers of these types may have greater flexibility
in allocating their time to angling. The third variable that we use to allow angler-specific variables affect demand
within the estimated model is income, specifically ln(Income). As well as a direct income effect, income may proxy
other visitor characteristics that affect the variance of trip demand.

3. Model Estimates

Model estimates are presented in Table 2. We report estimates for the models using the more flexible specification
for the overdispersion parameter from equation 5.5 Column 1 contains the demand estimates for angling days on the
trip the anglers were surveyed. The model is estimated conditional on anglers paying their own costs and for trip
lengths not exceeding two weeks. Column 2 contains the demand model for angling days per year and assumes that
anglers’ trips are of the same duration as the surveyed trip. This model is estimated for anglers with not more than

5Likelihood ratio tests indicate that the more flexible model specification provides a better fit for the data. Estimates of the models with the
overdispersion parameter specified as αi = α are available on request from the authors.
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26 trips per year, which excludes 100 anglers compared to model (1). Column 3 reports estimates for the annual trip
demand model.

Table 2: Angling Demand Model Estimates
(1) (2) (3)

Dependent variable TripDays DaysYear TripsYear
DailyCost -1.569∗∗∗

(-6.16)
DailyCostadj -0.710∗∗∗

(-4.07)
TripCost -0.0607

(-0.45)
AnnualFees 0.885∗∗∗ 0.339

(3.37) (1.11)
Age 65+ 0.269∗ 0.190 0.0379

(2.45) (1.62) (0.30)
Adult 3+ 0.108 -0.193∗ -0.385∗∗∗

(1.32) (-2.20) (-4.00)
Income 0.00383∗ 0.00526∗ 0.00304

(2.03) (1.99) (1.09)
MissInc -0.0744 -0.129 -0.0158

(-0.89) (-1.54) (-0.17)
Combo × LowWaterQ -13.11 -0.786 -0.421

(-0.04) (-1.73) (-0.92)
Game × LowWaterQ -1.478∗∗ 0.120 0.326

(-3.25) (0.38) (1.00)
Coarse × LowWaterQ 0.895∗∗ 1.058∗∗∗ 0.721∗

(2.94) (3.67) (2.41)
Combo × HiWaterQ -0.609∗ 0.0909 0.391

(-2.57) (0.43) (1.70)
Game × HiWaterQ -0.206 0.189 0.367

(-0.91) (0.88) (1.60)
Coarse × HiWaterQ 0.239 0.424 0.358

(0.86) (1.63) (1.30)
FishStock 0.396∗∗ 0.131 -0.0373

(2.86) (1.19) (-0.31)
NIreland 1.576∗∗∗ 0.661∗∗∗ 0.197

(9.61) (4.83) (1.44)
Elsewhere 2.878∗∗∗ 0.733∗∗∗ -1.030∗∗∗

(23.62) (7.00) (-7.20)
Constant -1.820∗∗∗ 0.449∗ 0.634∗∗

(-8.28) (2.06) (2.92)
ln (α)
Club 1.051 0.494∗∗∗ 0.839∗∗∗

(1.55) (3.58) (4.92)
OwnTime 2.327∗∗ -0.0419 -0.0592

(3.01) (-0.17) (-0.21)
ln(Income) 1.099 -0.0335 -0.0408

(1.80) (-0.20) (-0.22)
Constant -6.760∗ 0.687 0.265

(-2.44) (1.17) (0.40)
N 707 607 607
ll -818.7 -1913.4 -1428.8
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

3.1. Overview
We begin by looking at angler-specific characteristics that that affect the the variance of angling demand through

αi. The most significant factors are membership of a fishing club and flexibility with one’s time (via the OwnTime
variable). Fishing club membership may afford priority access to fishing sites, as well as lower access fees, though
not necessarily zero travel costs, whereas anglers that are not club members may have less access to fishing sites. The
OwnTime variable was significant in model 1 only, so may be important in determining length of trip but not number
of trips.
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The non-negative coefficient on the travel cost variable, TripCost, for annual trip demand (model 3), albeit in-
significant, goes against demand theory. It is not obvious why this is so, especially as both McGrath (2015) and Hynes
et al. (2015) with the same TDI dataset but using anglers’ estimates of annual travel cost expenditure (as opposed to
current trip expenditure used here) estimate an annual trip demand model with a statistically significant coefficient on
their travel cost variable, which is also stable across a number of model specifications. However, it is also the case that
the estimated annual trip demand model is not consistent with one of the basic assumptions of travel cost models, that
the decision unit should be trips of roughly equal length (Haab and McConnell, 2002, p.148). In our data, trip length
varies up to 14 days so the good in question, i.e. what TripCost is purchasing, varies substantially across anglers.
The good in question in model 1 and 2 is broadly similar for all anglers, i.e. one day’s angling. From a modelling
perspective the analysis highlights that it may be unreasonable to assume, at least in the case of multi-day trips, that a
surveyed trip is representative of all trips during an extended period such as a year. To do so may introduce bias into
model and welfare estimates. For the remainder of the paper we focus the results from models 1 and 2.

Model estimates of mean fishing days demanded are 1.5 days for the intercept trip and 9.4 days for the last 12
months with both instances evaluated at the mean of the data. This compares to actual means of 2.6 days for the
intercept trip and 10.7 days annually so the estimated models slightly underestimate angling demand.

3.2. Travel costs

There is a negative coefficient on both the DailyCost or DailyCostad j variables in models 1 and 2. As daily costs
increase, fewer angling days are demanded. The price elasticity of within trip demand among surveyed fishers for
angling days is -0.14, implying that for a 7% increase in DailyCost the number of days demanded within the trip falls
by 1 day.6 The elasticity value for angling days demanded per annum among surveyed anglers is -1.13. For a 1%
increase in DailyCostad j the number of days demanded over the year declines by 1 day.7

3.3. Income

The estimated coefficients on the income variable are relatively small though statistically significant. In many
recreational demand model estimates the income effect is zero (Martínez-Espiñeira and Amoako-Tuffour, 2008;
Ovaskainen et al., 2012). In the case of days demanded annually, a 3% increase in income would lead to roughly
1 additional day angling per annum.

3.4. Water quality

The impact of water quality on fish stocks can vary by species. Coarse species are more tolerant of poor water
quality than games species. To allow for this the estimated models include interaction terms between the angler’s
target species and the level of water quality. The inclusion of water quality as an explanatory variable in angler
demand leads to the estimated models being a better fit, based on log-likelihood ratio tests.

What is of primary interest is the relative difference between the coefficient estimates for each target species. For
instance, is there a significant difference in angling demand in water bodies with lower versus higher water quality
status? The a priori expectation was that angling demand would be greater in waters with high WFD ecological status.
If the coefficient with HiWaterQ is greater in magnitude than the coefficient with LowWaterQ, angling demand is
higher for the given target species in waters with higher water quality status. We test the null hypothesis that the
coefficient with high water quality is greater or equal than the coefficient with low water quality for each species
targeted against a null that angling demand is greater in lower quality waters. For game anglers the null and alternative
hypotheses are H0 : βGame×HiWaterQ ≥ βGame×LowWaterQ and H1 : βGame×HiWaterQ < βGame×LowWaterQ. One-tailed z-tests
are reported in Table 3. We fail to reject the null hypothesis for game and ‘combo’ anglers but not coarse anglers.
On average within the surveyed trip, game anglers fished in waters with higher ecological status for roughly 0.3 days

6The price elasticity for surveyed anglers is calculated as
∂(λi + 1 + αiλi)
∂DailyCost

DailyCost and evaluated at mean values.

7The equivalent elasticity estimates for all anglers are -0.12 and -0.34 and calculated as
∂λ

∂K
K, where K is either DailyCost or DailyCostad j .
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more than anglers fishing in lower status waters. ‘Combo’ anglers (i.e. targeting multiple species) fished 4 days
more per annum in high compared to low ecological status waters. Although not known, it is likely that the ‘combo’
category of anglers are targeting games species: salmon, sea trout and brown trout. In the case of coarse fishing
we reject the null hypothesis, angling demand is greater in water bodies with poor or bad water quality status. As
mentioned earlier, coarse species can thrive in more eutrophic waters and may support better coarse fishing. Coarse
anglers fishing in lower ecological status waters spend roughly 0.7 days more per trip than those fishing in high status
waters, and across the year fish approximately 9 days more. What these results indicate is that good water quality
is associated with higher levels of angling demand, particularly for game species. However, it also highlights the
fact that high water quality within the context of the WFD and improvements thereof appear not to align with coarse
anglers’ perspective on water bodies associated with good coarse fishing.

Table 3: Hypothesis tests: H0: angling demand in high quality waters is no less than angling demand in low status waters

Model/ (1) (2) (3)
Species
Combo 0.00 2.11 1.97
Game 3.13 0.26 0.17
Coarse 3.20*** 2.68*** 1.43*
* p < 0.05, ** p < 0.01, *** p < 0.001

3.5. Other characteristics
There is some evidence that angler’s age and angling group size affect demand. Anglers aged 65 and above

demand more days within angling trips (model 1). When angling group size is 3 or more adults, both the number
of days per annum and trips per annum are lower (models 2 & 3). This is not surprising as more coordination and
trip planning is required once group size increases. An implication for fishery managers is whether there is additional
latent demand among large angler groups that could be served by better accommodating their specific needs.

The variable FishS tock is a dummy variable indicating whether the angler considered fish stocks to be better than
poor. Anglers with a strong rating for fish stocks undertook angling trips of longer duration, on average, than anglers
that rate fish stocks as poor; in total spending an average of one day more angling per year.

The number of angling days demanded varies by angler country of residence. From the survey data Republic of
Ireland anglers fished for 1.3 days on the current trip, Northern Ireland anglers 2.2 days, and anglers from overseas 6.1
days. Model estimates of mean angling days demanded in the current trip were slightly lower in the case of Republic
of Ireland (-8%) and Northern Ireland (-13%) anglers but the underestimate for overseas anglers was substantially
greater at -30%.

3.6. Welfare

Table 4: Estimated consumer surplus welfare estimates, e

Model 1 2

CS /day (surveyed anglers) 181 375
(0.2–661) (246–657)

CS /day (all anglers) 637 1,408
(500–869) (1,001–2,362)

95% confidence intervals in parentheses

The results in Table 2 are used to calculate consumer surplus anglers enjoy from their recreational activity, which
are reported in Table 4. The estimated mean CS for surveyed anglers is e181/day compared to e637/day for all
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anglers. Mean angling days by surveyed fishers is higher hence their mean CS /day is lower. These estimates are
consistent with Hynes et al. (2015) and McGrath (2015) who have used the same TDI data but estimating trip demand
models compared to angling day demand models here. With an estimated mean angling demand for all anglers of
just over 0.4 days the mean CS for the intercepted trip is e264, which is sandwiched by estimates of e232 and e278
of Hynes et al. (2015)8 and McGrath (2015). The only other broadly comparable CS estimate in the literature for
Irish angling is from Curtis (2002), which estimated IRL£138/day for salmon angling within Co. Donegal in 1992.
Denominated in Euro that is a nominal value of e175/day and equivalent to approximately e283/day when inflated
with the consumer price index. It appears that angler consumer surplus has declined over the 20 year interval but the
two studies are not like-for-like comparable. Specifically for game angling, the estimate of total willingness to pay
(incl. trip expenditure) from the two studies are within 5% of each other. Our estimate of surveyed game anglers’ total
willingness to pay for a day’s fishing in high status waters is e407.

The estimates in column 2 of Table 4 relate to annual angling days demand. Interviewed anglers have an estimated
CS of e375 per day’s angling. For all anglers the estimate is e1,408/day. These estimates are more than double the
CS /day estimates from model 1. Intuitively we would have expected them to be broadly similar. Greater weight
should be placed on the estimates from model 1, as the data are the most appropriate for that model. The estimate
of annual angling days demanded (model 2) assumed that all angling trips are of equal length and that costs are the
same as those incurred during the intercepted trip, which may be untrue. The large divergence between the two CS
estimates throws doubt on the merits of assuming all trips are similar. It may be a reasonable assumption that day
trips have similar costs but in this dataset 35% of trips were of longer duration up to 14 angling days. Consequently,
assuming an angler’s intercepted trip is representative of all trips during a year may be unreasonable and introduce
bias into welfare estimates.

Among the surveyed anglers we can estimate the benefit to them of higher water quality, since consumer surplus
is a function of water quality, i.e. CS (λ(water quality)). The difference in CS /day for an angler at a LowWaterQ
site versus a HighWaterQ site represents an estimate of anglers’ mean value of high versus low water quality status.
For game anglers the estimated mean CS /day at sites with low status waters is e71/day (35–139).9 At sites with low
status waters mean CS is e193/day (141–275), a difference of e122. For coarse anglers CS declines with a change
from low to high status waters from e343/day (249–493) to e250/day (180–369), a difference of e93.

CS estimates for the current trip by angler country of residence differed substantially. Anglers resident in the
Republic of Ireland have a CS of e90/day, for Northern Ireland anglers it is e249/day, and for other anglers it is
e401/day. The wide variation in the CS estimates by country of residence is in contrast to the estimates in Curtis
(2002), where the variation is much smaller.

3.7. Conclusions
This paper estimates a travel cost model of recreational angling demand in Ireland and is the first study in an Irish

setting that quantifies how angling demand is affected by water quality. Anglers, particularly game anglers, benefit
from higher status water quality. The value of that benefit is highest for game anglers at e122 per day. With surveyed
anglers fishing on average 10 days per annum, the total loss to recreational anglers associated with poor water quality
is potentially very large.10 Game anglers’ high valuation of waters with high ecological status echoes the more general
finding by Stithou et al. (2013) that the Irish public are willing to pay significant amounts for improvements in the
ecological status of a specific river catchment.

The primary research focus was to investigate the extent to which angling demand adjusts to differences in water
quality, as measured by the EU’s WFD classification. We find clear evidence that anglers are responsive to the WFD’s

8The estimate by Hynes et al. (2015) is for Republic of Ireland resident anglers only.
9Figures in parenthesis are 95% confidence intervals.

10The mean number of angling days is likely to be substantially higher for surveyed anglers than all anglers due to truncation and endogenous
stratification.
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water quality measures but that the response is not uniform. In the case of game angling the results are as one might
anticipate. Demand for angling in waters with a relatively good ecological status is no less that angling demand in
waters with poor or bad status. As improvements in WFD water quality status are associated with more sustainable
conditions for game species (Kelly et al., 2007), it is reasonable to say that improvements in water quality have the
potential to increase angling demand and associated benefits for game species, especially if improvements in fish
stocks and catch rates are associated with water quality improvements.

For coarse angling the policy implications are more subtle. The paper finds evidence is that fishing demand among
coarse anglers is greater in waters with low ecological status. Does this mean that mean that improvements in water
quality will lead to a reduction in coarse angling demand? The answer is not clear because site specific issues such as
ease of access or the likelihood of specimen fish are potentially important issues affecting demand and there may be
a (coincidental) correlation between water quality and these site specific characteristics. So while the current model
indicates that coarse anglers have a preference towards angling sites with lower status water quality, further research
is necessary to better understand how coarse angling demand would evolve with improved water quality. However,
the research does suggest that improvements in WFD water quality status appear not to align with anglers’ perspective
on good quality coarse fisheries. Due to the diversity in angler preferences not all are affected similarly by efforts that
seek to improve water quality and such improvements should be viewed with nuance.
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