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A B S T R A C T   

Globally, coal is still widely used for heating. However, there are concerns about its effect on ambient air quality 
and health. We estimated the effect of bans prohibiting the sale and use of so-called “smoky coal” on the 
prevalence of chronic lung disease in older people. Our identification strategy relied on the phased extension of 
smoky coal bans to Irish towns after 2010. We examined five waves of The Irish Longitudinal Study on Ageing 
(TILDA), a large nationally representative survey containing detailed information on health, housing, and socio- 
economic status. Controlling for relevant factors, smoky coal bans reduced the probability that an older person 
reports being diagnosed with chronic lung disease by between three and five percentage points. In models where 
we estimated the effect of the ban on the incidence of new cases of chronic lung disease, rather than existing 
cases, we found the effect was between -0.96 and -2.5 percentage points. Our findings were robust to estimating 
the model using different sub-samples and control variables. Furthermore, to address potential endogeneity of 
the ban, we examined subsamples defined by whether participants lived in towns within a range of the popu-
lation threshold at which the ban was imposed. Estimating our model using these subsamples showed a 
consistently negative effect of the ban. We also showed parallel trends in health outcomes before the treatment, 
and that the treatment did not affect attrition from the sample.   

1. Introduction 

Chronic lung disease (often referred to as chronic obstructive pul-
monary disease (COPD), chronic bronchitis or chronic emphysema) is a 
major component of global morbidity and mortality. It is the third most 
common cause of death worldwide, with only heart disease and stroke 
being more common (WHO, 2020), and is the 6th highest cause of 
disability-adjusted life years (DALYs) worldwide (Vos et al., 2020). 
Chronic lung disease involves progressive limitation of the airway and is 
associated with an abnormal inflammatory response of the lungs to 
noxious particles or gases (Huertas and Palange, 2011). It is primarily a 
disease of old age (Safiri et al., 2022). Genetic factors and infections can 
lead to chronic lung disease (Deolmi et al., 2023; Huertas and Palange, 
2011; Raherison and Girodet, 2009), and there is an emerging evidence 
base on the conditions in early life that may predispose an individual to 

chronic lung disease in later life (Deolmi et al., 2023; Duijts et al., 2014; 
Postma et al., 2015). The three main risk factors for chronic lung disease 
are smoking, pollution from ambient (outdoor) particulate matter, and 
occupational exposure to particulate matter, gases and fumes, ac-
counting for 46%, 21% and 16% of global DALYs respectively (Safiri 
et al., 2022). 

The World Health Organisation (WHO) estimates that three million 
deaths every year are a result of ambient air pollution (WHO, 2016). In 
the European Union, during 2018, depending on the method of esti-
mation, between 168,000 and 346,000 premature deaths could be 
attributed to exposure to outdoor air pollution in the form of fine par-
ticulate matter (PM2.5) alone (OECD, 2021).1 To put these estimates in 
perspective, these premature deaths were between 4 and 7 per cent of all 
deaths in 2018. Although air pollution has decreased in most European 
countries over the past two decades, levels of air pollution remain above 
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1 OECD (2021) provides an overview of the data and methods underlying the different estimates. 
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WHO guidelines, particularly in central and eastern European cities 
(OECD, 2021). Not surprisingly, given the substantial toll of air pollution 
on human life, the economic costs are also substantial. For example, in 
the EU for 2011, the direct and indirect costs of COPD were estimated to 
be €48.4 billion (Gibson et al., 2013). 

Thus, it is important for policymakers to know the efficacy of policies 
designed to reduce air pollution on chronic lung disease. In this study, 
we estimate the effect of one such policy, a ban on smoky coals, on the 
prevalence of chronic lung disease among older people in Ireland. The 
legislation bans the sale of “smoky” solid fuels defined as any containing 
bituminous coal, having a smoke emission rate of more than 10 g per 
hour, or with a sulphur content greater than 2% by weight on a dry ash- 
free basis.2 

We examined five waves of The Irish Longitudinal Study on Ageing 
(TILDA), a large nationally representative survey that contains detailed 
health, housing, and socio-economic information on the population 
aged 50 + . While the data were being collected (2010–2018), smoky 
coal bans were implemented in an increasing number of towns across 
Ireland. This temporal and spatial variation in the rollout of the smoky 
coal bans allows us to examine the effect of smoky coal bans on the 
probability of chronic lung disease among people living in those areas. 
The extension of the policy was based on the population of the area 
reaching a threshold. Controlling for relevant factors, we found that 
smoky coal bans reduced the probability of chronic lung disease by 
between three and five percentage points. In models where we estimated 
the effect of the ban on the incidence of new cases of chronic lung dis-
ease, rather than existing cases, we found an effect of between -0.96 −
2.5 percentage points. Our finding was robust to estimating the models 
on different subsamples and to including different control variables. 

The present study contributes to the growing literature on the effects 
of air pollution on mortality and morbidity among old people by 
examining longitudinal data from a large representative sample of older 
people. There are two main advantages of our study. First, we exploit the 
staggered implementation of coal bans in Ireland across time and ge-
ography to identify the causal impact of these regulations on chronic 
lung disease. Many studies examine the statistical associations between 
environmental regulations and health, but it can be difficult to rule out 
reverse causation and influences from other factors correlated with the 
regulatory “treatment”. We also take account of the latest developments 
in the methodological literature on two-way fixed effects models to 
generate robust estimates of the effects. Second, the study is carried out 
in Ireland, a high-income developed country with relatively low levels of 
ambient air pollution. Over time, a growing body of research findings on 
health effects from ambient air pollution has led to increasing concern 
among policymakers about harms at relatively low levels of exposure. 
This is reflected in sharply reduced thresholds for assessing safe expo-
sures published by the World Health Organization (World Health Or-
ganization, 2021). Many areas in Ireland have pollution exposures at 
levels where this change in focus is relevant. 

In Section 2, we discuss the literature on the effects of coal-based air 
pollution on health. In Section 3, we provide further details about the 
Irish smoky coal bans. In Section 4, we discuss our data and our model. 
In Section 5, we present our results, which we discuss further in Section 
6. Finally, in Section 7, we summarise and conclude. 

2. Literature review 

The greatest damage to health from air pollution is caused by chronic 
exposure to particulate matter, especially fine particulate matter (PM2.5) 
which increases the risk of heart disease, stroke, lung cancer, and res-
piratory diseases including asthma, bronchitis, respiratory infections, 
and chronic obstructive pulmonary disease (COPD) (OECD, 2021). PM 
emissions primarily result from the combustion of fuels, such as for 

power generation, domestic heating and in vehicle engines. However, 
combustion is not the only source; for example, they can also arise from 
animal waste emissions and dust from construction, road traffic and 
agricultural practices. Small particulates of less than 10 µm in diameter 
(PM10) are capable of penetrating deep into the respiratory tract and 
causing significant health damage. Fine particulates smaller than 2.5 µm 
in diameter (PM2.5) cause even more severe health effects because they 
penetrate deeper into the respiratory tract and are potentially more toxic 
(OECD, 2021). 

By far, the most common outcome examined in the literature on the 
health effects of ambient (outdoor) air pollution is mortality. Examples 
of such studies include (Almond et al., 2009; Anderson, 2020; Barreca 
et al., 2014; Beach and Hanlon, 2018; Cesur et al., 2018; Chen et al., 
2013; Currie et al., 2009; Deryugina et al., 2019; Dockery et al., 1993; 
Fan et al., 2020; Jayachandran, 2009; Laden et al., 2006; Luechinger, 
2014; Pope, and et al., 2002, 2004; Tanaka, 2015). While the present 
study examines mortality as a secondary outcome, the present study 
focuses on morbidity in the form of chronic lung disease. Examining the 
preventable morbidity caused by air pollution is important because 
people can suffer from diseases like chronic lung disease for many years 
before finally succumbing to it or dying from some other cause. 

Some groups are particularly vulnerable to the effects of air pollu-
tion. For example, older people, children, and those with chronic dis-
eases are typically more vulnerable to the effects of air pollution than the 
general population. In addition, lower socioeconomic groups are often 
more exposed to environments in which air pollution is worse (OECD, 
2021). There is an extensive literature examining the impact of air 
pollution on early life outcomes including infant and child mortality, 
low birth weight, etc. (see for example Balsa et al., 2016; Chay and 
Greenstone, 2003; Currie et al., 2009; Currie and Neidell, 2005; Jaya-
chandran, 2009; Luechinger, 2014). For the older population, in addi-
tion to research examining mortality and health outcomes related to air 
pollution such as cardiovascular and respiratory disease diagnoses (for 
example, see Evans and Smith, 2005 and Gan et al., 2013), there is a 
growing body of evidence suggesting detrimental effects of air pollution 
on cognition (e.g., Ailshire et al., 2017; Ailshire and Crimmins, 2014; 
Weuve et al., 2012). 

For policy makers to be well informed about their options, they need 
good quality evidence that identifies causal effects of policies on health. 
However, identifying a causal effect of air pollution on health is 
complicated by non-random exposure across the population to air 
pollution (for a discussion, see Zivin and Neidell, 2013). For example, 
property and rental prices might reflect air quality (for recent studies, 
see Ou et al., 2022 and Borja-Urbano et al., 2021), so poorer people, who 
typically have worse health, might live in places with worse air 
pollution. 

To identify causal effects, quasi-experimental research designs have 
been adopted. For example, focusing on the impact of coal-based air 
pollution, a series of studies have examined variation across time and 
space in exposure to a heating policy in China that provides free or 
heavily subsidised residential heating to households north of the Huai 
River in the winter months. A recent analysis by Fan et al. (2020) used a 
regression discontinuity design that exploited variation in the exact 
starting dates of winter heating across 114 northern Chinese cities to 
estimate the effect of winter heating on contemporaneous air pollution 
and health. They found that switching on the winter heating system 
(which is largely coal-based) led to a 36 per cent deterioration in the Air 
Quality Index and a 14 per cent increase in weekly mortality, mostly 
from cardiorespiratory diseases. Those that were older, poorer, and 
living in rural areas were particularly affected. Earlier papers by Chen 
et al. (2013) and Almond et al. (2009) found similar effects on mortality, 
although their research designs were different in that they exploited 
variation in distance to the Huai River to identify exposure to the winter 
heating policy. 

Other studies that have focused on the impact of coal-based air 
pollution include Barreca et al. (2014) and Beach and Hanlon (2018). 2 Ireland, Solid Fuel Regulations, S.I. No. 326 of 2012. 
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Using a triple difference-in-difference methodology to identify causal 
effects, Barreca et al. (2014) found that reductions in the use of bitu-
minous coal for home heating between 1945 and 1960 in the US led to a 
1.25 per cent reduction in winter all-age mortality and a 3.27 per cent 
reduction in winter infant mortality. Focusing on industrial coal usage at 
a local level in England and Wales over the period 1851–1960, Beach 
and Hanlon (2018) found that a one standard deviation increase in local 
industrial coal usage lowered life expectancy at birth by 0.33–0.56 years 
or 0.86–1.44 per cent, with larger effects observed for children under 
five years of age. 

In relation to the coal bans in Ireland examined in the present study, 
Clancy et al. (2002) examined the effect on death rates of the 1990 s ban 
on coal sales in Dublin. Concentrations of air pollution and standardised 
non-trauma, respiratory, and cardiovascular death rates were compared 
for 72 months before and after the ban of coal sales in Dublin, adjusting 
for weather, respiratory epidemics, and death rates in the rest of Ireland. 
They found that average black smoke concentrations in Dublin declined 
by 70 per cent after the ban on coal sales. Adjusted non-trauma death 
rates decreased by 5.7%, respiratory deaths by 15.5%, and cardiovas-
cular deaths by 10.3%. Respiratory and cardiovascular standardised 
death rates fell coincident with the ban on coal sales. They estimated 
that about 116 fewer respiratory deaths and 243 fewer cardiovascular 
deaths were observed per year in Dublin after the ban. 

Examining the same data used in the present study (from The Irish 
Longitudinal Study on Ageing), Carthy et al. (2020) found a positive 
association between NO2 exposure at residential address and diagnoses, 
and medications for, obstructive airway disease (asthma) in the popu-
lation aged 50 + . This association between air quality and lung health 
provides a motivation for the present study to examine the effects of 
extending smoky coal bans on the lung health of older Irish people. 

3. Context 

Table 1 shows the timing of the extension of smoky coal bans in 
Ireland. For each city/town, the effective start date of the ban is shown 
along with the corresponding population and population density. 
Initially, the ban was introduced in Dublin during 1990 and in Cork, the 
second largest city, during 1993. Between 1998 and 2003, the ban was 
further extended to all cities and larger towns with over 30,000 in-
habitants. In general, the sequence of the extension of the ban was based 
on the order of size of cities/towns, although a few smaller towns were 
also included in the initial extension of the ban. 

In 2011, the ban was extended to all towns with over 15,000 in-
habitants. In 2012, the ban was extended to parts of the county of Dublin 
that were not already covered by the initial ban in the city of Dublin. 
Likewise, in 2012, the ban was also extended to some small commuter 
towns near Cork City. In 2013, based on the results of the 2011 Census, 
the ban was extended to more towns because their populations had 
grown to over 15,000 inhabitants.3 In 2020, the ban was extended to all 
towns with more than 10,000 inhabitants.4 In 2022, a nation-wide ban 
was imposed. 

It is difficult to know how strictly the ban is enforced and observed. 
Under the legislation, ’on-the-spot fines’ up to €1000 can be issued to 
any person or organisation who breaches the regulations. A court 
prosecution can lead to fines of €5000 on summary conviction and 

€500,000 on conviction by indictment. Unfortunately, there are no 
comprehensive data relating to the enforcement of the ban, so all of the 
following analyses should be viewed with that caveat in mind. 

Initially, the legislation outlawed only the supply and sale of smoky 
coal, but in 2011 the legislation was changed to outlaw also the burning 

Table 1 
Characteristics of cities/towns by year of ban.  

City/Town Year 
of 

Ban** 

Population 
(2011) 

Density 
(persons 
per km2) 

Mean PM2.5 

2020–2021 
µg/m3*** 

Total Days 
2020–2021 
> 15 µg/ 

m3*** 

Dublin* 1990 1110627 3498.1 7.41 40 
Cork City 1993 198582 1206.7 7.44 37 
Arklow 1998 13009 1924.4   
Drogheda 1998 38578 2529.7   
Dundalk 1998 37816 1029.6   
Limerick City 1998 91454 1609 6.61 6 
Wexford 1998 20072 1062.6 9.24 58 

Galway City 2000 76778 1437.3   
Waterford 

City 
2000 51519 1161.9 8.91 50 

Celbridge 2000 19537 3334 5.09 0 
Leixlip 2000 15452 2373.6   
Naas 2000 20713 1135.6   

Bray 2003 31872 3475.7 5.37 10 
Kilkenny 2003 24423 1825.3   
Sligo 2003 19452 1260.7 12.22 73 
Tralee 2003 23693 1478 11.94 90 

Athlone 2011 20153 1162.9 9.09 55 
Carlow 2011 23030 1846.8 6.61 26 
Clonmel 2011 17908 1088 7.21 36 
Ennis 2011 25360 1119.6 13.22 108 

Greystones 2013 17468 1748.5   
Letterkenny 2013 19588 820.3 11.23 73 
Mullingar 2013 20103 1757.3 4.88 0 
Navan 2013 28200 2332   
Portlaoise 2013 20145 2074.7 7.95 42 
Wicklow 2013 10356 2092.1   

Maynooth 2015 12510 2433.9   

Ashbourne 2020 11355 3440.9   
Ballina 2020 11086 741 6.04 10 
Castlebar 2020 12318 909.7   
Cavan 2020 10205 1109.2 7.33 29 
Cobh 2020 12347 2756 7.31 25 
Enniscorthy 2020 14219 754.3 9.08 59 
Killarney 2020 9601 894.8   
Longford 2020 11605 1384.8 8.21 25 
Mallow 2020 12001 1929.4   
Midleton 2020 10838 1228.8   
Tramore 2020 10328 1444.5   
Tullamore 2020 14361 1354.8 4.73 0 

Cork City 
Extension  

Carrigaline 2012 14775 3350.3   
Carrigtwohill 2020 4551 2955.2   

Dublin 
Extension  

Balbriggan 2012 19960 3006   
Donabate 2012 6778 3548.7   
Lusk 2012 7022 3657.3   
Rush 2012 9231 1580.7   
Skerries 2012 9671 3041.2   

*Initially, the ban covered urban areas administered by Dublin City Council, Dun 
Laoghaire-Rathdown Council, South Dublin County Council, and the southern 
part of Fingal County Council. In later years, the ban was extended to all areas 
governed by these councils. * *Ban implemented for winter heating season 
starting in a particular year. Legislation for ban enacted at most six months 
before implementation. However, the extension of 2013 was implemented in 
May 2013 in accordance with legislation passed in September 2012. 
* **Source: https://airquality.ie/readings. 

3 The official government press release can be accessed at: Expansions to 
Smoky Coal Ban will bring Cleaner Air, Fewer Deaths and can help efficiency – 
MerrionStreet. https://merrionstreet.ie/en/category-index/environment/cl 
imate-change/extensions-to-smoky-coal-ban-will-bring-cleaner-air-fewer- 
deaths-and-can-help-efficiency.html  

4 The official government press release can be accessed at: gov.ie - Minister 
Ryan signs Regulations to extend Smoky Coal Ban (www.gov.ie). https://www. 
gov.ie/en/press-release/f15e2-minister-ryan-signs-regulations-to-extend- 
smoky-coal-ban/ 
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of smoky coal. Thus, it was legal, before 2011, for people living in areas 
covered by the ban to purchase banned coal outside their local area and 
then burn it at home. It is impossible to know exactly how often people 
circumvented the ban in this way. However, coal is bulky, heavy, and 
dirty, so it is likely that people were not generally willing to travel 
outside their local area to purchase it. On the other hand, if people 
bought banned coal commonly outside their local area, then the esti-
mated effect of the ban is an underestimate of the true effect. 

What were the effects of the bans on coal usage? On examination of 
aggregate data from the Irish Census, we found clear evidence of a 
decrease in the percentage of households burning solid fuels. Addi-
tionally, we found no evidence of households switching from coal to 
peat or wood. An important aspect of the legislation is that the ban 
covered a range of smoky coal products, but not wood, peat, or non- 
smoky coal (e.g., anthracite). Thus, households could still maintain an 
open fire as their main heating system if they switched to a different type 
of solid fuel. While data about usage of peat and wood are available, 
unfortunately, in the TILDA data and, indeed, recent Irish censuses 
(which collect information on the main fuel used for home heating), no 
distinction can be made between smoky and non-smoky coal. Therefore, 
it is not possible to observe directly if households switched from smoky 
to non-smoky coal. However, the evidence we present below is sugges-
tive that at least some households switched to non-smoky coal. 

Over the past few decades, there was a dramatic reduction in solid 
fire usage in Ireland. According to the 1991 Census, around 60% of 
households used solid fuels as their main heating source. 20% burned 
non-smoky coal, 18% burned smoky coals and 23% burned either wood 
or peat.5 Yet by the 2011 Census, only around 10.8% of households used 
solid fuels. However, this percentage increased to 12.4% in 2016. In 
2016, 5.1% of households burned coal, 5.3% burned peat, and 2% 
burned wood. The corresponding percentages for 2011 were 4.8%, 4.8% 
and 1.3%. This increase in solid fuel usage between 2011 and 2016 was 
also found by the Sustainable Energy Authority of Ireland (SEAI, 2018) 
who attributed the increase in solid fuels to the burning of wood pellets 
but also noted the uncertainty surrounding the data on solid fuel usage. 

To examine the effects of the extension of smoky coal bans during the 
2010 s on solid fuel usage, we examined Census data from 2011 and 
2016 at the level of household aggregates in each electoral division (ED). 
EDs are the smallest legally defined administrative areas in the Republic 
of Ireland. There are 3440 EDs in Ireland, and the average size is around 
25 km2. The legislation concerning smoky coal bans defines the area 
covered by the ban in terms of EDs. Unfortunately, these data are un-
available prior to 2011. We combined the electoral divisions to the level 
of the towns/cities. Using these data, we estimated the effect of 
extending smoky coal bans on the proportion of households in a town/ 
city using solid fuels as their main source of heating as per the following 
linear equation:  

Proportion Using Solid Fueltk = ρIt=2016 + πk + σBantk + ζtk                      

where Proportion Using Solid Fueltk is the proportion of households 
burning solid fuels in area k during year t. With these data, t is either 
2011 or 2016. In this case, ρ is the coefficient for a variable indicating 
the observed usage of solid fuels was from the 2016 Census, thus ρ is the 
time trend affecting the entire country. πk is the fixed association be-
tween an area and solid fuel usage. Bantk indicates whether the smoky 
coal ban was in effect in year t in area k. ζtk represents unobserved time- 
varying factors specific to a given area. 

In Table 2, we present the difference-in-difference estimate of the 
effect of the ban on specific types of solid fuel usage. We also present the 
coefficient for the overall trend in solid fuel usage. This trend is positive 
and significant albeit small in magnitude. The estimated equations also 

included fixed effects for each city/town, but these are not displayed in 
the table for the sake of brevity. 

In the first column of Table 2, we can see that there was a negative 
effect of the ban of about 0.728 percentage points. This coefficient is 
small in absolute terms, but it should be seen context that only about 5% 
of households burned coal, so the estimated effect represents a 14.5% 
reduction in coal usage. The timing of the bans was associated with a 
positive effect on the usage of wood and a negative effect on the usage of 
peat, but these effects were not statistically significant and were much 
smaller than the estimated effect on coal usage. So while households 
switched away from coal, they did not tend to switch to peat or wood. 
Thus, the coal users in 2011 either moved to a non-solid fuel or, 
assuming that the ban on smoky coal was adhered to, switched to non- 
smoky coal. 

What were the effects of the bans on the actual levels of PM2.5? The 
final two columns of Table 1 provide recent data on PM2.5 in Ireland. In 
2021, the Environmental Protection Agency, the Irish government 
agency responsible for monitoring pollution, had a network of 96 air 
monitoring stations which collected hourly data. Over one third of the 
stations were located in cities. The remainder were located in the towns 
listed in Table 1, but not all of them collected data on PM2.5; hence, there 
are missing values for PM2.5 levels for some cities/towns in Table 1. 

However, the data collected at the available stations can be used to 
assess concentrations of PM2.5 in Ireland during 2020 and 2021. The 
World Health Organizations updated guidelines state that annual 
average concentrations of PM2.5 should not exceed 5 µg/m3, while 24- 
hour average exposures should not exceed 15 µg/m3 more than 3–4 
days per year (WHO, 2021). First, one can see in the second last column 
that nearly all cities/towns have annual average daily PM2.5 concen-
trations above the recently revised WHO guideline of 5 μg/m3 (WHO, 
2021). Second, from the final column, one can see that nearly all cities 
and towns are far in excess of the maximum number of days when the 
24-hour limit of 15 μg/m3 was exceeded. However, especially in the 
cities and larger towns, the levels of PM2.5 were generally below the 
former WHO guideline annual average daily level of 10 μg/m3. The 
cities of Dublin, Cork, Limerick, and Waterford, while having PM2.5 
levels in excess of the new WHO guidelines, had lower PM2.5 levels 
compared to many towns with much smaller populations. Not shown in 
the table is the level of PM2.5 in small towns (with fewer than 10,000 
inhabitants), villages and rural areas. From the stations located in these 
areas, the average PM2.5 was 6.89 μg/m3 between August 2020 and 

Table 2 
Difference-in-difference estimates of effect of ban on solid fuel usage.   

(1) (2) (3)  

Proportion 
Using Coal 

Proportion 
Using Wood 

Proportion 
Using Peat 

2016 (ref. cat. 2011) 0.00719 * ** 0.00477 * ** 0.00338 * *  
(0.00200) (0.000738) (0.00127) 

Difference-in-difference 
estimate of effect of 
ban 

-0.00728 * * 0.000698 -0.000179  

(0.00319) (0.00117) (0.00202) 

Source data are electoral division household aggregates from Census 2011 & 
2016. 
N = 96 = 48 cities/towns observed twice. 
Fixed effects for each city/town were included in the regression but are not 
displayed for brevity. 
Standard errors in parentheses. 
* ** p < 0.01, * * p < 0.05, * p < 0.1. 

5 https://www.cso.ie/en/media/csoie/census/census1991results/volume10/ 
C1991_Vol_10_T15.pdf 
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November 2021.6 

To what extent did the ban on smoky coal reduce PM2.5 concentra-
tions? While the data do not allow us to draw definitive conclusions, 
they suggest that the ban may have led to large reductions in PM2.5. 
While the final two columns of Table 1 show the recent pattern of PM2.5 
concentrations in Ireland, they do not show the effect of the smoky coal 
ban on PM2.5. Unfortunately, daily PM2.5 measurements prior to 2020 
are available only for a small number of cities/towns. In only three 
towns can we observe PM2.5 levels before and after smoky coal was 
banned. Analysing archive data from the Environmental Protection 
Agency,7 we observed that for the town of Ennis, the PM2.5 level during 
the winter heating season fell from 27.04 just before the ban (Winter 
2010/11) to 12.88 just after the ban (Winter 2011/12). In the town of 
Enniscorthy, the corresponding reduction was from 12.89 just before the 
ban (Winter 2019/20) to 10.12 just after the ban (Winter 2020/21). The 
town of Cobh experienced a decline from 8.85 to 7.79. Thus, the 
reduction in PM2.5 associated with the smoky coal ban ranges from 
around 12–52% from one winter to the next. However, it would be naive 
to attribute all of the observed decline in PM2.5 entirely to the extension 
of the smoky coal ban. Ideally, one would need to adjust for the severity 
of the weather during different winters by comparing the towns where 
the ban was extended to other similar towns unaffected by the ban. 
However, because of a lack of EPA monitor data on PM2.5 concentrations 
prior to 2020, it is impossible to construct a suitable sample of control 
towns (in terms of size, location, etc) to provide counterfactual data.8 

However, it is still plausible that extending the smoky coal ban resulted 
in a large reduction in PM2.5. 

To evaluate the effect of smoky coal bans on PM levels, in addition to 
analysing PM readings from EPA monitoring stations throughout 
Ireland, we examined satellite-based estimates of PM concentrations 
created by van Donkelaar et al. (2021). To map the satellite-based es-
timates to Irish electoral divisions, we assigned the satellite estimate of 
PM2.5 exposure for a given year to every building in the Irish Geo-
directory (the sampling frame for the TILDA data used in our main 
analysis that follows), and then calculated the average exposure in each 
ED weighted by the number of addresses in each building. In this way, 
using satellite-based estimates of PM2.5, we constructed a panel dataset 
of annual PM2.5 exposure for Irish cities/towns from 1998 to 2019. 

Using this panel dataset, we estimated the effect of extending smoky 
coal bans on PM2.5 exposure based on a difference-in-difference model 
with year and town/city fixed effects. We see in Table 3 that the esti-
mated effect of the ban was between − 0.07 and − 0.14 on the annual 
level of PM2.5 exposure or a reduction of 1.77–1.97% in log-linear 
models. The columns of Table 3 show how the results vary by 

changing the definition of the sample and control variables, e.g. by 
excluding cities, controlling for local population and population density, 
and controlling for the lag of the year of extension of the ban. 

Apart from the first column, which is based on a sample including 
cities, the estimated effects were statistically significant at the 5% level.9 

However, the estimated effect is small and most likely a lower bound of 
the true effect. That the estimated effect is downward biased could be 
explained by the satellite-based estimates of PM2.5 understating varia-
tion in PM2.5 between areas. 

We compared the satellite-based data estimated by van Donkelaar 
et al. (2021) to the data collected by the Irish Environmental Protection 
Agency monitors, the latter being much more limited before 2020. The 
PM2.5 levels are quite similar for the cities of Cork and Dublin. However, 
in towns (pre-2020, we only have consistent EPA monitor readings for 
four towns), the van Donkelaar et al. (2021) estimates of PM2.5 are 
consistently lower than the EPA monitor readings (on average, just 
above half of the EPA readings). An explanation to reconcile the dif-
ferences between the data sources is that the satellite-based estimates 
have smoothed variation in PM2.5 levels between towns and their rural 
hinterlands, whereas within cities, neighbouring areas would have 
similar levels of PM2.5. For a discussion of comparing satellite estimates 
and monitor readings in the USA, see Fowlie et al. (2019). 

4. Data 

The data examined in this study were five waves of The Irish Lon-
gitudinal Study on Ageing (TILDA). TILDA is a large nationally repre-
sentative sample of people aged 50 and older living in Ireland. For more 
information about the design of TILDA, see Whelan and Savva (2013). 
The data contain information about the health, housing, demographics, 
and socio-economic status of the participants. The first wave of TILDA 
was collected between late 2009 and early 2011. Participants were 
interviewed approximately every two years. Attrition of participants 
from the sample between waves is shown in Table 4. Attrition occurred 
because participants either died, moved home, or withdrew from the 
study. We restricted our main analysis to participants present (and who 
remained at the same home) in all five waves; but in the robustness 
checks that follow, we examined the effect of non-random attrition on 
our estimates and found that attrition does not affect our results. 

In the analysis that follows, the outcome of interest is the prevalence 
of chronic lung disease. Chronic lung disease can be a catch-all term 
covering asthma, chronic obstructive pulmonary disease, infections like 
pneumonia and tuberculosis (TB), and even lung cancer. However, in 
this study, when we use the term “chronic lung disease”, we are 
following the epidemiological and medical literature and referring to 
diseases such as chronic obstructive pulmonary disease (COPD), bron-
chitis and emphysema. In each wave of TILDA, participants were asked 
if they have ever been diagnosed with chronic lung disease. The prob-
ability of an individual reporting chronic lung disease is our dependent 
variable in our main analysis. In a secondary analysis, discussed in 
Section 6, we examine the effect on mortality of extensions to the smoky 
coal ban. 

To identify the effect of the extension of the ban to an area, the ad-
dresses of the TILDA participants were matched to their Electoral Divi-
sion (ED). The legislation concerning smoky coal bans defines the area 
covered by the ban in terms of EDs. Based on this legislation (see notes 
beneath Table 1), whether and when the smoke coal ban was extended 

6 These locations were Abbeyfeale, Askeaton, Banagher, Birr, Buncranna, 
Carrick-on-Shannon, Dungarvan, Ennistymon, Macroom, Monaghan, Moun-
trath, Mungret, Navan, Nenagh, New Ross and Thomastown. The remaining 
stations in rural areas did not collect PM2.5 data.  

7 EPA Ireland Archive of PM 2.5 Monitoring Data. Datasets Available At: 
Secure Archive For Environmental Research Data managed by Environmental 
Protection Agency Ireland https://eparesearch.epa.ie/safer/resource?id=
0dc73e08–7e15–102b-aa08–55a7497570d3 (Last Accessed: 2021–11–10)  

8 The winter of 2010/2011 was particularly severe by Irish standards, so the 
large reduction in PM2.5 observed for Ennis between 2010 and 2011 might in 
part be due reduced demand for heating more generally rather than just the 
banning of smoky coal. However, Cork and Dublin (the only other places for 
which PM2.5 data are available from 2010 and 2011) experienced declines in 
PM2.5 of about 33%. 

9 Another approach to estimating the effect of the smoky coal ban would be 
to estimate a two-stage model of the effect of PM2.5 (based on satellite esti-
mates) on health status using the ban as an instrumental variable for PM2.5. 
However, although the ban’s effect on PM2.5 was significant at the 5% level, it 
would still be a weak instrument in such a two-stage model, thus the resulting 
estimates would likely be biased. For a discussion of weak instruments, see 
Andrews et al. (2019). 
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to their ED was matched to each participant in the TILDA study. 
Table 5 shows the probability of a participant reporting chronic lung 

disease broken down by the timing of the extension of the ban and 
collection of TILDA survey waves. The first column also shows the 
number of participants in each area in the final sample. For example, 
1412 and 183 TILDA participants lived in cities and towns where the ban 
had been in effect before the TILDA survey began. On the other hand, we 
can see that 2678 TILDA participants lived in towns with fewer than 
10,000 inhabitants or in rural areas, both of which were never covered 
by the ban. 

In most areas, the proportion of participants with chronic lung dis-
ease rose between Wave 1 and Wave 5, which is not surprising given 
they aged ten years. For clarity, observations after the ban was extended 
are shown in bold and underlined. The highest prevalence of lung dis-
ease at all waves was found in smaller towns with populations over 
10,000 where the ban was imposed in 2020, but which did not have a 
smoky coal ban when the TILDA data were collected. These towns also 
experienced the largest increase in lung disease over the five waves. The 
second highest prevalence was in the cities, which have had bans since 
the 1990 s and 2000 s, but which also have higher levels of traffic and 
other forms of air pollution. By contrast, towns with fewer than 10,000 
inhabitants and rural areas had relative stable prevalence of lung dis-
ease. Interestingly, in medium sized towns, where the ban was extended 
during 2011, there was an initial decline in the prevalence lung disease 
once the ban was extended followed by an increase in the final wave, 
though still below the initial level despite the participants being ten 
years older. For the towns where the ban was extended in 2013, the 
prevalence remained very low. 

In the main, our analysis concentrates on people living in towns 
rather than cities or rural areas. A priori, we believed that the 

characteristics of people living in cities, towns, and rural areas differ 
both observably and unobservably. For example, in relation to unob-
servable factors (at least with these data), we expected that city dwellers 
have much greater exposure to air pollution. For example, Milojevic 
et al. (2017) show considerable urban-rural differences in PM2.5 expo-
sure in England. However, as we saw in Table 1, medium sized towns 
generally have greater exposure relative to cities. 

In relation to observable factors, the average characteristics of city, 
town, and rural dwellers are shown in Table 6. We can see that the 
sample is predominantly female, an observation explained by greater 
female longevity in the context of a study of ageing and that women are 
more likely to respond to the survey questionnaire. In the second row, 
we observe that the average age ranges from 63.7 years to 66.5 years. 
There is no statistically significant difference in age and gender between 
participants in the cities, towns and rural areas. 

However, the other rows of Table 6 reveal differences between the 
areas and indeed these differences are statistically significant. The 

Table 3 
Difference-in-difference estimate of effect of smoky coal ban on PM2.5.   

(1) (2) (3) (4) (5) (6) 

Estimated Effect -0.0659 -0.130 * * -0.140 * ** -0.125 * * -0.0177 * ** -0.0197 * ** 
(Standard Error) (0.0448) (0.0509) (0.0513) (0.0520) (0.00663) (0.00695) 

1. Sample includes both cities and towns. 
2. Sample includes towns only. 
3. Controlling for log of population of town. 
4. Controlling for log of population density of town. 
5. Log of PM2.5 exposure as outcome variable. 
6. Lagged year of implementation of ban. 
Source: PM2.5 exposure at city/town-level 1998–2019 using the estimates of van Donkelaar et al. (2021) 
N = 1078 = 49 towns/cities observed over 22 years. 

Table 4 
Attrition from TILDA by wave.  

Wave Dates Useable 
Responses 

Cumulative 
Withdrawals 

Cumulative 
Deaths 

Cumulative 
Address 
Changes 

1 2009 
(Oct) to 
2011 
(Feb) 

8501 0 0 0 

2 2012 
(Apr- 
Dec) 

7163 899 208 121 

3 2014 
(Mar) to 
2015 
(Oct) 

6128 1553 519 174 

4 2016 
(Jan- 
Dec) 

5334 2102 779 218 

5 2018 
(Jan- 
Dec) 

4551 2636 1051 263  

Table 5 
Proportion reporting chronic lung disease by area and wave.    

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5  

Number of 
TILDA 
Participants 

2009 
Oct 
to 
2011 
Feb 

2012 
Apr 
to 
2012 
Dec 

2014 
Mar 
to 
2015 
Oct 

2016 
Jan 
to 
2016 
Dec 

2018 
Jan 
to 
2018 
Dec 

Cities 
with 
ban 
before 
2009 

1412  0.0377  0.0398  0.0439  0.0460  0.0494 

Towns 
with 
ban 
before 
2009 

183  0.0174  0.0348  0.0435  0.0391  0.0435 

Towns 
with 
ban in 
2011 * 

115  0.0548  0.0274  0.0205  0.0274  0.0479 

Towns 
with 
ban in 
2013 

85  0.0094  0.0189  0.0189  0.0094  0.0094 

Towns 
with 
ban in 
2020 

78  0.0526  0.0737  0.0526  0.0737  0.0842 

Towns<
10000 
or Rural 
(No 
Ban) 

2678  0.0318  0.0314  0.0334  0.0342  0.0354 

Numbers in bold and underlined indicate that area was subject to smoky coal 
ban at time of data collection. 
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characteristics of people living in cities, towns, and rural areas are quite 
different. But the differences are less stark between towns by date of ban. 
For example, we observe that city dwellers are wealthier, an unsur-
prising observation given housing wealth is the main component of 
wealth and that house prices are highest in cities. Furthermore, city 
dwellers are less likely to have grown up in the countryside, and less 
likely to use solid fuels as their main source of heating. Thus, in the 
main, we concentrate our analysis on people living in towns, although 
we also estimate our models using the full dataset containing city, town, 
and rural dwellers. Furthermore, we control for these observable char-
acteristics in the models estimated below. 

5. Model and Results 

We estimated the probability of a participant having chronic lung 
disease controlling for the fixed effect of their area (for each particular 
city/town), year of survey, individual level characteristics and whether 
the smoky coal ban was in effect in their area at the time of the survey. 
Thus, we estimated the following equation:  

P(yitk=1 | Xitk, Areak, Yeart, Bant,k, Zi)= αk + βt + γBanitk + δXitk + θZi + εitk 

where for the ith participant, living in area k and observed in year t, yitk is 
whether they have chronic lung disease, Xitk represents individual time- 
varying factors (such as wealth and whether they smoked at the time of 
survey wave), Zi represents individual fixed characteristics (such as 
gender and childhood characteristics), and εitk represents unobserved 

factors. 
In Table 7, we present our results. The first column shows the 

different samples used with the corresponding sample sizes shown in the 
second column. One should keep in mind that each TILDA participant 
appears in the sample in each of the five waves. So the sample of 22,775 
represents 4551 TILDA participants observed over the five waves with 
the normal interval between interviews being about two years. 

In the third column, we show the average marginal effect of the ban 
being in effect in the participants’ area based on estimates of a panel 
random effects model. In the fourth and fifth columns, we display the 
coefficients from estimated linear models with random effects and fixed 
effects. For all models, the standard errors were clustered at the level of 
the locality (i.e., for each particular city/town). 

In the first row of Table 7, we display the estimated effect of the ban 
when using the entire sample. Regardless of the type of model estimated, 
we found a negative effect of the ban on the probability of lung disease 
of around 1.67–1.7 percentage points, but this effect was significant at 
the 10% level in the linear models only. 

In the second row of Table 7, we display our estimates when we 
omitted participants living in rural areas from our sample. On the one 
hand, rural areas were never covered by the ban, and they had much 
higher usage of solid fuels (as confirmed by the second last row of 
Table 3). But rural areas probably had less air pollution from other 
sources (e.g. traffic or industry) compared to urban areas and, by defi-
nition, rural dwellers live further apart from one another, so the burning 
of solid fuels by one household probably has less of an effect on 

Table 6 
Average/proportion in each category by area.   

Initial Ban: 
Cities 

Initial Ban: 
Towns 

2011 Extension 
Towns 

2012/13/15 Extension 
Towns 

2020 Extension 
Towns 

Towns< 10k or Rural 
Areas 

Male  0.443  0.399  0.470  0.402  0.436  0.450 
Age  66.280  66.500  64.850  63.730  65.340  66.000 
Highest education:   

Primary  0.194  0.209  0.199  0.179  0.168  0.233 
Secondary  0.370  0.443  0.473  0.491  0.358  0.452 
Post Secondary  0.436  0.348  0.329  0.330  0.474  0.315 

Quintile of wealth   
1st  0.091  0.147  0.147  0.132  0.162  0.133 
2nd  0.074  0.158  0.193  0.113  0.118  0.165 
3rd  0.140  0.171  0.188  0.162  0.154  0.145 
4th  0.207  0.186  0.136  0.181  0.152  0.115 
5th  0.251  0.103  0.075  0.166  0.103  0.117 

Missing wealth  0.236  0.235  0.262  0.245  0.312  0.324 
Smoker:   

Never  0.451  0.415  0.473  0.519  0.381  0.488 
Past  0.438  0.463  0.381  0.392  0.482  0.393 
Current  0.111  0.122  0.147  0.089  0.137  0.119 

Health when young:             
Excellent  0.563  0.543  0.596  0.594  0.642  0.573 
Very Good  0.252  0.243  0.247  0.255  0.168  0.249 
Good  0.120  0.113  0.096  0.104  0.147  0.119 
Fair  0.052  0.074  0.034  0.028  0.032  0.045 
Poor  0.013  0.026  0.027  0.019  0.011  0.014 

Not Always lived in Ireland  0.466  0.383  0.425  0.264  0.284  0.440 
Rural when young  0.310  0.439  0.541  0.528  0.568  0.776 
Family finances when 

young:   
Well-off  0.141  0.096  0.089  0.104  0.189  0.105 
Average  0.669  0.713  0.705  0.632  0.642  0.703 
Poor  0.189  0.187  0.205  0.264  0.158  0.191 

Years lived in home  31.04  30.77  27.86  27.15  26.84  31.95 
Built before 1940  0.074  0.065  0.082  0.019  0.074  0.161 
Built 1941–1960  0.093  0.070  0.055  0.057  0.095  0.076 
Built 1961–1970  0.160  0.161  0.151  0.076  0.074  0.079 
Built 1971–1980  0.198  0.096  0.110  0.094  0.074  0.078 
Built 1981–1990  0.253  0.330  0.192  0.340  0.274  0.207 
Built 1991–2000  0.112  0.126  0.247  0.198  0.179  0.179 
Built 2001 or later  0.067  0.096  0.075  0.094  0.116  0.098 
Built: Don’t know  0.023  0.057  0.055  0.066  0.095  0.096 
Open fire is main heating  0.037  0.094  0.081  0.098  0.082  0.085 
Unknown heating  0.271  0.262  0.290  0.264  0.303  0.298  
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neighbouring households than would be the case in an urban area. 
Indeed, from Table 6, the prevalence of lung disease in rural areas is 
lower than in towns (marginally so) and cities. Thus, including partici-
pants who lived in rural areas might understate the true effect of the ban 
on lung health. As we can see from the second row of Table 7, the effect 
of the ban in urban areas ranges from 1.98 to 2.67 percentage points, 
with the effect being statistically significant at the 10% level in the linear 
models. 

In the model corresponding to the third row of Table 7, we omitted 
participants who lived in cities, in addition to the previous omission of 
rural dwellers. That is, we omit those living in the cities of Dublin 
(covering the entire historic county of Dublin except for the northern 
part of Fingal County Council where the ban was only extended in 
2012), Cork, Limerick, Galway and Waterford. By the time the first wave 
of TILDA had been collected, during 2009–2011, smoky coal had been 
banned in Irish cities for 15–20 years. However, the cities likely had 
worse air pollution than less densely populated areas because of higher 
traffic levels and industrial production. Indeed, as we can see from 
Table 6, open fire usage is low in cities compared to towns, yet the 
prevalence of chronic lung disease is slightly higher. So including cities 
in the sample likely understates the true effect of the ban on lung health. 
And as we see from the third row of Table 7, when we excluded the 
cities, the effect of the ban ranges from 3.2 to 4.9 percentage points, with 
the effect being statistically significant at the 5% level in the linear 
models. 

In the fourth row of Table 7, we present our estimated results when 
we controlled for relevant characteristics of participants. From the panel 
probit model, we can see the average marginal effect of the ban is 4.77 
percentage points. This effect is statistically significant at the 5% level. 
The coefficients from the linear random effects and fixed effects models 
are − 0.0335 and − 0.0329. These coefficients are significant at the 5% 
level. 

Table 8 presents the full list of estimated average marginal effects 

from the panel probit model corresponding to estimates presented in the 
fourth row of Table 7. Reassuringly, the direction and size of the mar-
ginal effects of most of the relevant characteristics are as expected. For 
example, men were 4.1 percentage points less likely to have lung dis-
ease. In the past, chronic lung disease was seen as a disease that affected 
older men; however, recent studies have shown this is changing (for a 
discussion, see Barnes, 2016). Age is a risk factor for lung disease; get-
ting older increases the probability of lung disease by 0.2 of a percentage 
point each year. Furthermore, better educated and wealthier people are 
less likely to have lung disease. 

In Table 8, one can also see the influence of health risk factors on the 
probability of chronic lung disease. Smoking either in the past or at the 
time of the survey had a positive effect on the probability of chronic lung 
disease. Similarly, those who experienced poor health when they were 
younger (the question asks the participant to recall their health from 
birth to age 14) were more likely to have chronic lung disease. 

In some cases, however, there was no clear association between 
characteristics of the participants and the probability of chronic lung 
disease. For example, there was no clear pattern of results in relation to 
living outside of Ireland (prior to participation in TILDA) or growing up 
in a poor family. One anomalous finding is that growing up in an urban 
area was associated with a lower probability of developing chronic lung 
disease. One might have thought that exposure to air pollution in urban 
areas during childhood/youth would have a negative association with 
chronic lung health in later life. However, in Ireland, exposure to indoor 

Table 7 
Effect of living in area with smoky coal ban on probability of lung disease.   

Sample n AME Panel 
Probit 
Random 
Effects 

Linear 
Probability 
Model Random 
Effects 

Linear 
Probability 
Model Fixed 
Effects 

(1) All areas 
(incl. cities, 
towns & 
rural) 

22,755 -0.0167 -0.0170 * -0.0170 *    

(0.0139) (0.0089) (0.0089) 
(2) Cities & 

towns (excl. 
rural) 

9365 -0.0267 * -0.0198 * -0.0198 *    

(0.0139) (0.0103) (0.0103) 
(3) Towns only 2305 -0.0490 * -0.0321 * * -0.0320 * *    

(0.0281) (0.0140) (0.0141) 
(4) Towns only 

and control 
variables 

2270 -0.0477 * * -0.0335 * * -0.0329 * *  

^  (0.0177) (0.0156) (0.0161) 
(5) Towns only, 

control 
variables 

2270 -0.0486 * * -0.0341 * * -0.0335 * *  

& whether 
uses open 
fire in home  

(0.0178) (0.0157) (0.0162) 

Standard errors (in parentheses) are clustered by electoral division. 
Sample comprises only those who remained in the same home between Wave 1 
and Wave 5. 
^Controlling for gender, age, education, wealth, smoking, health when young, 
family finances when young, rural dweller when young, lived away from 
Ireland, age of building, log population density, years lived in home. 
* ** , * *, * corresponds to significance at 1%, 5% and 10% level. 
n = number of participants observed across five waves. 

Table 8 
Average Marginal Effects of relevant characteristics on probability of lung 
disease.   

AME Std. 
Err. 

Significance 

Living in area with smoky coal ban  -0.048  0.018 * * 
Male  -0.041  0.015 * ** 
Age  0.002  0.001 * ** 
Education: (Ref. cat. Primary)      
Secondary  -0.040  0.024 * 
Post secondary  -0.016  0.026  
Wealth: (Ref. cat. 1st Quintile)      
2nd Quintile  0.004  0.010  
3rd Quintile  -0.002  0.011  
4th Quintile  -0.046  0.019 * * 
5th Quintile  -0.019  0.017  
Refused/Don’t Know  0.001  0.011  
Smoker: (Ref. cat. Never)      
Past  0.056  0.013 * ** 
Current  0.049  0.019 * * 
Health when young: (Ref. cat. Excellent)      
Very good  0.018  0.017  
Good  0.013  0.022  
Fair  0.060  0.024 * * 
Poor  0.103  0.040 * ** 
Lived away from Ireland  -0.006  0.015  
Lived in urban area when young  -0.034  0.012 * ** 
Family finances when young: (Ref. cat. Well- 

off)      
Average  0.003  0.025  
Poor  0.031  0.026  
Don’t Know  -0.016  0.043  
Refused  0.003  0.025  
Log of population density  0.027  0.044  
Years lived in home  -0.002  0.001 * * 
Year home built: (Ref. cat. Before 1919)      
1919–1940  -0.044  0.035  
1941–1960  -0.055  0.047  
1961–1970  -0.032  0.046  
1971–1980  -0.053  0.050  
1981–1990  -0.039  0.045  
1991–2000  -0.071  0.063  
2001 or later  -0.077  0.049  
Don’t Know  -0.059  0.046  

* ** , * *, * corresponds to significance at 1%, 5% and 10% level. 
These estimates correspond to the first column of row (4) of Table 7. 
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pollution in the home might have been greater for rural dwellers who 
belong to the generations in the TILDA sample because of a lack of 
electricity in rural areas before the mid-1960 s. In 1946, two thirds of 
Irish homes, mostly in rural areas, did not have electricity, so both 
heating and cooking relied on solid fuels. The scheme of rural electri-
fication took place between 1946 and 1964. By 1975, 99% of homes had 
electricity. For a history of rural electrification, see Shiels (2003). Thus, 
the negative association between growing up in a rural area and chronic 
lung disease in later life could be due to greater exposure to harmful 
indoor pollution. 

In relation to the local area characteristics, population density did 
not have a significant effect on chronic lung disease. However, partici-
pants’ housing did affect the probability of chronic lung disease. For 
example, the number of years lived in the home had a negative effect. 
This negative effect of years lived in the home could represent reverse 
causality. Perhaps people move home if they are suffering from chronic 
lung disease, either because they believe that housing conditions (e.g. 
dampness, etc.) affect their health or because they want to live in home 
that is easier to live in (e.g. easier mobility within the home or outside 
the home in the local area). In relation to the age of the home, we found 
that people who lived in older homes were more likely to develop 
chronic lung disease, a finding most likely explained by the improve-
ments in building standards having a positive effect on health. 

Returning to Table 7, in the final row, we present our estimates from 
when we included an indicator of whether the participant used an open 
fire as their main source of heating. On the one hand, controlling for 
indoor open fire usage is desirable because indoor air pollution likely 
has a deleterious effect on health, especially lung health. For example, 
using these same data, Maher et al. (2021) found a negative association 
between cognitive function and indoor open fire usage. 

On the other hand, including open fire usage is problematic, so we 
did not include this variable in most of our models. First, there is likely a 
two-way relationship between open fire usage and lung health. For 
example, a person whose lung health is deteriorating might decide to 
replace their open fire with a non-solid fuel heating system. Second, 
open fire usage might be affected by smoky coal bans. Once smoky coal 
was banned, open fire users were still permitted to burn “smokeless” 
coal or peat/wood; however, the introduction of the ban might have 
caused people to replace their open fire with a different heating system. 
However, as discussed above, the data in Table 3 suggest that most 
people did not switch to (other) solid fuels in response to the ban being 
extended to their area. 

Lastly, another downside of including an indicator for open fire 
usage is data availability. The survey question about open fire usage 
only began to appear in the second wave of TILDA and even then, the 
question appeared in a self-completion questionnaire that was not part 
of the main TILDA computer-aided personal interview. This self- 
completion questionnaire had a lower response rate relative to the 
main questionnaire because participants had to post their completed 
questionnaires to the TILDA research centre. Approximately 85% of 
participants responded to the self-completion questionnaire in addition 
to the main questionnaire. To address this missing information, the es-
timates in the final row of Table 7 correspond to a model that controls 
for indoor open fire usage and an indicator of whether indoor fire usage 
was unknown. In any case, regardless of these considerations, the esti-
mates in the final row of Table 7 are very similar to those in the pre-
ceding rows. 

In Table 9, we present estimates of the effect of the ban when 
excluding those reporting chronic lung disease in Wave 1. The previous 
models captured a combination of prior prevalence and new incidence 
of chronic lung disease. By restricting the sample to those who did not 
have chronic lung disease at Wave 1, we were estimating the effect of the 
ban on the incidence of new cases. The overall pattern of the results is 
that the estimates are smaller than the previous estimates. For example, 
in the linear probability models, the estimates are about one third 
smaller than those generated using the entire sample which includes 

those who had lung disease in the first wave. We found a smaller but 
statistically significant effect of between –0.96% and –2.5 percentage 
points in the linear probability models depending on the samples used. 

6. Discussion 

6.1. Common trends 

The validity of our research design rests on the assumption of parallel 
trends in health outcomes had the treatment not occurred. This 
assumption is unprovable, but showing parallel trends for the different 
areas before the treatment is at least reassuring about the validity of the 
estimates. To this end, we examined hospital admissions data. The data 
were from the Hospital In-Patient Enquiry database and generously 
provided to us by the Healthcare Pricing Office of the Republic of 
Ireland. We examined aggregate trends, by patients’ county of resi-
dence, of hospitalisations due to diseases of the respiratory systems as a 
percentage of total annual hospitalisations.10 Unfortunately, hospital- 
level data were not available, which is problematic because it would 
be better to observe changes in hospitalisation at a particular hospital 
when the ban was extended to the nearby town(s). Furthermore, data 
from before 2005 were not available. Lastly, the hospitalisation data 
refer to the general population and not only the over-50 s as represented 
in the TILDA dataset. 

We categorised the patients’ county of residence by timing of 
extension of smoky coal bans. The first category comprises counties with 
mostly urban populations where the ban was already in place before 

Table 9 
Effect of living in area with smoky coal ban on probability of lung disease 
(sample excludes those with lung disease in Wave 1).   

N AME Panel 
Probit 
Random 
Effects 

Linear 
Probability 
Model Random 
Effects 

Linear 
Probability 
Model Fixed 
Effects 

(1) All 21,990 -0.0116 
(0.0223) 

-0.0097 ** 
(0.0046) 

-0.0096 ** 
(0.0046) 

(2) Cities and 
Towns 

9040 -0.0130 
(0.0248) 

-0.0128 ** 
(0.0057) 

-0.0127 ** 
(0.0058) 

(3) Towns only 2235 -0.0277 
(0.0431) 

-0.0219 ** 
(0.0093) 

-0.0220 ** 
(0.0093) 

(4) Towns only 
and control 
variables 

2200 -0.0397 
(0.0285) 

-0.0227 ** 
(0.0106) 

-0.0243 ** 
(0.0105) 

(5) Towns only, 
control 
variables and 
whether uses 
open fire in 
home 

2200 -0.0403 
(0.0298) 

-0.0235 ** 
(0.0108) 

-0.0250 ** 
(0.0107) 

Standard errors (in parentheses) are clustered by electoral division. 
Sample comprises only those who remained in same home between Wave 1 and 
Wave 5. 
^Controlling for gender, age, education, wealth, smoking, health when young, 
family finances when young, rural dweller when young, lived away from 
Ireland, age of building, log population density, years lived in home. 
* ** , * *, * corresponds to significance at 1%, 5% and 10% level. 

10 Diagnosis and Procedures are coded using ICD-10-AM/ACHI/ACS (For 
2005–2008, coded using 4th edition, for 2009–2010 coded using 6th edition. 
Diseases of the Respiratory System in the ICD as covered by codes J00-J99. 
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2005.11 The second category comprises counties, which have largely 
rural populations, where either the ban was never introduced or intro-
duced after the TILDA data were collected.12 The third category com-
prises mixed urban/rural counties which have at least one town where a 
smoky coal ban was first introduced before 2005.13 Finally, the fourth 
category comprises mixed urban/rural counties which have at least one 
town where the ban was first introduced during the 2010 s14 

As one can see from Fig. 1, the percentage of respiratory cases differs 
according to the category of county. However, broadly speaking, the 
trends in respiratory hospitalisations were similar and indeed the levels 
were too. One can see from Fig. 1 that the percentage of respiratory cases 
fell during the second half of the 2000 s for each category. Furthermore, 
for all four categories the most significant decline was between 2005 and 
2006. There are some minor differences in trends between 2007 and 
2010. For example, among the counties to which the ban was never 
extended and the mixed counties to where the ban was extended after 
2010, the downwards trends tended to continue after 2006. For the 
urban counties and mixed counties to where the ban was extended 
during the 2000 s, the percentage of respiratory cases increased again 
slightly after 2006. However, broadly speaking, the assumption of par-
allel trends between treatment units prior to the collection of the TILDA 
data seems plausible. 

Another approach to investigating the plausibility of assuming par-
allel trends is to estimate a model with leads and lags of the treatment. 
For an accessible discussion of this so-called event-study approach, see 
Cunningham (2021, p.425). Using the TILDA data, we estimated the 
following model. 

P(yitk = 1|Areak,Yeart,Dk,τ)

= ηi + αk + βt +
∑− 1

τ=− 5
λτDk,τ +

∑7

τ=1
λτDk,τ + εitk  

Where the λτ coefficients are the lead (τ < 0) and lagged (τ > 0) treat-
ment effects with the treatment taking place at τ = 0. Thus, for example, 
for a respondent i living in an area, k, where the ban was extended 
during 2013, Dk,− 1= 1 when we observe them in 2012 and Dk,− 1= 0 in 
all other years. And, for example, for the same respondent, Dk,1= 1 when 
we observe them in 2014 and Dk,1= 0 in all other years. The range of τ 
from − 5 to –7 was determined by data availability. 

Fig. 2, produced using Stata’s eventdd command (Clarke and 
Tapia-Schythe, 2021), displays the lead and lag coefficients and their 
confidence intervals. From Fig. 2, there is a clear downward shift in the 
estimated treatment effect on the probability of chronic lung disease 
following the implementation of the ban, although that probability 
moves towards zero a few years after the ban. 

Before the ban was extended, however, the difference in the proba-
bility of chronic lung disease between treatment and control is consis-
tently between zero and five percentage points. Thus, compared to the 
control areas, the treatment areas had consistently higher levels of 
chronic lung disease prior to the ban being extended. Thus, the esti-
mated effect on chronic lung disease due to extending the ban shown in 

our main tables of results (Tables 7 and 9) could represent an underes-
timate of the actual effect. 

6.2. Staggered implementation of policy 

Another aspect of the study design is the staggered implementation 
of the policy in different areas over time. Recently, the appropriate 
methodology for these types of studies has been discussed (for example, 
see Cunningham, 2021). Such studies can be seen as an extension of the 
simple “2 × 2” difference-in-difference design with a treatment and 
control group observed before and after the introduction of a policy. 
However, recent methodological research has shown the complexity of 
extending the difference-in-difference design to situations where a pol-
icy is implemented in multiple areas over time, a so-called two-way fixed 
effects design. For a discussion, see Goodman-Bacon (2021) and de 
Chaisemartin and D’Haultfœuille (2019). The insight of this recent 
methodological research is that the estimated difference-in-difference 
effect from a regression model with fixed effects for each area and 
time period is a weighted average of each separate average treatment 
effect from the difference-in-difference observed as the policy is 
extended to more areas. This weighted average can be a misleading 
estimate of the causal effect of the policy if there is heterogeneity in the 
effects. Indeed, in an extreme case, the weighted average could have the 
opposite sign to each separate average treatment effect. 

Table 10 shows the decomposition of Goodman-Bacon (2021) 
applied to our difference-in-difference estimates. In all cases in the first 
panel, the average treatment effect is negative, ranging from − 0.011 to 
− 0.041. When we use the entire sample of people living in cities, towns 
and rural areas, the greatest weighting, 0.6, corresponds to the estimate 
when the comparison group are never treated (the smaller towns and the 
rural areas). The second largest weight, 0.385, corresponds to the esti-
mate when the comparison group are always treated (in this case, the 
cities and larger towns). Much less weight is given to the estimates that 
use the medium sized towns that received the treatment earlier or later 
as the comparison group. 

In the second panel of Table 10, we display the decomposition when 
omitting the rural areas, which were never treated. In this decomposi-
tion, the estimate where the areas that have always been treated (cities 
and large towns) is the comparison group has the largest weighting. 
Finally, in the third panel, we display the decomposition when omitting 
both rural areas and cities. In this case, the estimate which uses the 
already treated (large towns) as a comparison group gets the largest 
weighting, followed by the estimate that has the never treated (towns 
smaller than 10,000 inhabitants) as the comparison group. However, 
regardless of the weighting, the average treatment effects are of a similar 
magnitude. 

6.3. Effect on mortality and other outcomes 

Another important aspect of the ban on smoky coal is its possible 
effect on mortality. If the ban affected mortality, and not just morbidity, 
then we are in a sense understating the effect of the ban by examining 
only those present in every wave of TILDA. Thus, we examined the 
possible effect of the ban on mortality by examining TILDA records on 
participant deaths, which are based on interviews with next of kin. Of 
the original TILDA participants, 1051 were confirmed as having died, a 
death rate of around 12% when expressed as a percentage of those 
present in the first wave of TILDA. 

A key finding from Table 11 is that deaths were unrelated to the 
timing of the extension of the ban. In the left-hand panel of Table 11, we 
show the estimated effect of the ban in models with death as the 
outcome variable. As we can see, the coefficients are mostly positive. 

11 These are the counties of Dublin, Cork, Limerick, Galway and Waterford. 
The cities in these counties introduced bans between 1990 and 2000. Nearly 
98% of County Dublin’s population (i.e. Fingal, South Dublin, Dublin City and 
Dun Laoghaire-Rathdown combined) live in urban areas. Unfortunately, our 
hospital admissions data by county of residence were not disaggregated by 
county and city for Cork, Limerick, Galway and Waterford. Rural parts of these 
counties were not covered by the ban, but the majority of people, 57%, living in 
these counties live in urban areas. We also included County Louth in this 
category because nearly 70% of its population live in either Dundalk or Drog-
heda where the ban was extended during 1998.  
12 These were Cavan, Leitrim, Longford, Mayo, Meath, Monaghan, Offaly, and 

Roscommon.  
13 These were Kerry, Kildare, Kilkenny, Sligo, Wexford, and Wicklow.  
14 These were Carlow, Clare, Donegal, Laois, Tipperary, and Westmeath. 
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However, in all cases, the estimated coefficients were not statistically 
significant.15 Thus, we can conclude that the ban did not significantly 
affect mortality among TILDA participants. Perhaps this conclusion is 
not surprising given that it might take a few years for the bans to affect 
mortality because people can live with chronic lung disease for some 
time before passing away. Lastly, in relation to mortality, it was not 
possible to stratify the analysis according to different causes of death 
because the numbers in many categories were small and, in some cases, 
cause of death was unknown. 

That we found no evidence that mortality was affected by the 
extension of the ban contrasts with Clancy et. al. (2002) who found 
significant reductions in pollution related deaths when comparing death 
rates before and after the introduction of the ban in Dublin City in 1990. 
They found non-trauma death rates decreased by 5.7%, respiratory 
deaths by 15.5%, and cardiovascular deaths by 10.3%. The difference in 
our findings is not surprising given the context. Levels of air pollution 
were much higher in the 1980 s, and Dublin, in particular, was highly 
polluted before the ban. Black soot concentrations (highly correlated 
with PM2.5) fell by 70% after the imposition of the ban. Furthermore, 
Dublin was and remains much more densely populated than the towns 
where the ban was extended to, so one would have additional reason not 
to expect the bans of the 2010 s to have had the same effect on mortality. 

More broadly, attrition from the sample occurred not just due to 
mortality. Another concern one might have is potential non-random 
withdrawal from the study. For example, people who became unwell, 
perhaps due to chronic lung disease, might have decided to withdraw 
from the survey. Thus, participants might withdraw from the study at 
different rates in different areas affected by the ban and this differential 
withdrawal might be correlated with health outcomes. For example, 
suppose people living in remote rural areas (where the ban was never 
extended) were more likely to withdraw from the study and these people 
had worse health. In that case, we would be understating the effect of the 
ban. Thus, it is important to examine withdrawal from the study. 

Fig. 1. Hospital admissions due to disease of the respiratory system as a percentage of total admissions by county of residence of patient. 
Source: Hospital In-Patient Enquiry database collect by the Healthcare Pricing Office of the Republic of Ireland. 

Fig. 2. Leads and lags of effect of smoky coal ban on chronic lung disease.  

Table 10 
Decomposition of D-i-D estimates by timing of treatment.   

(1) (2) (3)  

Cities, Towns and 
Rural Areas 

Cities & Towns 
Only 

Towns Only  

Weight ATT Weight ATT Weight ATT 

Earlier T vs. later C  0.003  -0.041  0.006  -0.052  0.035  -0.052 
Later T vs. earlier C  0.009  -0.011  0.017  -0.016  0.098  -0.016 
T vs. never treated  0.603  -0.014  0.046  -0.038  0.259  -0.038 
T vs. already 

treated  
0.385  -0.021  0.931  -0.019  0.608  -0.031 

T = Treatment; C = Comparison 
Generated using ddtiming Stata command (Goldring, 2019), which decomposes 
d-i-d estimates with variation in treatment timing based on Goodman-Bacon 
(2021). 

15 We present the results of only the linear panel models because in some cases 
the maximum likelihood estimation would not converge for the panel probit 
models when using Stata 16.1. 
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Of the original sample of 8504 participants, 2636 people withdrew 
from the study (see Table 3). Relative to similar studies, the attrition rate 
is favourable. For example, in the English Longitudinal Study on Ageing 
(ELSA), there was a 22% attrition rate from the first to second wave 
(Steptoe et al., 2013), whereas the TILDA attrition rate was 14%. 
However, it should be noted that the other studies recruited refreshment 
samples after their first few waves, whereas the first five waves of TILDA 
relied on the original sample alone. 

In any case, withdrawal from the sample was not correlated with the 
timing of the extension of the ban. The middle panel of Table 11 shows 
the results from estimating models when withdrawal from the sample 
was the outcome variable. While the coefficients are negative, they were 
not statistically significant. 

Finally, a few TILDA participants (262 – as shown in Table 3) were 
not in our main sample because they moved address. Unfortunately, 
their new addresses are unavailable to the authors of this study. Even if 
these addresses were available, using variation in address to identify the 
effect of the ban might not be valid because not only were there very few 
changes, but these changes might be due to health shocks. In any case, in 
the right-hand panel of Table 11, we present estimates of the effect of the 
policy on changing address. We show that the timing of the policy was 
not associated with changes of address. 

We also conducted the same analysis on the effect of the ban on other 
aspects of respiratory health. The participants were asked separately 
about diagnoses of asthma. When we repeated the above analysis with 
the probability of asthma as our outcome of interest, we did not find any 
statistically significant effect of smoky coal bans. It is possible we did not 
find an effect because chronic lung diseases such as chronic bronchitis or 
emphysema are often more serious conditions than asthma, so perhaps 
the lack of statistical effect of the ban on asthma is due to a dose- 
response mechanism. Or perhaps we did not find an effect because 
asthma is often diagnosed in childhood, in contrast to chronic lung 
diseases such as chronic bronchitis or emphysema. For the sake of 
brevity, results of this additional analysis are omitted from this paper. 
They are available on request from the authors. 

A previous analysis of the relationship between NO2 concentrations 
and asthma in the TILDA population (Carthy et al., 2020) found that a 
1ppb increase in NO2 concentrations was associated with a 0.24 per-
centage point increase in the prevalence of doctor-diagnosed asthma 
(baseline prevalence of 9%. Comparing the magnitude of results of this 
analysis with that of Carthy et al. (2020) is difficult due to differences in 
the environmental exposure and health outcomes examined, as well as 
the relevant population and study design and methodology. The main 
source of NO2 is emissions from diesel vehicles, while the smoky coal 
ban that is examined in this paper was designed to affect emissions from 
solid fuel burning, primarily PM2.5. 

6.4. Effect on window around threshold 

Next, we examined the potential for endogeneity in relation to the 

policy. In our estimated models, we controlled for a variety of 
individual-level factors related to health such as gender, age, education, 
wealth, smoking behaviour, migration history, and health and socio-
economic status when young. Additionally, in relation to the partici-
pant’s home, we controlled for how long they have lived there and how 
the age of the building. Furthermore, we also used panel data methods to 
control for fixed unobservable factors affecting health. 

Even after controlling for these observable and fixed unobservable 
factors, it is possible that those living in the areas where the ban was 
implemented earlier, areas with larger populations, have different 
health status and exposure to pollution compared to those who living in 
areas where the ban was implemented later, areas with smaller pop-
ulations. For example, it is likely that those living in larger towns are 
more exposed to pollutants from traffic. In which case, we might be 
underestimating the true effect of the smoky coal ban, especially if 
traffic pollution became worse in larger towns relative to smaller towns. 

To counter this problem, when estimating our models, we controlled 
for the log of population density of the town. A reason for doing so is that 
controlling for population density is arguably a better way to account for 
exposure to pollutants compared to controlling for population, which 
was the basis for the assignment of the ban. When the TILDA data were 
being collected, a cut-off of a population of 15,000 was used to assign 
the ban to towns (later the cut-off was lowered to a population of 
10,000). 

However, to explore whether the estimated effect of the ban is 
affected by the population of the towns where it was implemented, in  
Table 12 we present estimates when examining only those living in 
towns with populations of a given range around the cut-off of 15,000.16 

One can see the estimated effect is always negative, but is quite small 
and not significant for a range of 11,000–19,000 inhabitants. However, 
as one can see, when the range becomes larger, beginning at 
10,000–20,000 inhabitants, the estimated effect of the ban is statistically 
significant and is around the same magnitude as the effect estimated 
using the entire sample (around -2.5 to -3 percentage points). The lack of 
statistical significance for sample living in towns with populations 
within a range of 11,000–19,000 inhabitants or narrower could be due 
to lack of statistical power. For those estimates, the number of data- 
points is fewer than 1000, representing fewer than 200 people 
observed longitudinally. 

6.5. Early-life risk factors 

Finally, while the main risk factor for chronic lung disease is active 
smoking (followed by exposure to ambient air pollution) (Safiri et al., 
2022), there is some evidence to suggest that adult lung disease can have 

Table 11 
Effect of living in area with smoky coal ban on probability of attrition from sample.    

Probability of Death Probability of Withdrawal from Study Probability of Changing Address  

Sample n Linear 
Model 
Fixed 
Effects 

Linear 
Model 
Random 
Effects 

n Linear 
Model 
Fixed 
Effects 

Linear 
Model 
Random 
Effects 

n Linear 
Model 
Fixed 
Effects 

Linear 
Model 
Random 
Effects 

(1) All areas 
(cities, towns & rural) 

28,010 0.0031 0.0062 35,935 -0.0107 -0.0063 24,070 -0.0021 -0.0021    

(0.0193) (0.0201)  (0.0217) (0.0217)  (0.0086) (0.0086) 
(2) Including cities & towns 11,525 0.0044 0.0074 14,675 -0.0041 -0.0005 9895 0.0033 0.0033    

(0.0223) (0.0231)  (0.0269) (0.0268)  (0.0098) (0.0099) 
(3) Towns only 2845 0.0064 0.0114 3695 -0.0143 -0.0087 2480 -0.0106 -0.0106    

(0.0249) (0.0261)  (0.0292) (0.0292)  (0.0120) (0.0121) 

Standard errors (in parentheses) are clustered by electoral division. 
Reference category for each outcome (i.e., death, withdrawal or changing address) is being in sample used in main analysis (i.e. in all five waves at the same address). 

16 Again, we present the results of only the linear panel models because in 
some cases the maximum likelihood estimation would not converge for the 
panel probit models when using Stata 16.1. 
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its origins in prenatal and early life (Deolmi et al., 2023). Parental his-
tory of lung disease, exposure to passive smoking and air pollution 
during childhood and acute viral infections can predispose an individual 
to the development and exacerbation of chronic lung disease in later life 
(Deolmi et al., 2023; Duijts et al., 2014; Postma et al., 2015). TILDA 
respondents are first surveyed in middle- and older-age, with the result 
that information on their early life conditions is limited. However, we 
control for several aspects of early life conditions, such as family so-
cioeconomic background, whether the respondent lived in a rural or 
urban area growing up and childhood health status. In addition, for our 
identification strategy to be violated, other unobserved early life con-
ditions linked to the potential development of chronic lung disease (e.g., 
maternal smoking in pregnancy) would have to vary in accordance with 
exposure to the policy change (i.e., the smoky coal ban). Given the way 
in which the smoky coal ban was extended (i.e., over time, based on 
population size of towns), this is considered unlikely. 

7. Summary and Conclusion 

We estimated the effect of bans on sale and use of so-called “smoky 
coal” on the probability of chronic lung disease among older people. To 
overcome potential sorting of healthy and unhealthy people into areas 
with better or worse air pollution, our identification strategy relied on 
the phased extension of smoky coal bans to Irish towns after 2010. 

We examined five waves of The Irish Longitudinal Study on Ageing 
(TILDA), a large nationally representative survey that contains detailed 
information on health, housing, and socio-economic status. We 
controlled for relevant factors such as gender, age, education, wealth, 
smoking history, circumstances in childhood, and housing quality. We 
found that smoky coal bans reduced the prevalence of chronic lung 
disease by between three and five percentage points. In models where 
we estimated the effect of the ban on the incidence of new cases of 
chronic lung disease, rather than existing cases, we found an effect of 

between -0.96 and − 2.5 percentage points. Our finding was robust to 
estimating the model using different sub-samples that differentiated 
between cities, large towns, small towns, and rural areas. Our estimated 
effect was about the same across different decompositions of the 
difference-in-difference design. Furthermore, there was no effect of the 
policy on mortality or other forms of attrition from the sample. Finally, 
we estimated a negative effect when examining subsamples within a 
range of local populations around the threshold for imposing the ban. A 
limitation of our estimated models is that they do not allow for spatial 
dependence. For example, PM2.5 concentrations in areas close to where 
the ban extended might have fallen too. Modelling the spatial dispersion 
of PM as a result of the bans has been left for future work as it likely to be 
a complex function of seasonal wind patterns. 

Based on our results, we suggest policy makers ban smoky coal to 
protect the lung health of older people, although policy makers would 
need to consider the wider costs (e.g. replacing heating systems) and 
distributional effects of such a ban. 
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