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Abstract This paper evaluates the predictive power
of building energy performance certificates on home
heat loss. Improving the insulative capacity of resi-
dential properties is a policy priority in many markets,
with building energy performance certificates serving
as a benchmark. We exploit a rich panel dataset of
high-frequency thermostat readings, coupled with data
detailing weather and building characteristics, to iden-
tify an ex-post metric of heat loss. Our results show a
significant effect of building energy performance rat-
ing on indoor temperature, a proxy for home heat loss.
However, we do not find evidence of a distinct gra-
dient in performance between building energy rating
categories, as suggested by ex-ante estimates of home
heat loss. The finding highlights that directly linking
policy targets to a particular energy performance cer-
tificate standard can lead to an outcome that deviates
significantly from what is anticipated.
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1 Introduction

This paper evaluates the effects of mandatory building
energy performance certificates (EPCs) on home heat
loss in existing residential buildings, by focusing on
the influence of building fabric while excluding occu-
pants’ behaviour. In order to improve building energy
efficiency in member states, the European Union (EU)
has adopted Energy Performance of Buildings Direc-
tive which provides guidance and information for buy-
ers and tenants through energy performance certifi-
cates (European Commission, 2002, 2021). Building
energy performance ratings, such as those under the
EU’s ‘Energy Performance of Building Directive’ and
the ‘Energy Star Certified Homes’ in the USA have
been a central element of energy policies to promote
investment in energy efficiency and to meet targets of
greenhouse gas emissions reduction.1

EPCs are broadly used as a policy metric within the
residential sector for achieving ambitious climate tar-
gets (Economidou et al., 2020). As part of its build-
ing decarbonisation strategy, the Irish government, for

1 For details of the European Union (EU) Energy Per-
formance of Buildings Directive: see https://energy.ec.
europa.eu/topics/energy-efficiency/energy-efficient-buildings/
energy-performance-buildings-directive.
For different kinds of energy certifications in the USA (including
buildings), see https://www.energystar.gov/about.
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instance, has set a goal to upgrade half a million exist-
ing homes (≈ 25%) to a B2 rating by 2030, through an
e8 billion retrofit scheme (CAP, 2021). EPCs can also
be used to identify areas at a high risk of fuel poverty
(Camboni et al., 2021, Few et al., 2023) and determine
eligibility for home retrofit grants (Semple and Jenk-
ins, 2020, Van Hove et al., 2023). At the household
level, EPCs serve as benchmarks for property reno-
vation and decisions on buying, renting, and selling
properties (Fregonara et al., 2017, Li et al., 2019).

However, EPCs are based on projections from engi-
neering models, which use physical principles to calcu-
late thermal dynamics and energy behaviour on a build-
ing (Foucquier et al., 2013, Pérez-Lombard et al., 2009,
Zhao and Magoulès, 2012). In generating the EPCs,
these simulation models assume standardised values
for the number of occupants, energy use schedules,
and other parameters (Amasyali and El-Gohary, 2018,
Wenninger and Wiethe, 2021). By their nature, EPCs do
not, therefore, capture the full nuance of actual energy
performance. There are also significant variations in
the methods and input data used to assess the energy
performance of residential buildings across European
countries (Semple and Jenkins, 2020). Li et al. (2019)
discuss the challenges and issues surrounding EPCs
and their limitations in capturing the full nuance of
energy performance, leading to a discrepancy between
expected and observed energy performance (Van den
Brom et al., 2018, Coyne and Denny, 2021, Cozza et
al., 2020, De Wilde, 2014, Gram-Hanssen and Georg,
2018, Majcen et al., 2013, Zou et al., 2018). This differ-
ence is commonly known as the Energy Performance
Gap. To improve energy consumption prediction accu-
racy of EPCs and overcome engineering model short-
comings, recent research has employed data-driven
methods (e.g. Amasyali and El-Gohary, 2018, Bour-
deau et al., 2019, Mutani and Todeschi, 2021, Pasichnyi
et al., 2019, Wenninger and Wiethe, 2021).

Occupant behaviour is widely discussed in the lit-
erature as a main driving factor of the gap between
expected and actual energy use (e.g., Aydin et al. 2017,
Fowlie et al. 2018, Gillingham et al. 2020, Sorrell et al.
2009, Sunikka-Blank and Galvin 2012). The behaviour
of occupants regarding the temperature at which they
heat their dwelling, duration, and timing of heating
may differ from the standardised assumptions made
in projection models (Van Hove et al., 2023). Many
of the empirical studies comparing ex-ante projected
energy performance with actual energy consumption

are unable to fully disentangle building fabric perfor-
mance from the intensity of occupants’ behavioural
effects (Van den Brom et al., 2018, Coyne and Denny,
2021, Cozza et al., 2020, De Wilde, 2014, Gram-
Hanssen and Georg, 2018, Majcen et al., 2013, Zou
et al., 2018). For instance, energy consumption data
will reflect occupants’ preferences for ambient internal
temperature, or hot water demand, which are distinct
from building fabric performance. Understanding the
potential magnitude of such attenuation is important
to validate the projected estimates of climate impact
measures.

Our paper provides this contribution to the energy
performance gap literature by isolating building fab-
ric performance from occupant behavioural effects in
order to examine the relationship between building fab-
ric performance and energy performance certificate rat-
ings. This is relevant as some recent ex-post evalua-
tions have cautioned policymakers relying on theoret-
ical energy performance certificates’ energy use as a
mechanism to deliver real energy savings or cast doubt
on the projected benefits of an energy efficiency invest-
ment (e.g. Coyne and Denny, 2021, Davis et al., 2020,
Fowlie et al., 2018, Levinson, 2016, Van Hove et al.,
2023).

This study conducts an ex-post evaluation of the
effect of EPCs on home heat loss in existing residen-
tial buildings. As direct measurement of heat loss is
not possible, we use indoor temperature as a proxy. We
exploit a high-frequency panel dataset of indoor tem-
perature and heating system operation over a 2-year
period. This is in contrast to many studies that rely on
(bi-)monthly metered energy consumption data. These
data are matched with information on weather and
property energy performance, as measured by EPCs.
To isolate building fabric performance from occupant
behavioural impacts, the analysis focuses on data from
the early morning hours (mid-night–6:00 a.m.) when
the heating system is confirmed as being turned off
but and behavioural impacts, such as secondary heat-
ing, are less likely to arise. This allows us to clearly
evaluate the impact of building fabric on temperature
change within the dwelling and the insulative perfor-
mance of the building fabric. Dwellings with well-
insulated building fabrics are expected to have a lower
drop in indoor temperature, a proxy for heat loss, con-
trolling for external weather variables and abstracting
from occupants’ behaviour. By examining the building
fabric’s performance, we aim to evaluate the building
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material’s ability to retain heat and minimise heat loss,
and therefore, building envelope is more relevant in the
context of our study. This is particularly important for
evaluating the energy efficiency of a building in cases
where occupant behaviour deviates significantly from
the assumed model simulation.

To estimate how good EPCs are in predicting
actual performance, we model indoor temperature
at a given hour as a function of external temper-
ature, relative humidity and wind speed, indicators
for building energy performance rating, and a pre-
vious hour’s indoor temperature. In our panel data
modeling approach, we incorporate dynamic panel
data model specifications that take into account vari-
ations in observed and unobserved time-invariant vari-
ables, such as the construction of the building fab-
rics, size and type of the dwelling, and efficiency
and size of the heating unit, across the dwellings’
EPCs.

Our results show that EPCs significantly affect
indoor temperature, a proxy for home heat loss. How-
ever, we do not find evidence to support the distinct
gradient along the building energy performance scales
as suggested by ex-ante estimates of home heat loss. In
a related study, Few et al. (2023) matched homes based
on the assumptions that EPC projections depend on
factors, such as occupancy, thermostat set point, and
whole home heating, and find that projected energy
use exceeding actual energy use, with the gap widen-
ing with a decrease in the energy efficiency rating of
homes. Our findings support the notion that in addi-
tion to occupants’ behaviour, other factors such as the
use of default thermal transmittance in the absence of
required data (Ahern and Norton, 2020, Raushan et
al., 2022), measurement errors, and uncertainty in data
quality (Abela et al., 2016, Christensen et al., 2021,
Crawley et al., 2019, Hardy and Glew, 2019, Mangold
et al., 2015) contribute to the discrepancy between pro-
jected and actual energy use.

The remainder of this paper is structured as follows:
the ‘Institutional setting’ section presents the insti-
tutional setting. The ‘Data’ section outlines the data
employed in this analysis. The ‘Methodology’ section
provides the empirical strategy. The ‘Results’ section
presents the results. The ‘Discussion’ section discusses
the results. Finally, the ‘Conclusions’ section concludes
the paper.

2 Institutional setting

The EU Energy Performance of Buildings Directive
(EPBD) was first introduced in 2002 and recast in
2010 and 2021, with the aim of improving the energy
performance of buildings in the member states (Euro-
pean Commission, 2002, 2021). Among other mea-
sures, the EPBD requires EU Member States to pro-
vide information on a building’s energy performance
through the use of Energy Performance Certificates.
The rationale behind this requirement is straightfor-
ward: salient information on a dwelling’s energy per-
formance can help guide individual decision-making
toward the achievement of EPBD energy efficiency
goals.

EPCs provide information to consumers on build-
ings they plan to purchase or rent. It includes an energy
performance rating and recommendations for cost-
effective improvements. Certificates must be included
in all advertisements in commercial media when a
building is offered for sale or rent. This must also be
shown to prospective tenants or buyers when a build-
ing is being constructed, sold, or rented. Following the
EU EPBD, Ireland adopted a mandatory energy perfor-
mance certificate program. This program began on the
first of January 2009, and the certificate is known as the
Building Energy Rating (BER). By law, all new homes
and homes for sale or rent are obliged to have a BER
certificate for the purpose of providing information in
advance to prospective tenants and purchasers of the
home (SEAI, 2022a).

For each building, the BER certificate provides
an estimation of energy use associated with lighting,
ventilation, space heating, and water heating (SEAI,
2022b). It does not include electricity used for cooking,
refrigeration, laundry, and entertainment. The energy
performance of a building is expressed in terms of
primary energy use per squared meter of floor area
per year (kWh/m2/yr) on a 15-scale from A1 to G
and the associated carbon dioxide (CO2) emissions
in kgCO2/m2/yr. Figure 3 demonstrates how the 15
BER scales (A1-G) map to the BER in kWh/m2/yr.
The rating scale is similar to the EU energy label-
ing for products subject to energy labeling regulation
(EC, 2017). A1-rated properties, with an energy per-
formance rating of up to 25 kWh/m2/year, are the most
energy efficient. On the other end ofthe scale, G-rated
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properties, with an energy performance rating of more
than 450 kWh/m2/year, are the least energy efficient
(SEAI, 2022b).

The Irish BER certificate is administered by the
Sustainable Energy Authority of Ireland (SEAI). The
assessments are completed by SEAI-registered BER
assessors, and the certificate is valid for up to 10 years.
A BER certificate becomes invalid if there are modi-
fications that could significantly affect energy perfor-
mance (SEAI, 2022a). The BER assessment follows a
standardised Dwelling Energy Assessment Procedure
(DEAP) where property fabric and heating systems are
inspected (DEAP, 2022). The DEAP accounts for fac-
tors such as property dimensions (size and geometry),
construction material, thermal insulation of building
fabric, ventilation (air infiltration due to openings and
air tightness of the structure), characteristics of space
and water heating systems, solar gains through glazed
openings, property thermal storage (mass) capacity,
fuel used for heating, and renewable and alternative
energy generation technologies.

Data on BER-assessed properties is freely available
on the SEAI website.2 In addition to the BER rating in
kWh/m2/year and corresponding scales, the database
contains information on the size and type of property,
year of construction, fuels used by a main space heating
system, and the thermal transmittance of building fab-
rics and associated area of exposed and semi-exposed
parts of the buildings. As of the beginning of February
2022, BER assessments have been completed on more
than 960,000 properties. This corresponds to around
52% of the total number of occupied houses recorded
in the 2022 Irish census (CSO, 2022).

3 Data

3.1 Data sources

We wish to analyse the relationship between BER
scales (an Irish term for EPCs) and the insulative per-
formance of a property, as revealed ex-post by a change
in observed temperature. For this analysis, we use smart
thermostat data which provides information on indoor
temperature and heating system operation at a property
level. This is matched to two datasets. First, each prop-

2 Freely available Irish BER database: https://ndber.seai.ie/
BERResearchTool/ber/search.aspx

erty is assigned a BER value using the online public
search facility. Secondly, the concurrent outdoor tem-
perature and weather conditions are matched using data
from the Irish Meteorological Service. Each data source
will be outlined in turn.

High-frequency data detailing indoor temperature
and heating system operation for the main living space3

of each dwelling are sourced from a Hub Controller, an
automatic energy manager device with smart thermo-
stat functionality, hereinafter referred to as the ‘smart
thermostat’. Additional variables in this dataset include
humidity of the living space, thermostat set-points, and
whether an operational boiler (gas or oil) is in heat-
ing or boost mood. The smart thermostat unit reports
this information at regular intervals averaging every 3
min. Our dataset comprises approximately 10,000 Irish
homes for 24 months: October 01, 2019–September 30,
2021.4

These data are matched with EPC data from each
household’s Irish BER certificate, providing informa-
tion on the household’s BER rating, both in terms of
primary energy use per squared metre of floor area per
year (kWh/m2/yr) and on a 15-scale from A1 to G. The
BER certificate also contains information on dwelling
floor area and estimated carbon dioxide (CO2) emis-
sions in kgCO2/m2/yr, alongside information on the
reason for obtaining the BER certificate.

The final data source employed in this analysis is
local weather data from Ireland’s National Meteoro-
logical Service, Met Éireann.5 The weather data con-
sists of hourly air temperature (°C), relative humid-
ity (%), wind speed (knots), sunshine duration (% per
hour), and precipitation (mm). This weather data is then
matched with the high-frequency thermostat data set at
an hourly level, after constructing relevant variables
from the smart thermostat high-frequency data at an
hourly level. Properties in the smart thermostat dataset
are located in the greater Dublin area. Consequently,
we use data from the Dublin Airport weather station.
These data were matched to the smart thermostat data
of each property at an hourly level.

3 Through personal communication with Hub Controls Ltd.,
smart thermostats are installed in the main living area of the
property.
4 See https://thehubcontroller.com/ for further information on
Hub Controls Ltd.
5 Source: www.met.ie.
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3.2 Data processing

We process the data by limiting the analysis to time
periods where changes in temperature are plausibly
influenced by the observed variables of ambient tem-
perature and BER rating alone. To do so, we restrict
the time period of analysis to the core winter heating
months in Ireland: December to February. To abstract
from occupant behaviour, we limit the data to the early
morning hours of 00:00 to 05:59 a.m. inclusive, con-
ditional on the heating system being turned off. This
motivation underlying this restriction is as follows. It
is plausible that there is no secondary energy input
during this time, such as an open fire, and therefore,
the rate of temperature change is a reflection of the
insulative capacity of the building. If the heating sys-
tem is turned on prior to 06:00 a.m., we exclude all
subsequent data points from that analysis window. If
a heating system is switched off for a lengthy period
prior to 00:00, it may be difficult to capture how heat
loss is associated with BER rating, as heat loss has
already occurred. Consequently, we limit the analysis
to properties that were heated in any of the 12 h prior to
midnight.

How do we construct the hourly indoor temperature
from the smart thermostat high-frequency data, with
temperature readings and heating system status (on or
off) approximately every 3-min intervals? As indicated
above, the data for our analysis is limited to early morn-
ing hours from 00:00 to 05:59 a.m. inclusive, condi-
tional on the heating system being switched off. From
the raw data, we construct indoor temperature at a 1-h
interval, starting at 00:00 a.m. up to 05:00 a.m. As the
smart thermostat data may not have a recording of the
indoor temperature exactly at 00:00 a.m., we extract the
date-time stamp and associated indoor temperature of
the first reading closest to 00:03 a.m. (± 3 min of 00:00
a.m., considering the thermostat frequency of 3 min).
We then retrieve the subsequent temperature readings
at 01:03 a.m. after 1 h, at 02:03 a.m. after 2 h, and so
on, up to 05:03 a.m. after 5 h. Figure 4 illustrates how
the indoor temperature data is extracted from the high-
frequency smart thermostat data for an example start-
ing at 00:03 and the subsequent 5 hourly data points (at
01:03; 02:03; 03:03; 04:03; 05:03). While analysis at
a sub-hourly frequency is possible, the resource inten-
sity for some of the statistical methods subsequently
employed increases non-linearly. Hence, the analysis

is undertaken at an hourly frequency without any loss
of information pertinent to the analysis. Upon comple-
tion of this data processing, 703 properties remain in
the dataset with a total of 356,318 hourly observations
for analysis.

3.3 Descriptive statistics

This section provides insight into the distribution of the
assembled data. First, though not intended to be rep-
resentative of the national housing stock, the degree to
which the matched dataset reflects the national distri-
bution is explored. Table 1 compares the distribution of
the 703 matched observations to the 967,608 residen-
tial properties with a BER assessment as of February
2022. Column 1 in Table 1 shows that about 90% of
the sample have a ‘C1’ rated property or lower com-
pared to approximately 80% of properties in the BER
database (in column 3). The mean BER rating is about
242 kWh/m2/year for both the smart thermostat sam-
ple properties and the entire BER database. On aver-
age, the 703 properties are older and smaller in terms
of property floor area and living room area compared
to the national BER database. The average number of
years since a BER assessment is similar at approxi-
mately 6 years. Since the 703 sample properties are
from the greater Dublin area, we have also included
the corresponding characteristics of BER assessed res-
idential properties in Dublin in column 2. Properties in
Dublin on average have relatively higher energy effi-
ciency compared to our sample or the national hous-
ing stock. The HubController smart thermostat was
installed in dwellings constructed prior to 2006. Con-
sequently, we do not expect it to be a representa-
tive sample of the housing stock even in the Dublin
Area.

Second, we explore the distribution of indoor tem-
perature and outdoor weather conditions during the
sample period. Table 2 provides summary statistics of
indoor temperature (°C), outdoor temperature (°C), rel-
ative humidity (%), and wind speed (knots) at an hourly
level for the 703 sample properties when the heating
system was off during the interval 00:00–05:59 a.m.
The mean indoor temperature in the 703 properties was
16.58°C in the 6-h period, 00:00–05:59 a.m, across the
3 months (December–February) over 2 years. Table
2 also reports corresponding values for properties by
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Fig. 1 Density of indoor
temperature over 6 h when a
heating system was off

BER rating.6 There is a high level of variability of
indoor temperatures across properties with minimum
and maximum values of 6°C and 34°C.7

The distribution of temperatures is plotted in Fig. 1.
The solid red line depicts the density of the indoor tem-
perature readings at 00:03 across the 703 sample prop-
erties when a heating system was off. The solid black
line shows the density of indoor temperature 5 h after
the initial readings at 00:03. The mean indoor tem-
perature declines from 17.62°C at 00:03 to a mean of
15.70°C after 5 h. This is an average of 2°C drop in
indoor temperature over 5 h while a heating system
was turned off throughout.

We further break down the average indoor tem-
perature by hours across BER scales. Table 3 shows
the average indoor temperature and its difference over
hours across BER scales. In the first hour, the over-
all average drop in indoor temperature is about 0.54
◦C, and it continues to decline and get closer to zero

6 Due to a small number of properties for some BER scales in
our data (see column 1 in Table 1), we combine those scales with
a small number of observations together while maintaining the
ranking of the energy efficiency ratings (e.g. A3, B1, B2, and B3;
E1 and E2; F and G). The results and their interpretation remain
consistent as long as we preserve the order of the ratings while
merging the scales.
7 We dropped observations with ambient temperature readings
of 40°C or higher, which are unusually high readings and are
more likely due to technical malfunction.

(a steady state point), with small variations across the
BER scales. The decline in temperature after a heating
system is turned off is anticipated. The research ques-
tion is to what extent the decline in temperature sys-
tematically varies by BER rating of properties. When
comparing the mean temperature values in Table 3,
there is a slightly greater decline in temperature among
lower energy efficiency-rated properties. However, the
decline in indoor temperature among buildings with
lower BER ratings (less energy efficient) is less than
what was anticipated. Possibly, the reason for this could
be that these inefficient buildings are older and have
undergone significant improvements to their building
structure since they were initially constructed. Further
discussion on this and a more systematic investigation
approach are provided in the subsequent sections.

4 Methodology

We seek to understand the extent with which building
energy performance certificates capture the insulative
capacity of the home. We use changes in indoor temper-
ature as a proxy for unobserved home heat loss. In the
absence of energy usage data or as an alternative to it,
a similar temperature-based approach has been previ-
ously used to assess a building’s thermal performance
(Albatayneh et al., 2019), to identify abnormal energy
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consumption faults (Lin and Claridge, 2015), and to
investigate the effects of climate change on building
energy performance (Congedo et al., 2021).

There are a number of confounding factors relating
to energy use and behaviour that must be incorporated
into the analysis. For example, households with large
heating demand could self-select into A- or B-rated
buildings. Energy-efficient households may also self-
select into better-rated buildings or may have different
preferences for indoor temperature. To address these
and other effects relating to occupants’ behaviour, we
limit our analysis to early morning hours when a heat-
ing system is off. The occupants’ behavioural impact
is anticipated to be minimal during this time, as poten-
tial secondary heating sources (e.g. open fire, portable
heaters) are less likely to be operational. In following
this approach, we isolate the effects of building fabric
from occupants’ behaviour on indoor temperature.

The underlying premise of our analytical approach is
that temperature within the property in the early morn-
ing hours, isolated from occupant behaviour, is a func-
tion of three factors. The first and potentially greatest
impact relates to temperature inertia. If a property had
a high temperature reading 1 h ago, its current tem-
perature reading is also likely to be relatively high.
This autoregressive approach for modelling heating is
widely used (Fang and Lahdelma, 2016, Fazeli et al.,
2016, Massana et al., 2017, Powell et al., 2014). To
fully exploit this inertia, we limit the period of analy-
sis to the winter months (December–February) when a
heating system is likely to be operational. The second
factor relates to the insulative capacity of building fab-
ric as measured by BER. This is our subject of interest.
The third factor is ambient weather. Internal tempera-
ture is affected by external temperature, humidity, and
wind conditions.

Modelling temperature as a function of lagged tem-
perature values introduces a potential source of endo-
geneity as the lagged dependent variable is likely
to be correlated with the error term (Anderson and
Hsiao, 1981). A common solution is to adopt dynamic
panel models using a generalised method of moments
(GMM) estimator (e.g. Arellano and Bond, 1991, Arel-
lano and Bover, 1995, Blundell and Bond, 1998, Rood-
man, 2009). This is a panel dataset with many time
periods which presents some modelling challenges. A
standard panel comprises N units of analysis (e.g. prop-
erties) across T time intervals (e.g. hours or years).
There is an excess of 600 time intervals in the current

dataset for some properties. Dynamic panel estimators
(e.g. Arellano and Bond, 1991, Arellano and Bover,
1995) are designed for situations with small T , as the
number of instruments increases quadratically in the
number of time periods making estimation of large T
models resource intensive and practically difficult. We
follow three estimation strategies to address the chal-
lenge, which in practice return broadly similar results.

4.1 Standard panel data estimator

In the first strategy, we specify a panel data model
where the time dimension is the hourly smart thermo-
stat data frequency while the panel dimension is resi-
dential property. The model is estimated using a stan-
dard random-effects panel estimator. Such an approach
does not address potential for biased coefficients asso-
ciated with dynamic panels, termed ‘dynamic panel
bias’ (Nickell, 1981), however with large T the bias
is small.8 The model is outlined in Eq. (1):

T empihdmy = α + βT empih−1dmy + γ E f f iciencyi

+δWeatherhdmy + εihdmy (1)

where T empihdmy is indoor temperature (°C) in prop-
erty i , at hour h, day d, monthm, and year y. The indoor
temperatures are those recorded by the smart thermo-
stat at hourly intervals in the early morning hours.
E f f iciencyi is a measure of the energy efficiency
rate of property i , of which we use a property’s BER
assessment, specified as a categorical scales (A-G) or
in kWh/m2/year . In addition to projected energy use,
the BER variable considers the thermal transmittance
(U-value in W/m2K) of various building components,
including walls, roofs, floors, windows, and doors.
Energy efficiency is improved when these components
have lower U-values, indicating higher insulation lev-
els. External weather variables (Weatherhdmy) include
mean hourly outdoor temperature (°C), mean hourly
outdoor relative humidity (%), and wind speed (knot).
εihdmy is the stochastic disturbance term that accounts
for measurement errors as well as unobserved variables
that have the potential to influence the dependent vari-
able. α, β, γ , and δ are parameters to be estimated. γ is

8 Nickell (1981) show that −(1+β)
(T−1)

provides an approximation
of the bias, where β is the coefficient on the lagged dependent
variable as in Eq. (1). For β = [0.5, 1], the associated downward
bias is less than 2% for T > 150 and therefore in practice almost
negligible.
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our main parameter of interest that captures the effect of
building energy ratings on indoor temperature, a proxy
for home heat loss.

4.2 Arellano-Bond type dynamic panel
estimator

The second estimation strategy is to follow the common
approach for estimating panel data with lagged depen-
dent variables, which explicitly addresses dynamic
panel bias (Arellano and Bond, 1991, Arellano and
Bover, 1995, Blundell and Bond, 1998, Roodman,
2009). However, as noted earlier, such models are
designed for situations with small T , and estimation
with large T datasets is resource intensive. To counter
the estimation issues associated with large T in such
estimators, we restructure the data in the following
manner. For each property, we use the mean temper-
ature values at each hour for every month and year, as
specified in Eq. (2).

T empimyh = 1

|D|
D∑

d=1

T empihdmy ∀h,m, y (2)

We then specify the time dimension solely as the
hour index (h), representing the early morning hours
(h ≤ 6). The panel dimension is represented by an
index of property-month-year (imy > 3100). The goal
is to estimate the effects of building energy perfor-
mance, but the variable of interest is time-invariant. One
strategy to address this problem is to conduct a panel
analysis with a two-stage GMM procedure (Kripfganz
and Schwarz, 2019). In the first stage, we use the GMM
approach to estimate the time-variant variables. The
model estimated is Eq. (3), where subscripts i , m, and
y from Eq. (2) are subsumed as a single index rep-
resenting the property-month-year, though we still use
imy as a subscript for clarity. The estimated parameters
include α, β, δ, with the γ E f f iciencyimy term drop-
ping out when first differences are taken during GMM
estimation. Note that the variable E f f iciencyi in Eq.
(1) is equivalent to variable E f f iciencyimy in Eq. (3).

T empimyh =α+βT empimy(h−1)+γ E f f iciencyimy

+δWeathermyh+λh+!θimy+νimyh (3)

where h is a set of hour dummies, which accounts for
correlations across unit of analysis (Roodman, 2009).9

λ is a vector of parameters for the set of hour dummies.
θimy is unobserved property specific effects, while
E f f iciencyi is observed time-invariant. νimyh is the
error term. The description of the variables is similar
to Eq. (1) except the values are the monthly means at
each hour.

The second stage entails estimation of the time-
invariant parameters to retrieve the γ parameter from
Eq. (3). To do so, we regress the composite residu-
als from the first stage, ûimyh , on the observed time-
invariant variables (i.e. E f f iciencyimy), as illustrated
in Eq. (4). Since we are looking at the effect of the
physical building, by excluding occupants’ behavioural
effects, we assume that E f f iciencyi is uncorrelated
with unobserved property specific effects, θimy , or the
error term for the second stage estimation, ωimyh .

ûimyh = T empimyh − α̂ − β̂T empimy(h−1)

−δ̂Weathermyh − λ̂h = γ E f f iciencyimy

+θimy + ωimyh (4)

In the Difference GMM approach, lagged levels are
weak instruments if the coefficient on the lagged vari-
able is close to one (Arellano and Bond, 1991), which is
the case in this empirical application. Hence, we imple-
ment System GMM with a two-step estimator. Pooled
ordinary least squares (OLS) and panel fixed effects
specifications are commonly estimated for compari-
son. While both these estimators are biased and incon-
sistent due to the correlation between the composite
error terms and lagged indoor temperature, their esti-
mates bound the true value. In the OLS regression, the
lagged temperature is positively correlated with the dis-
turbance terms and provides a coefficient that is biased
upward, whereas in the fixed effects regression, the is
biased downward due to the negative sign on the trans-
formed error.

4.3 Individual property level estimates

Our third estimation strategy entails estimating tem-
perature equations at the individual property level, as

9 (Roodman, 2009) suggests the inclusion of time dummies is to
control for correlations across our unit of analysis as the autocor-
relation test and the robust estimates of the coefficient standard
errors assume no correlation across units in the idiosyncratic dis-
turbances.
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specified in Eq. (5). The objective of this approach is
to illustrate the heterogeneity of building performance
across the BER scales in contrast to the point estimates
from the prior two approaches. With the building fabric
constant within individual properties, our focus moves
to temperature inertia. Within a single property, β̂ pro-
vides an estimate of how much heat, using tempera-
ture as a proxy, is retained within the building fabric
after 1 hour’s time has elapsed while the heating sys-
tem is turned off. In a property that is not being actively
heated, one would anticipate β̂ < 1, with estimated val-
ues declining as energy efficiency declines. We utilise
the same dynamic panel estimator as previously (i.e.
Roodman, 2009), with the hour index (h) as the time
dimension (i.e. early morning hours, 1 ≤ T ≤ 5) and
the panel dimension represented by the number of days
over which data is available (1 ≤ N ≤ 181). β̂, there-
fore, represents an estimate of the average temperature
inertia within a property. υhdmy is the error term. We
plot kernal densities of β̂ associated with each BER
scale to illustrate both the heterogeneity of temperature
inertia for a given BER rating and how the densities dif-
fer across BER scales. Kolmogorov-Smirnov tests are
utilised to test equality of the estimated distributions.

T emphdmy = α + βT emp(h−1)dmy

+δWeatherhdmy + υhdmy ∀i (5)

5 Results

5.1 Standard panel data estimates

5.1.1 Main results

We begin presenting the estimates for a standard
random-effects panel model. Table 4 presents the
parameter estimates for Eq. (1), with several alterna-
tive specifications included. The main model speci-
fication is reported in column (1).10 The coefficients

10 Due to a small number of properties for some BER categories
(see Table 1), we have amalgamated some scales during model
estimation (e.g. E1 and E2, F and G). The reference category
includes properties in BER categories A3, B1, B2, and B3, which
are the most efficient properties (A3–B3). Note that while the
number of hourly observations reported in Table 2 is 356,318,
the inclusion of the lagged indoor temperature variable in the
regression reduces the number of observations for estimation
to 287,211 across the 703 smart thermostat properties. The R-
square for the estimated models exceeds 0.92, indicating how

associated with the BER scales have a negative sign,
indicating a decrease in temperature, a proxy for a
building’s heat loss, compared to the reference cate-
gory of A3–B3 rated properties. With the focus being
on building fabric performance, the estimated results
demonstrate that building fabrics with enhanced insu-
lation (lower thermal transmittance) exhibit improved
heat retention. The absolute value of the coefficients
is broadly increasing in magnitude as the BER scale
value moves from A to G, with the exception of F- or G-
rated properties. Only for properties rated C3 and below
are the coefficients statistically different than zero. The
magnitude of temperature decline is greater among the
least energy-efficient properties, as one would antic-
ipate. However, the gradient of performance decline
is much less than one would anticipate. For instance,
the decline in indoor temperature for D1-rated proper-
ties relative to A3–B3 properties is 0.12°C, while the
point estimate detailing the decline in indoor tempera-
ture for E-rated properties is only marginally greater, at
0.15°C. BER categories of C1 to C3 relative to the A3–
B3 reference category have estimates that are either of
a relatively small magnitude difference or are statisti-
cally insignificantly different. BER categories of D1 or
worse tend to have significant differences of a relatively
greater magnitude.

Contrary to expectation, the magnitude of the coeffi-
cient on the F- and G-rated properties is not the greatest
in absolute value. F- and G-rated properties have the
lowest assessed level of energy efficiency. This result
is potentially a reflection of the composition of the F-
and G-rated properties in our sample. Over 83% of F-
and G-rated properties had their BER assessment com-
pleted in 2014 or earlier. Also, two-thirds completed
their BER assessment for the purpose of selling the
property. Given the length of the intervening period
and the likelihood that the properties were renovated
subsequent to sale, there is a strong possibility that the
BER ratings of some properties in this category are no
longer valid. Given the overall number of F- or G-rated
properties in the sample, at just 54, it is likely that any
renovated properties will have a substantial impact on
the coefficient estimate. Irrespective of the point esti-
mate for F- and G-rated properties, the conclusion from
the regression estimate remains that a significant differ-

well the model explains changes in temperature within each of
the properties over time.
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ence remains, relative to an A3–B3-rated property, of
a magnitude that is similar to D1–E2-rated properties.

While the energy efficiency parameter estimates are
of primary interest, the coefficient estimate on lagged
temperature (β in Eq. 1) is also noteworthy. The esti-
mate at 0.91 indicates that in the absence of heating, the
indoor temperature at any hour will be approximately
90% of the temperature level an hour earlier with other
factors such as thermal efficiency and external weather
accounting for the balance. The hourly indoor temper-
ature rises with outdoor temperature and humidity, but
it declines as wind speed increases.

5.1.2 Sensitivity analysis

To investigate the robustness of the model estimates
reported in column (1), the same model specifica-
tion is re-estimated for various sub-sample categories
and reported in columns 2–4 of Table 4. The pattern
described above remains broadly the same: BER cate-
gories of C1 to C3 have estimates of practically negli-
gibly different from the A3–B3 reference category. In
properties rated D or lower, the estimated differences
are of greater magnitude.

These sensitivities were chosen to rule out any pos-
sible confounding factors influencing our analysis. In
column (2), properties where the BER assessment was
completed after December 2019, which is the starting
point for the smart thermostat data in our analysis, are
excluded. The rationale for this is that recently assessed
homes may have had an energy-efficiency renovation
during the period of the smart thermostat data collec-
tion. Excluding these observations precludes this situ-
ation. In this instance, the sample drops to 492 prop-
erties. Broadly, the estimates are similar to those in
column (1) though the coefficients on the BER vari-
ables have roughly doubled in magnitude. The largest
coefficient, on E-rated properties, is −0.25 relative to
−0.15 in column (1). The pattern observed in column
(1) prevails: there is a statistically significant drop in
temperature across the BER scales relative to the ref-
erence category, with the difference growing as rated
energy efficiency declines subject to the same caveat
for F- and G-rated properties. The differences among
grades C3 or lesser are less than the differences among
grades E1 or greater, although the distinction is less
clear in this specification.

The results in column (3) exclude properties where
the BER assessment was for retrofit grant support from

December 2019 onward. BER assessments for grant
applications occur after renovation works are com-
pleted. In the case where the BER assessment occurred
from December 2019 forward, it is possible that the
smart thermostat data could cover both before and after
the retrofit work. The coefficient estimates on the BER
scales in absolute value are somewhat greater than those
in column (1) but less than those in column (2). The
pattern from column (1) emerges once again: BER cat-
egories of C1 to C3 tend to have either insignificantly
different degrees of performance or significant differ-
ences of relatively small magnitude. BER categories of
D1 or worse tend to have significant differences of a
relatively greater magnitude.

The purpose of some BER assessments is for the
sale of the property. New property owners often under-
take renovation works, some of which could change the
energy efficiency status of the property. For instance,
the likelihood of fuel system upgrades is much higher
when occupancy changes (Curtis and Grilli, 2021). It is
feasible that renovation works were completed, but an
updated BER assessment was not undertaken and reg-
istered. In such circumstances, the BER rating linked
to the smart thermostat data might not reflect the true
BER status of the property. The results presented in
column (4) exclude all properties where the BER was
undertaken for the purpose of selling the property. The
coefficient estimates on the BER scales in this instance
are broadly similar to those in column (1), though only
three of the BER coefficients are statistically different
than the reference category. Nevertheless, the pattern
observed in column (1) prevails once more, with the
lesser performing group extending to include D1-rated
dwellings. We see in column (4) that BER categories
of C1 to D1 tend to have either insignificantly differ-
ent degrees of performance or significant differences
of relatively small magnitude. BER categories of D2
or greater tend to have significant differences of a rel-
atively greater magnitude.

While there are some small differences in the coef-
ficient estimates across columns 1–4, they are broadly
similar. Focusing on the BER coefficient estimates,
those in column (2) are the largest in magnitude, but
still, the hourly drop in temperature is less than 0.25°C
irrespective of BER rating relative to the most energy
efficient A3–B3 rated properties within the sample. It is
feasible that secondary heating sources (e.g. open fire,
plugged electric heaters) operate for some time after the
main heating system (gas or oil boiler) is turned off. To
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account for this, we re-run the same model specifica-
tions but restrict our analysis to hours after 2:00 a.m.
when the likelihood of secondary heating sources is
even less likely. Results are reported in the Appendix
in Table 7 and are broadly the same as those in Table
4. Several other models were estimated based on var-
ious sub-samples, for example weekend or weekdays,
and excluding cases of high (> 25°C) or low (< 15°C)
temperatures, with parameter estimates broadly simi-
lar to those reported here. The robustness of the esti-
mates across the different samples highlights that nei-
ther retrofits undertaken within the analyzed period nor
properties with typical heating profiles have a dispro-
portionate impact on the estimates.

5.2 Arellano-Bond type dynamic panel estimates

Column 3 in Table 5 presents the first stage System
GMM estimates, with the OLS and fixed effects esti-
mates provided for comparison as noted earlier. Also
reported in Table 5 are tests that determine valid-
ity of the GMM models, including a first and sec-
ond order serial correlation tests and a Hansen test of
over-identifying restrictions. The AR(1) test indicates
the presence of first-order correlation in the residuals,
supporting the argument that the error terms contain
unobserved property specific effects. The AR(2) tests

fail to reject the null hypothesis that the difference
errors in period ‘h’ and ‘h-2’ are uncorrelated, indi-
cating that a second lagged value is a valid instrument.
Also, Hansen’s test statistic indicates the validity of the
instruments.

Table 6 presents the results of the second-stage
regressions for GMM residuals. The relative patterns
of temperature decline across the BER scales broadly
match that of the standard random-effects estima-
tions in Table 4, albeit the estimated coefficients from
the System GMM exhibit a greater magnitude. The
negative estimated coefficients on the dummies for
BER scales indicate temperature declines relative to
the A3–B3 (reference category). BER categories of
C1 to C3 tend to have either insignificantly differ-
ent degrees of performance or significant differences
of relatively small magnitude. BER categories of D1
or worse tend to have significant differences of a
relatively greater magnitude. Indeed, the difference
between relatively high (i.e. C1–C3) and relatively low-
performing (i.e. D1–G) BER categories is more pro-
nounced when assessed using the Arellano Bond-type
estimator. Columns 2–4 comprise estimates based on
different sub-samples of our data, similar to those dis-
cussed earlier in the sensitivity analysis in the ‘Sensi-
tivity analysis’ section. In terms of magnitude, the esti-
mated parameters from the GMM residuals are larger
than those from standard random-effects, with E-rated

Fig. 2 Density of estimates
of lagged temperature
coefficients at individual
property level
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properties showing a relatively large decline (a mean of
0.62°C drop per hour relative to the default category).

5.3 Individual property level estimates

The estimates at individual property level are presented
graphically in Fig. 2. The distribution of the coefficients
on the lagged indoor temperature is shown with sepa-
rate density plots associated with each BER category.
This provides insight into the heterogeneity of perfor-
mance within BER categories.

Figure 2 clearly demonstrates that there is greater
within-BER heterogeneity than between-BER hetero-
geneity. While the greater majority of properties have
estimated coefficients in the range 0.8–0.95, there are
many properties with estimated coefficients below 0.8.
Ex-ante one would have anticipated a clearer difference
in the mean performance between property types. How-
ever, there is no distinct pattern when observing these
plots, further emphasising the findings of the preced-
ing analyses. In addition, Kolmogorov-Smirnov tests
fail to reject equality of distributions between each of
the BER scales. Similar results arise when the samples
are restricted in a similar way to those discussed in the
sensitivity analysis in the ‘Sensitivity analysis’ section.

6 Discussion

Two striking results emerge from our analysis. First,
we find the slight variation observed between different
BER categories is relatively outweighed by the varia-
tions within BER. Second, we observe a lower-than-
anticipated gradient of performance across different
BER categories.

Table 3 and Fig. 2 show that the mean performance
of properties across BER scales is broadly similar and is
overshadowed by within-category variance. This sug-
gests that factors other than BER have an overwhelming
influence on building fabric performance. Our analysis
considers temperature changes in the main living space,
which may vary considerably between dwellings with
different BER scales. However, there is no reason to
believe that there is a systematic difference in the dis-
tribution of these factors across BER categorisations
and a difference in mean performance should still pre-
vail. A substantial share of properties across all BER
ratings performs relatively strongly in terms of temper-

ature inertia, while another substantial share of proper-
ties across all BER ratings performs relatively poorly.

While BER may be a good standardised approach
to measure potential performance across properties,
these results suggest that there are additional factors
to be considered when evaluating energy use within
the home. From national energy statistics, we know
that fossil fuel use per household has declined by more
than 28% since 2002. This presumably can be attributed
to an extensive program of residential energy retrofits
plus higher building standards. Results from this and
similar papers in the literature (e.g., Coyne and Denny,
2021) provide evidence to suggest that relying on the-
oretical energy performance certificate data may lead
to misspecification of actual energy performance in the
home. This insight was achieved through the use of
ex-post data analysis, both in the case of this paper
and that of Coyne and Denny (2021), motivating the
incorporation of such data into a more comprehen-
sive energy performance evaluation going forward. In
line with this, recent studies are utilising data-driven
approaches (e.g. Amasyali and El-Gohary, 2018, Bour-
deau et al., 2019, Mutani and Todeschi, 2021, Pasich-
nyi et al., 2019, Wenninger and Wiethe, 2021) in order
to improve the prediction accuracy of EPCs and over-
come the limitations associated with projections from
engineering models.

This paper also finds that the performance gradi-
ent between BER categories is less than expected ex-
ante. While previous research has demonstrated how
energy retrofits within the Irish housing stock lead to a
reduction in energy consumption (Beagon et al., 2018,
Coyne et al., 2018, Rau et al., 2020), none of these
studies examine the gradient of performance between
BER scales. Broadly consistent with the results here,
Coyne and Denny (2021) find a lack of variation in
average metered energy use across BER categories
among 10,000 Irish properties and conclude that energy
demand is unresponsive to the energy efficiency rating
of properties. The Irish building energy performance
standard, BER, is consistent with EU guidance, and
similar differences between theoretical and actual res-
idential energy performance have been identified else-
where (Van den Brom et al., 2018, Cozza et al., 2020,
Majcen et al., 2013).

Our research reveals that the energy performance
gap persists even after excluding the influence of occu-
pants’ behaviour, which is widely recognised as a sig-
nificant factor contributing to the disparity between
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projected and actual energy consumption (e.g. Aydin
et al., 2017, Fowlie et al., 2018, Gillingham et al.,
2020, Sorrell et al., 2009, Sunikka-Blank and Galvin,
2012). Our findings support the argument that, apart
from occupants’ behaviour, there are additional fac-
tors that contribute to the energy performance gap in
buildings. For instance, the use of nationally specified
default thermal transmittance values in the absence of
actual data leads to an overestimation of energy sav-
ings resulting from refurbishments (Ahern and Norton,
2020, Raushan et al., 2022). This is particularly evident
as these default values (worse-case default values) are
often drawn from building codes and regulations during
the time of construction and do not consider significant
building fabric upgrades in older dwellings (Ahern and
Norton, 2020). Furthermore, challenges arise due to
variations in assessors’ approaches (e.g. Christensen
et al., 2021, Crawley et al., 2019, Hardy and Glew,
2019) and discrepancies in methods and data input
quality (Li et al., 2019, Semple and Jenkins, 2020).

The research presented in this paper, as well as
the findings of Coyne and Denny (2021), suggest that
achieving a policy target of retrofitting 500,000 proper-
ties to a B2 BER standard (CAP, 2021) may not neces-
sarily lead to the same degree of energy savings as pre-
dicted ex-ante. This has important implications for the
efficient allocation of public funds, withe8 billion ear-
marked for residential energy retrofits in Ireland (CAP,
2021). The findings of this paper and others in the lit-
erature suggest that there are considerable deficiencies
in the design of energy performance certificates, with
scope for greater emissions reduction per unit of funds
spent through a more representative measure of energy
performance.

Further efforts such as improving the features of
BER to more accurately reflect the actual energy usage
and insulative properties of building materials may be
necessary to enhance the effectiveness of BER. Achiev-
ing this would involve integrating real-time or historical
energy usage data into model projections. This should
provide a better representation of a building’s energy
consumption instead of relying solely on standardised
values for factors such as the number of occupants and
energy use schedules. In addition, it is important to
consider replacing unrealistic worst-case default values
with values that are representative of actual dwelling
stocks. This can be achieved auditing assessors who
frequently depend on default values and ensuring trans-
parency in the calculation of these values (Raushan et

al., 2022). These measures will ensure that the values
used in the assessments truly reflect the characteristics
of the buildings under evaluation.

It is likely to be practically and administratively dif-
ficult to design and implement a subsidy scheme that is
directly linked to improved energy and emissions per-
formance. What is more feasible is the development of
national surveys with appropriate samples and statisti-
cal analysis to understand the relationships between
energy efficiency standards, energy retrofits, energy
use, and occupant use and behaviours. With more com-
prehensive information, retrofit grant schemes can be
regularly reviewed to ensure the most efficient use of
public funds.

7 Conclusions

Energy performance certificates are widely used as a
benchmark of performance against which residential
investment in energy efficiency is measured. Indeed,
energy performance certificates form the basis of national
programs of energy efficiency in order to meet climate
targets. While energy performance certificates do not
purport to be a projection of occupants’ actual energy
usage, they are used as the basis for public policy.

Our study employs an innovative approach to exam-
ine the heat retention and heat loss characteristics of
buildings with different energy performance certifi-
cates. By using a data-driven method, indoor temper-
ature change as a proxy variable for heat loss, and
excluding occupant behaviour, we provide insights into
the effectiveness of buildings’ energy performance cer-
tificates in terms of heat retention and the energy per-
formance gap attributable to discrepancies in building
fabric performances. Our results support earlier find-
ings by Coyne and Denny (2021), who also fail to find
a distinct gradient in performance between BER rat-
ings, lending evidence to suggest that BER is not as
strong an indicator of building fabric performance as
one would expect ex-ante. In addition, we find that there
is a wide heterogeneity of building fabric performance
within BER grades, to the extent that this is far greater
than between-BER heterogeneity.

Two key policy implications follow from this research.
Firstly, more research is required to improve our under-
standing of the relationship between energy efficiency
standards, energy use, and occupant behaviour. Using
national surveys with appropriate samples combined
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with data from smart meters, data loggers, and other
devices controlling heating systems, a substantially bet-
ter understanding of energy use is feasible.

Secondly, many national policies frame energy effi-
ciency objectives relative to a particular energy per-
formance standard, as measured by energy perfor-
mance certificates. While energy efficiency retrofits
will invariably reduce residential energy use, this
research finds that the Irish energy performance certifi-
cate captures a relatively small degree of total hetero-
geneity in energy use. Occupant behaviour is widely
attributed as contributing to the discrepancy between

projected and actual energy consumption, but this
research finds that factors beyond occupant behaviour
are responsible. For instance, the use default thermal
transmittance values in BER assessments may play
a critical role (Raushan et al., 2022). Consequently,
directly linking policy targets to a given energy perfor-
mance certificate standard may lead to energy use and
emissions outcomes substantially different than envis-
aged.

Appendix

Fig. 3 Mapping the BER
scales (A1-G) across BER
in kWh/m2/year of Irish
homes

Fig. 4 Illustration of data used in the analysis
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