

School-level patterns of non-attendance, 2022/23 and 2023/24

ANNA MOYA PONCE, EMER SMYTH AND MERIKE DARMODY

SCHOOL-LEVEL PATTERNS OF NON-ATTENDANCE, 2022/23 AND 2023/24

Anna Moya Ponce

Emer Smyth

Merike Darmody

January 2026

RESEARCH SERIES

NUMBER 219

Available to download from www.esri.ie

<https://doi.org/10.26504/rs219>

© 2026 The Economic and Social Research Institute
Whitaker Square, Sir John Rogerson's Quay, Dublin 2

This Open Access work is licensed under a Creative Commons Attribution 4.0 International License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

ABOUT THE ESRI

The Economic and Social Research Institute (ESRI) advances evidence-based policymaking that supports economic sustainability and social progress in Ireland. ESRI researchers apply the highest standards of academic excellence to challenges facing policymakers, focusing on ten areas of critical importance to 21st Century Ireland.

The Institute was founded in 1960 by a group of senior civil servants led by Dr T.K. Whitaker, who identified the need for independent and in-depth research analysis. Since then, the Institute has remained committed to independent research and its work is free of any expressed ideology or political position. The Institute publishes all research reaching the appropriate academic standard, irrespective of its findings or who funds the research.

The ESRI is a company limited by guarantee, answerable to its members and governed by a Council, comprising up to 14 representatives drawn from a cross-section of ESRI members from academia, civil services, state agencies, businesses and civil society. Funding for the ESRI comes from research programmes supported by government departments and agencies, public bodies, competitive research programmes, membership fees, and an annual grant-in-aid from the Department of Public Expenditure, NDP Delivery and Reform.

Further information is available at www.esri.ie.

THE AUTHORS

Anna Moya Ponce is a Research Assistant at the Economic and Social Research Institute (ESRI). Emer Smyth is a Research Professor at the ESRI and an Adjunct Professor at Trinity College Dublin (TCD). Merike Darmody is a Research Officer at the ESRI and an Adjunct Assistant Professor at TCD.

ACKNOWLEDGEMENTS

This report has been carried out as part of a research programme with Tusla Education Support Service (TESS). We are very grateful to Áine O’Keeffe and Niamh Quinn for their support for the research. Helen Campion facilitated access to the TESS administrative data and provided helpful advice. We are grateful to the external reviewer, two internal reviewers and Helen Russell, the editor, for helpful comments on the report. The report also draws on Growing Up in Ireland data. Growing Up in Ireland (GUI) is funded by the Government of Ireland. GUI is managed as a partnership between the Department of Children, Disability and Equality (DCDE) and the Central Statistics Office (CSO). The CSO are responsible for the survey element of GUI. Results in this report are based on analyses of data from Research Microdata Files provided by the CSO. Neither the CSO nor DCDE take any responsibility for the views expressed or the outputs generated from these analyses.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	XI
CHAPTER 1 INTRODUCTION AND METHODOLOGY	1
1.1 Background to the study	1
1.2 Methodology	2
1.3 Outline of the report	12
CHAPTER 2 SCHOOL ABSENCE IN PRIMARY SCHOOLS, 2022/23	14
2.1 The profile of the student population by primary school type	14
2.2 Descriptive patterns	14
2.3 Regression models.....	27
CHAPTER 3 SCHOOL ABSENCE IN POST-PRIMARY SCHOOLS, 2022/23.....	46
3.1 The profile of the student population by primary school type	46
3.2 Descriptive patterns	46
3.3 Regression models.....	59
CHAPTER 4 SCHOOL ABSENCE IN PRIMARY SCHOOLS, 2023/24	71
4.1 Descriptive patterns	71
4.2 Regression models.....	83
CHAPTER 5 SCHOOL ABSENCE IN POST-PRIMARY SCHOOLS, 2023/24.....	100
5.1 Descriptive patterns	100
5.2 Regression models.....	114
CHAPTER 6 TRENDS IN SCHOOL ABSENCE 2022/23-2023/24.....	123
6.1 Primary schools	124
6.2 Post-primary schools	145
CHAPTER 7 CONCLUSIONS	158
7.1 Introduction.....	158
7.2 Variation in non-attendance by school type	159
7.3 Variation over time.....	162
7.3 Implications for data on attendance	163
7.4 Implications for policy and practice	164
REFERENCES	167

LIST OF TABLES

Table 2.1	Primary 2022/23: Regression model of the proportion of chronically absent students	29
Table 2.2	Primary 2022/23: Regression of the proportion of chronically absent students (size, alternative base)	29
Table 2.3	Primary 2022/23: Regression of the proportion of chronically absent students (size, alternative base)	30
Table 2.4	Primary 2022/23: Regression of the proportion of chronically absent students (HP Pobal Index)	32
Table 2.5	Primary 2022/23: Regression of the proportion of chronically absent students (HP Pobal Index, alternative base)	32
Table 2.6	Primary 2022/23: Regression of the proportion of chronically absent students (HP Pobal Index, alternative base)	33
Table 2.7	Primary 2022/23: Regression of the proportion of chronically absent students: gender x DEIS interaction	34
Table 2.8	Primary 2022/23: Regression of the proportion of chronically absent students: HP Pobal Index x DEIS interaction	37
Table 2.9	Primary 2022/23: Regression of days lost per student	38
Table 2.10	Primary 2022/23: Regression of days lost per student (HP Pobal Index)	40
Table 2.11	Primary 2022/23: Regression of days lost per student (HP Pobal Index, alternative base)	40
Table 2.12	Primary 2022/23: Regression of days lost per student (HP Pobal Index, alternative base)	41
Table 2.13	Primary 2022/23: Regression of days lost per student: Interaction gender x DEIS	42
Table 2.14	Primary 2022/23: Regression of days lost per student: Interaction HP Pobal Index x DEIS	44
Table 3.1	Post-primary 2022/23: Regression of the proportion of chronically absent students at post-primary level	59
Table 3.2	Post-primary 2022/23: Regression of the proportion of chronically absent students (Ethos, alternative base)	60
Table 3.3	Post-primary 2022/23: Regression of the proportion of chronically absent students (HP Pobal Index)	62
Table 3.4	Post-primary 2022/23: Regression of the proportion of chronically absent students (HP Pobal Index, alternative base)	62
Table 3.5	Post-primary 2022/23: Regression of the proportion of chronically absent students (HP Pobal Index, alternative base)	63
Table 3.6	Post-primary 2022/23: Regression of the proportion of chronically absent students: gender x DEIS interaction	65
Table 3.7	Post-primary 2022/23: Regression of days lost per student	66
Table 3.8	Post-primary 2022/23: Regression of days lost per student (HP Pobal Index)	68
Table 3.9	Post-primary 2022/23: Regression of days lost per student (HP Pobal Index, alternative base)	68
Table 3.10	Post-primary 2022/23: Regression of days lost per student (HP Pobal Index, alternative base)	69
Table 3.11	Post-primary 2022/23: Regression of days lost per student: gender x DEIS interaction	70

Table 3.12	Post-primary 2022/23: Regression of days lost per student: language x DEIS interaction.....	70
Table 4.1	Primary 2023/24: Regression of the proportion of chronically absent students in primary schools in 2023/24	83
Table 4.2	Primary 2023/24: Regression of the proportion of chronically absent students (size, alternative base)	85
Table 4.3	Primary 2023/24: Regression of the proportion of chronically absent students (size, alternative base)	85
Table 4.4	Primary 2023/24: Regression of the proportion of chronically absent students (HP Pobal Index).....	87
Table 4.5	Primary 2023/24: Regression of the proportion of chronically absent students (HP Pobal Index, alternative base).....	87
Table 4.6	Primary 2023/24: Regression of the proportion of chronically absent students (HP Pobal Index, alternative base).....	88
Table 4.7	Primary 2023/24: Regression of the proportion of chronically absent students: Interaction gender x DEIS	89
Table 4.8	Primary 2023/24: Regression of days lost per student	92
Table 4.9	Primary 2023/24: Regression of days lost per student (size, alternative base)	93
Table 4.10	Primary 2023/24: Regression of days lost per student (size, alternative base)	93
Table 4.11	Primary 2023/24: Regression of days lost per student (HP Pobal Index).....	95
Table 4.12	Primary 2023/24: Regression of days lost per student (HP Pobal Index, alternative base)	95
Table 4.13	Primary 2023/24: Regression of days lost per student (HP Pobal Index, alternative base)	96
Table 4.14	Primary 2023/24: Regression of days lost per student: Interaction gender x DEIS	97
Table 5.1	Post-primary 2023/24: Regression of the proportion of chronically absent students in post-primary schools, 2023/24	114
Table 5.2	Post-primary 2023/24: Regression of the proportion of chronically absent students (HP Pobal Index).....	116
Table 5.3	Post-primary 2023/24: Regression of the proportion of chronically absent students (HP Pobal Index, alternative base)	116
Table 5.4	Post-primary 2023/24: Regression of the proportion of chronically absent students: Interaction size x DEIS.....	117
Table 5.5	Post-primary 2023/24: Regression of days lost per student in post-primary schools, 2023/24.....	118
Table 5.6	Post-primary 2023/24: Regression of days lost per student (Ethos, alternative base).....	119
Table 5.7	Post-primary 2023/24: Regression of days lost per student (HP Pobal Index)	120
Table 5.8	Post-primary 2023/24: Regression of days lost per student (HP Pobal Index, alternative base)	121
Table 5.9	Post-primary 2023/24: Regression of days lost per student (HP Pobal Index, alternative base)	121
Table 6.1	Primary time change: Regression of the proportion of chronically absent students (year as dummy)	130
Table 6.2	Primary time change: Regression of the proportion of chronically absent students (regressor variable)	132
Table 6.3	Primary time change: Regression of the proportion of chronically absent students: size (regressor variable).....	132

Table 6.4	Primary time change: Regression of the proportion of chronically absent students: HP Pobal Index (regressor variable).....	133
Table 6.5	Primary time change: Regression of the proportion of chronically absent students: HP Pobal Index (regressor variable).....	133
Table 6.6	Primary time change: Regression of the proportion of chronically absent students: HP Pobal Index (regressor variable).....	134
Table 6.7	Primary time change: Regression of days lost per student (year as dummy)	141
Table 6.8	Primary time change: Regression of days lost per student (regressor variable).....	143
Table 6.9	Primary time change: Regression of days lost per student: size (regressor variable)	143
Table 6.10	Primary time change: Regression of days lost per student: HP Pobal Index (regressor variable).....	144
Table 6.11	Primary time change: Regression of days lost per student: HP Pobal Index (regressor variable).....	144

LIST OF FIGURES

Figure 1.1	Box plot of the proportion of chronically absent students (Primary 22/23)	7
Figure 1.2	Box plot of days lost per student (Primary 22/23)	7
Figure 1.3	Box plot of the proportion of chronically absent students (Post-primary 22/23).....	8
Figure 1.4	Box plot of days lost per student (post-primary 22/23)	9
Figure 1.5	Box plot of the proportion of chronically absent students (Primary 23/24)	10
Figure 1.6	Box plot of days lost per student (Primary 23/24)	10
Figure 1.7	Box plot of the proportion of chronically absent students (Primary 23/24)	11
Figure 1.8	Box plot of days lost per student (Primary 23/24)	12
Figure 2.1	Primary 2022/23: Levels of chronic absenteeism by DEIS and Special School status.....	15
Figure 2.2	Primary 2022/23: Levels of days lost per DEIS and special school status	16
Figure 2.3	Primary 2022/23: Levels of chronic absenteeism by school size.....	18
Figure 2.4	Primary 2022/23: Levels of days lost by school size.....	19
Figure 2.5	Primary 2022/23: Levels of chronic absenteeism by gender mix.....	20
Figure 2.6	Primary 2022/23: Levels of days lost by gender mix	21
Figure 2.7	Primary 2022/23: Levels of chronic absenteeism by ethos.....	22
Figure 2.8	Primary 2022/23: Levels of days lost by ethos	23
Figure 2.9	Primary 2022/23: Levels of chronic absenteeism by language of instruction.....	24
Figure 2.10	Primary 2022/23: Levels of days lost by language of instruction	25
Figure 2.11	Primary 2022/23: Levels of chronic absenteeism by HP Pobal Index.....	26
Figure 2.12	Primary 2022/23: Levels of days lost by HP Pobal Index.....	27
Figure 2.13	Primary 2022/23: Predicted proportion of chronically absent students by size	30
Figure 2.14	Primary 2022/23: Regression of the proportion of Chronically absent students: Interaction size x DEIS and special school	35
Figure 2.15	Primary 2022/23: Regression of the proportion of Chronically absent students: Interaction language of instruction x DEIS	36
Figure 2.16	Primary 2022/23: Predicted days lost per student by HP Pobal Index.....	41
Figure 2.17	Primary 2022/23: Regression of days lost per student: Interaction size x DEIS and special school.....	43
Figure 2.18	Primary 2022/23: Regression of days lost per student: Interaction language of instruction x DEIS	45

Figure 3.1	Post-primary 2022/23: Levels of chronic absenteeism by DEIS and special school status	47
Figure 3.2	Post-primary 2022/23: Levels of days lost by DEIS.....	47
Figure 3.3	Post-primary 2022/23: Levels of chronic absenteeism by school size	49
Figure 3.4	Post-primary 2022/23: Levels of days lost by school size	49
Figure 3.5	Post-primary 2022/23: Levels of chronic absenteeism by gender mix	50
Figure 3.6	Post-primary 2022/23: Levels of days lost by gender mix.....	51
Figure 3.7	Post-primary 2022/23: Levels of chronic absenteeism by ethos.....	52
Figure 3.8	Post-primary 2022/23: Levels of days lost by ethos.....	53
Figure 3.9	Post-primary 2022/23: Levels of chronic absenteeism by language of instruction.....	54
Figure 3.10	Post-primary 2022/23: Levels of days lost by language of instruction.....	54
Figure 3.11	Post-primary 2022/23: Levels of chronic absenteeism by HP Pobal Index	56
Figure 3.12	Post-primary 2022/23: Levels of days lost by HP Pobal Index.....	57
Figure 3.13	Post-primary 2022/23: Levels of chronic absenteeism by fee-paying status.....	58
Figure 3.14	Post-primary 2022/23: Levels of days lost by fee-paying status	58
Figure 3.15	Post-primary 2022/23: Predicted proportion of CA levels by HP Pobal Index	64
Figure 4.1	Primary 2023/24: Levels of chronic absenteeism by DEIS and special school status.....	72
Figure 4.2	Primary 2023/24: Levels of days lost by DEIS	73
Figure 4.3	Primary 2023/24: Levels of chronic absenteeism by school size.....	74
Figure 4.4	Primary 2023/24: Levels of days lost by school size.....	75
Figure 4.5	Primary 2023/24: Levels of chronic absenteeism by gender mix	76
Figure 4.6	Primary 2023/24: Levels of days lost by gender mix	77
Figure 4.7	Primary 2023/24: Levels of chronic absenteeism by school ethos.....	78
Figure 4.8	Primary 2023/24: Levels of days lost by school ethos.....	79
Figure 4.9	Primary 2023/24: Levels of chronic absenteeism by language of instruction.....	80
Figure 4.10	Primary 2023/24: Levels of days lost by language of instruction	80
Figure 4.11	Primary 2023/24: Levels of chronic absenteeism by HP Pobal Index.....	81
Figure 4.12	Primary 2023/24: Levels of days lost by HP Pobal Index	82
Figure 4.13	Primary 2023/24: Predicted CA levels by school size	85
Figure 4.14	Primary 2023/24: Predicted CA levels by HP Pobal index	88
Figure 4.15	Primary 2023/24: Regression of the proportion of chronically absent students: Interaction size x DEIS.....	90
Figure 4.16	Primary 2023/24: Regression of the proportion of chronically absent students: Interaction HP Pobal Index x DEIS and special school	91
Figure 4.17	Primary 2023/24: Regression of days lost per student: Interaction size x DEIS	98
Figure 4.18	Primary 2023/24: Regression of days lost per student: Interaction HP Pobal Index x DEIS and special school	98
Figure 5.1	Post-primary 2023/24: Levels of chronic absenteeism by DEIS for post-primary schools, 2023/24.....	101
Figure 5.2	Post-primary 2023/24: Levels of days lost by DEIS.....	102
Figure 5.3	Post-primary 2023/24: Levels of chronic absenteeism by school size	103
Figure 5.4	Post-primary 2023/24: Levels of days lost by school size	104
Figure 5.5	Post-primary 2023/24: Levels of chronic absenteeism by gender mix	105
Figure 5.6	Post-primary 2023/24: Levels of days lost by gender mix.....	106
Figure 5.7	Post-primary 2023/24: Levels of chronic absenteeism by school ethos	107
Figure 5.8	Post-primary 2023/24: Levels of days lost by school ethos	108

Figure 5.9	Post-primary 2023/24: Levels of chronic absenteeism by language of instruction.....	109
Figure 5.10	Post-primary 2023/24: Levels of days lost by language of instruction.....	109
Figure 5.11	Post-primary 2023/24: Levels of chronic absenteeism by HP Pobal Index	111
Figure 5.12	Post-primary 2023/24: Levels of days lost by HP Pobal Index.....	112
Figure 5.13	Post-primary 2023/24: Levels of chronic absenteeism by fee-paying status.....	112
Figure 5.14	Post-primary 2023/24: Levels of days lost by fee-paying status	113
Figure 6.1	Primary time change: Overall change in chronic absenteeism	124
Figure 6.2	Primary time change: Change in chronic absenteeism by DEIS type	125
Figure 6.3	Primary time change: Change in chronic absenteeism by gender mix.....	126
Figure 6.4	Primary time change: Change in chronic absenteeism by ethos.....	126
Figure 6.5	Primary time change: Change in chronic absenteeism by school size	127
Figure 6.6	Primary time change: Change in chronic absenteeism by language of instruction.....	128
Figure 6.7	Primary time change: Change in chronic absenteeism by HP Pobal Index	129
Figure 6.8	Primary time change: Overall change in days lost per student	135
Figure 6.9	Primary time change: Change in days lost per student by DEIS type	136
Figure 6.10	Primary time change: Change in days lost per student by gender mix	137
Figure 6.11	Primary time change: Change in days lost per student by school ethos.....	137
Figure 6.12	Primary time change: Change in days lost per student by school size	138
Figure 6.13	Primary time change: Change in days lost per student by language of instruction.....	139
Figure 6.14	Primary time change: Change in days lost per student by HP Pobal Index	139
Figure 6.15	Post-primary time change: Overall change in chronic absenteeism	145
Figure 6.16	Post-primary time change: Change in chronic absenteeism by DEIS type	146
Figure 6.17	Post-primary time change: Change in chronic absenteeism by gender mix	146
Figure 6.18	Post-primary time change: Change in chronic absenteeism by school ethos	147
Figure 6.19	Post-primary time change: Change in chronic absenteeism by school size	148
Figure 6.20	Post-primary time change: Change in chronic absenteeism by language of instruction.....	148
Figure 6.21	Post-primary time change: Change in chronic absenteeism by HP Pobal Index	149
Figure 6.22	Post-primary time change: Overall change in days lost per student.....	151
Figure 6.23	Post-primary time change: Change in days lost per student by DEIS.....	152
Figure 6.24	Post-primary time change: Change in days lost per student by gender mix	152
Figure 6.25	Post-primary time change: Change in days lost per student by school ethos.....	153
Figure 6.26	Post-primary time change: Change in days lost per student by school size.....	154
Figure 6.27	Post-primary time change: Change in days lost per student by language of instruction.....	155
Figure 6.28	Post-primary time change: Change in days lost per student by HP Pobal Index.....	156

ABBREVIATIONS

AAR	Annual Attendance Report
CA	Chronic absenteeism (missing 20 or more days in a school year)
DEIS	Delivering Equality of Opportunity in Schools
TESS	Tusla Education Support Service
DEY	Department of Education and Youth
SAR	School Absence Report

EXECUTIVE SUMMARY

BACKGROUND TO THE STUDY

School attendance has become a topic of international concern, particularly in light of the disruptions caused by the COVID-19 pandemic, which has led to long-lasting challenges in attendance (Dee, 2024; Fuller et al., 2024; Lichand et al., 2024; Tomaszewski et al., 2023). Some evidence suggests that English-speaking countries have been particularly affected (Anders et al., 2024).¹ Analysing attendance patterns is crucial due to its well-established links with school performance and attainment (Aucejo and Romano, 2016; Gottfried, 2010, 2011; Gottfried and Kirksey, 2017; Smyth, 1999), as well as with long-term outcomes in educational trajectories (Smerillo et al., 2018; Allensworth and Easton, 2007; Liu et al., 2021; Ansari et al., 2020) and in the labour market (Ansari et al., 2020; Klein et al., 2024, Klein and Sosu, 2024; Attwood and Croll, 2017).

We use administrative data from the AAR (Annual Attendance Report) collected by TESS (Tusla Education Support Service), which include the total number of days lost to absence in each school and the number of chronically absent students, defined as those absent for 20 or more days over the school year. The data cover the years 2022/23 and 2023/24 at both primary and post-primary level. We analyse these measures in relative terms: the proportion of chronically absent students relative to the total student population, and the average number of days lost per student. These school records are matched with publicly available data published by the DEY (Department of Education and Youth), which provides information on school characteristics. We examine variation in attendance by factors such as the school's denomination, ethos, gender mix, size, language of instruction, level of socio-economic deprivation (as measured by the HP Pobal Index), county, and fee-paying status.

The study consists of two parts. The first examines how the two outcomes of interest – chronic absenteeism (CA) rates and days lost per student – are distributed among schools with different characteristics.² We use graphs and regression models to assess which types of schools fare better or worse when controlling for other characteristics. The second part takes advantage of having data for the 2022/23 and 2023/24 school years to analyse time trends in the two

¹ It is important to note that this study focuses specifically on teenage truancy rather than absenteeism more broadly; yet it still sheds light on relevant patterns across countries, with Ireland showing the highest increase in truancy within this group.

² The CA rates capture the share of students who are registered as chronically absent relative to total school enrolment, while days lost per student captures the total number of days lost to absenteeism divided by the number of students in a given school, indicating the average annual days lost per pupil.

outcomes, also examining whether certain school groups performed better or worse.

NON-ATTENDANCE BY SCHOOL TYPE

Arguably, one of the most important findings is that the main marker of inequalities at the school level in attendance rates stems from DEIS (Delivering Equality of Opportunity in Schools) classification³ and special school status. Special and DEIS schools, the latter both at the primary and post-primary levels, fare worse overall. For primary schools, this is especially true for Urban Band 1 schools. Between 80 and 87 per cent of Band 1 schools fall within the worst quantile for CA rates and days lost. For special schools, the figure ranges from 65 to 81 per cent. In the regression models accounting for other school characteristics, the effects are quite large and statistically significant. DEIS Band 1 primary schools and special schools report approximately 14.5 to 19.6 percentage points higher shares of chronically absent students and 5.8 to 7 more days lost per student. For post-primary schools, the effects are slightly smaller but still substantial: around 7 to 8.8 percentage points higher CA rates in DEIS schools and 3.7 to 4.5 more days lost per student.

Two additional indicators of socio-economic position are fee-paying status and the HP Pobal Index,⁴ both of which also emerge as markers of variation in attendance. For post-primary (non-DEIS) schools, fee-paying schools have 9.3–9.6 percentage points lower shares of chronically absent students and 5.8–6.3 fewer days lost per student. Considering the socio-economic level of the electoral district where schools are located, as measured by the HP Pobal Index, there is a clear gradient: the higher the level of socio-economic affluence, the better the attendance outcomes, both in terms of days lost and CA rates, at both educational stages. This pattern also holds when comparing more advantaged areas among themselves, with schools in affluent areas performing particularly well. Across primary and post-primary levels, schools in affluent areas represent only around 5–15 per cent of those in the worst quantile for CA rates or days lost.

Gender mix is not found to be a meaningful school characteristic overall in relation to varying attendance, with one exception: at post-primary level, in both school years, boys' schools are associated with significantly lower absence than mixed schools. With regard to ethos we see that, at both the primary and post-primary levels, multi-denominational schools appear to face more attendance issues. At the

³ DEIS is Ireland's policy for supporting schools with higher levels of disadvantage and social exclusion. Schools are classified as DEIS Urban (Band 1 or 2) or DEIS Rural based on socio-economic indicators, with Band 1 being the most disadvantaged. These schools receive additional resources and supports to address educational inequality.

⁴ The HP Pobal Index uses Census data on ten indicators of socio-economic deprivation to provide a summary measure of area-level deprivation.

post-primary level, minority faith schools perform particularly well. Irish-medium schools are also found to perform better than English-medium schools, particularly at the primary level. However, especially for both ethos and language of instruction, it is unclear how much of these differences may be related to the socio-economic composition of their student body given the lack of data available. At the primary level, small schools also have better attendance, which could perhaps be linked to 'social pressure' in the sense that teachers and parents are more likely to know each other, and that school staff may be able to encourage attendance and spot problematic attendance patterns early on when only a limited number of students are involved.

The study also examines whether the negative effects of DEIS status on attendance vary across school characteristics, namely gender mix, size, HP Pobal Index, and language. Most interaction effects are not significant, but there are some exceptions at the primary level. The main one is that, for Band 1 schools, there is an interaction effect that largely offsets the disadvantage of being in a deprived area as identified by the HP Pobal Index. This suggests that Band 1 schools in deprived areas may be benefiting from the potential additional supports available to them through the DEIS programme.

VARIATION ACROSS TIME

Across the two years, both primary and post-primary schools experienced a moderate overall reduction in the proportion of chronically absent students and in the average number of days lost. In primary schools, after controlling for other school characteristics, the average CA rate fell by 2.83 percentage points, accompanied by a decrease of 1.09 days lost per student. In post-primary schools the CA rate declined by 0.96 percentage points, with an average reduction of 0.1 days lost per student.

It is true, however, that a worryingly large minority of schools saw an increase. Thirty per cent of primary schools experienced a rise in chronic absence between 2022/23 and 2023/24, while over a quarter (27 per cent) recorded an increase in days lost per student. Among post-primary schools, 42 per cent saw an increase in chronic absence, and 48 per cent reported an increase in days lost per student.

When examining whether changes over time are concentrated within specific groups, it is important to distinguish between absolute and relative change. Schools with poorer attendance at baseline may have more room for improvement in absolute terms but this can conceal lower levels of relative change. Thus, at primary level, DEIS schools and schools in disadvantaged areas had larger absolute declines in absence. However, this pattern is somewhat misleading; taking account

of higher initial absence rates, DEIS schools, mixed-gender schools and smaller schools performed better than their respective counterparts. Contrary to absolute differences, schools in more socio-economically advantaged areas experienced a relative improvement over time. For post-primary schools, in both the absolute and relative change models, time trends show little variation by school type, with the only noteworthy exception being that DEIS schools, compared to non-DEIS schools, fared worse in both days lost and CA rates.

IMPLICATIONS FOR DATA ON ATTENDANCE

This study identifies several issues with the available administrative data on attendance that could serve as the basis for **developing an enhanced system of data collection**. One of the most important gaps is the lack of student-level data, including sociodemographic indicators, which would allow us to test whether the differences observed are attributable to school characteristics or to the students themselves. This highlights the need either to collect such data directly or to enable linkage with existing datasets.

There are also issues within the dataset itself, notably inconsistencies such as records where the number of days lost per student was recorded as zero despite the count of chronically absent students being greater than zero, cases where the number of chronically absent students exceeded total student enrolment, and duplicate entries. All of this points to the need for built-in validation checks to minimise inconsistencies and errors. These issues are important to address not only because they require time to resolve, but also because doing so would **improve the accuracy of the data**.

IMPLICATIONS FOR POLICY AND PRACTICE

The most important implication is that the findings contribute to the existing body of evidence on inequalities in outcomes – in this case, attendance – between DEIS and non-DEIS schools. Given the growing evidence linking attendance to later life outcomes, these disparities may contribute to wider socio-economic disparities in adulthood. This is particularly concerning as DEIS schools at both primary and post-primary levels are not recovering as well as non-DEIS schools in the post-COVID period. This points to the need for further support at the DEIS level, potentially strengthening the case for the ‘DEIS plus’ model initiative.

Another implication is the need **for further research to expand on some of the observations identified in this study**, particularly the poor attendance outcomes in special schools, the higher absenteeism found in multi-denominational schools, and the better attendance observed in Irish-medium and small primary schools. Further research would be very useful to determine how much of these patterns

are due to differences in the socio-economic mix of the student body (which, again, would require expanding and/or linking data) and how much can be attributed to factors specifically related to the functioning and characteristics of schools, as well as **to identify what those factors are**. Both quantitative and qualitative research would be helpful in pursuing these lines of inquiry. One specific hypothesis is to examine whether the better outcomes of small schools may be attributed to some sort of social pressure and control in an environment where teachers and parents are more likely to know each other.

Another implication is that there is variation in absence both across schools and within school types, potentially indicating that schools themselves can play a role in influencing attendance. In this regard, the planned pilot Anseo programme, which is designed to use information on patterns of absence at the school level to help schools develop strategies to address non-attendance, could prove valuable.

CHAPTER 1

Introduction and methodology

1.1 BACKGROUND TO THE STUDY

Under the Education (Welfare) Act, 2000, principals of all recognised schools are required to maintain records of attendance or non-attendance among their students. Schools make two sets of returns: the school Annual Attendance Report (AAR), which includes total days lost to absence and number of students absent for 20 or more days as well as information on suspensions and expulsions, and the School Absence Report (SAR), which collects information at the student level on chronic absences and the reasons for these absences.

The topic of school absence has received renewed attention in the wake of the COVID-19 pandemic, which saw a significant rise in non-attendance levels. Between 2017/18 and 2022/23, the proportion of days lost to absence increased from 5.2 to 8.6 per cent at primary level in Ireland and from 8.2 to 11.4 per cent at post-primary level (Tusla, 2024). Over the same period, chronic absence (missing 20 or more days per school year) increased from 10.7 to 25.1 per cent at primary level and from 14.5 to 22.3 per cent at post-primary level. Ireland is not unique in these patterns. Evidence from several countries, including the United States (Dee, 2024; Fuller et al., 2024; Swiderski et al., 2025; Malkus, 2024), the United Kingdom (Department of Education, 2023; 2024), Brazil (Lichand et al., 2024), and Australia (Tomaszewski et al., 2023), points to significant disruptions in school attendance post-COVID. There is much less consensus on what is driving these patterns but research by Anders et al. (2024), in their analysis of school truancy, highlight a greater increase in English-speaking countries.

Evidence on what schools are particularly affected by these patterns is crucial in informing measures at national and school level to address non-attendance. Sixteen reports have been published to date, the most recent being TESS (2024), that provide useful insights into variation in the proportion of days lost and rate of chronic absence across different types of school. This study uses TESS Annual Attendance Report (AAR) data for 2022/23 and 2023/24 to build upon these reports in a number of ways. First, the analyses look not only at average levels of absence by type of school but at the distribution of days lost and chronic absences across schools, highlighting the profile of schools with severe attendance issues. Second, the analyses use modelling techniques to separate out the impact of different school characteristics, including DEIS status, size, gender mix and language medium. Third, the analyses seek to separate out the impact of the concentration of disadvantage at school level from that of local-area disadvantage.

Finally, the analyses look at whether any recovery in attendance between 2022/23 and 2023/24 is distributed across schools equally.

1.2 METHODOLOGY

This study draws on school AAR data for 2022/23 and 2023/24, which provide the number of students registered as chronic absentees as well as the total number of days lost in the school year for these chronically absent students. School enrolment data from the Department of Education and Youth were matched to these data to provide information on school characteristics and information on total numbers of students in order to calculate the proportion with chronic absence levels. In addition, information on local area deprivation, using the HP Pobal Index, was matched to the school data on the basis of school location. Analyses are presented separately for primary and post-primary schools and for 2022/23 and 2023/24, with a further chapter unpacking patterns of change over time.

These data have a number of limitations. Pre-pandemic, the vast majority of schools completed attendance returns but this dropped post-COVID, with over a fifth of schools not returning data in 2022/23 (Tusla, 2024). It is unclear whether non-returning schools are different in profile from those who submit data, but analyses presented below look at the extent to which response rates vary by type of school. Considering the combined information for 2022/23 and 2023/24, 23.25 per cent of primary and 26.83 per cent of post-primary schools have missing information. For primary schools, the main sources of differences in response rates are related to DEIS classification and special school status. While non-DEIS primary schools have a non-response rate of 20.6 per cent, this figure is higher for DEIS schools, particularly Band 1 schools, which have a rate of 28.1 per cent. The rates for Band 2 and rural schools are similar, at 22.9 per cent and 23.9 per cent respectively. **Special schools stand out with a strikingly high non-response rate, with 48.2 per cent of them not providing data.** Other school characteristics, including language of instruction and school size, do not show substantial differences in response rates, apart from somewhat higher non-response rates for multi-denominational and boys' schools. In relation to post-primary schools, we observe relative consistency in non-response rates across school characteristics, including DEIS status, ethos, gender mix, HP Pobal Index and school size. For the full outline of non-response rates by groups of schools, please see Appendix 8.

The data cover recognised schools at primary level, including special schools, and post-primary level. We have grouped all special schools (with available attendance data) with the primary dataset, due to their historical establishment and administration within the primary sector, even though it is important to keep in mind that most special schools cater to both primary- and post-primary-aged students. The data do not cover those attending private primary schools, but this

is not a significant omission as the sector covers only around 1 per cent of the primary student population. A more significant limitation relates to the absence of information on student characteristics, making it impossible to disentangle the effects of school context from school composition. Thus, DEIS schools may have higher rates of school absence because they contain socio-economically disadvantaged students who tend to have poorer attendance, but supports through the DEIS programme may help make attendance better than it might otherwise be. Without information on the individual social background and other characteristics such as disability, it is not possible to distinguish these two dimensions. Nonetheless, the analyses provide useful insights into the extent to which attendance difficulties are concentrated in particular (types of) school, a crucial basis for targeting support.

Finally, it is worth noting that the school-level data do not contain information on reasons for being absent. This information is therefore outside the scope of this report. However, the student-level dataset does include information on reasons for absence, which will be explored in a separate report. For contextualisation purposes, it is worth noting that, based on the student-level dataset covering ages 6-16, pooled data from primary schools for the 2022/23 and 2023/24 academic years indicate that almost half of all absences (46.7 per cent) are due to illness. This is followed by unexplained absences (24.7 per cent), other reasons (12.8 per cent), holidays (12.1 per cent), and urgent reasons (3.6 per cent). At the post-primary level, the most common reason for absence is unexplained (48 per cent), followed by illness (31 per cent), other reasons (16.1 per cent), holidays (1.9 per cent), and urgent reasons (2.6 per cent).

1.2.1 Data cleaning

The dataset used for the school-level analysis – the Tusla School Annual Attendance Report (AAR) data for primary and post-primary schools – presented several challenges that needed to be addressed. First, there were **inconsistencies**⁵ such as cases where the number of days lost per student was recorded as zero, yet the counts of students with chronic absenteeism⁶ was greater than zero. These cases were excluded from the analyses. Another inconsistency involved schools reporting a number of chronically absent students that exceeded the total student population. This was addressed by replacing the reported figures with aggregate CA counts derived from student-level data. If inconsistencies persisted even after this correction, those cases were also removed. Moreover, a very limited number of cases (around 25-35 for primary and around 0-5 for post-primary) showed zero

⁵ For primary schools, the number of cases dropped due to inconsistencies/errors is around 60 to 80 per year (with a total sample size of 2,292 cases in 2022/23 and 2,230 in 2023/24, representing approximately 2.6 per cent to 3.5 per cent of the total sample). For post-primary schools, this ranges from 15 to 25 cases (475 cases in 2023/24 and 460 in 2022/23, representing approximately 3.2 per cent to 5.3 per cent of the total sample).

⁶ Chronically absent students are defined as those who miss 20 or more days of school.

chronically absent students and a positive number of days lost – usually substantial. Since these inconsistencies made up only about 1 per cent of the data, we believe they were likely due to reporting errors and decided to also exclude them from the analysis.

Additionally, there were instances where the counts of chronically absent students or total days lost were recorded as negative values, which is not logically possible. These values were corrected by converting them to positive numbers.

Some records were also difficult to match with data from the Department of Education and Youth due to **school amalgamations**, where the school roll number had not been properly updated. To address this, we manually updated the roll numbers where appropriate, and removed observations of schools that no longer existed.

Finally, there were multiple instances of duplicate school ID entries, often with different values for attendance-related variables. In these cases, we used student-level aggregate data to choose which entry to keep. If the duplicate entries were identical, one was randomly removed.

Given these issues, the system used by schools to input absenteeism data would benefit from **built-in validation checks** in the online data reporting system currently in use **to flag and prevent inconsistencies and errors**. For example, the system should not allow a positive value for total days lost if the number of chronically absent students is zero, or enable the number of chronically absent students to exceed the total student population. It should also prohibit the entry of negative values for any absenteeism-related variables. Likewise, the data entry system would benefit from mechanisms to detect and prevent duplicate entries.

1.2.2 Variables used

The main variable used to study attendance is the **proportion of chronically absent (CA) students per school**. This is calculated as the number of CA students expressed as a percentage of the total school population. To allow for visual presentation, this relative CA variable is divided into four quantiles.

A second variable employed in the analysis is the **average days lost per student**, calculated as the overall days lost in the school due to absenteeism divided by the school population. As in the CA variable, this metric is divided into four quantiles for visual representation purposes.

In order to gain information about schools to analyse attendance patterns by school characteristics, we matched the administrative school records with **publicly available data provided by the Department of Education and Youth**, which includes, among other variables, ethos, school size, gender mix, language of instruction, address, DEIS status, etc. We also obtained information on the level of socio-economic deprivation in the electoral district where schools are located by mapping their coordinates (provided by DEY data) with the HP Pobal Index using geospatial software.

Several variables have been recoded for analytical purposes. An **Irish language** instruction dummy was created to distinguish between schools that incorporate Irish to any degree (hereafter referred to as *Irish-medium*), whether all pupils are taught all subjects through Irish, some pupils are taught all subjects through Irish, or some pupils are taught some subjects through Irish, and those that offer no Irish instruction (hereafter referred to as *English-medium*).⁷ Additionally, an **ethos variable** was constructed to group schools into three categories:⁸ (1) Multi-denominational, which includes both inter-denominational and multi-denominational schools; (2) Minority Faith, encompassing Church of Ireland, Jewish, Presbyterian, Quaker and Muslim schools; and (3) Catholic schools.

For **school size**, we constructed a categorical variable dividing school into four quantiles: 'smallest', 'small', 'large', and 'largest.' In the primary 2022/23 dataset, the smallest schools had up to 67 students, small schools 68–131, large schools 132–249, and largest 250 or more. In primary 2023/24, the smallest schools had up to 69 students, small 70–133, large 134–238, and the largest 239 or more. In the post-primary 2022/23 dataset, the smallest group included schools with up to 344 students, small 345–561, large 562–759, and the largest 760 or more. For post-primary 2023/24, the smallest schools had up to 366 students, small 367–585, large 586–795, and the largest 796 or more.

We then created a binary version of the school size variable for use in interaction terms, due to sample size limitations. These binary variable groups the 'smallest' and 'small' categories together, and the 'large' and 'largest' categories together.

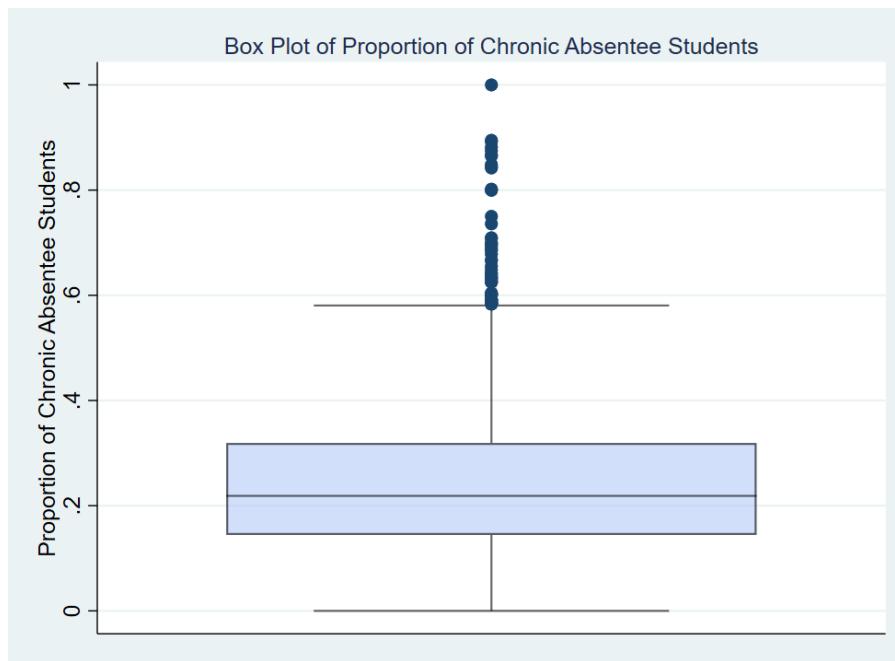
⁷ Of the approximately 200 Irish-medium primary schools (depending on the year), around 34–36 per cent are located in Gaeltacht areas. Out of the 40–50 post-primary schools incorporating Irish, 28–30 per cent are in Gaeltacht areas.

⁸ A large number of schools are denominational, affiliated with a single faith, usually Catholic, Protestant, or another (minority) religion, and offer religious education in that faith. Multi-denominational schools comprise Community National Schools, set up by the State in response to increasing diversity in Irish society, and Educate Together schools, set up from the 1970s onwards in order to widen school choice by establishing schools that catered for children of all social, cultural and religious backgrounds. Gaelscoileanna (Irish-medium schools) may be denominational and come under the same patronage as Catholic schools, but some describe themselves as inter-denominational, with a combined Catholic and Protestant ethos.

For DEIS status, at primary level the analyses distinguish between Urban Band 1 (the most deprived schools), Urban Band 2, Rural DEIS and non-DEIS schools. At post-primary level, there is a dichotomy between DEIS and non-DEIS schools; in addition, analyses are conducted on fee-paying post-primary schools, an indicator of advantage. The school address was used to match information on the deprivation level of the local area, using the HP Pobal Index, that distinguishes areas from 'affluent' to 'disadvantaged'. In most cases, the measures of school-level and area-level deprivation are closely related. However, some mismatches are evident – for example, a DEIS school located in an affluent area or a non-DEIS school in a disadvantaged area. This relates to the way in which the measures are calculated. DEIS status is determined by the area-level deprivation of student addresses (with some legacy schools still in the programme). Area-level deprivation is determined by the location of the school itself; the school may draw its students from a broader catchment area or may be located close to the boundary of a disadvantaged area.

1.2.3 Outliers and distribution of outcomes

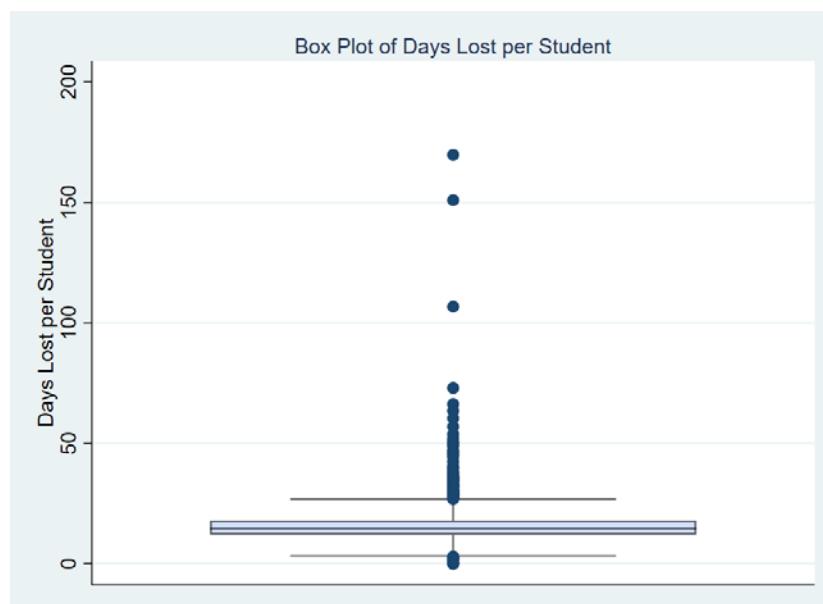
This section outlines the approach taken to identify and address extreme observations within the dataset. Given the presence of various data quality issues – including logical inconsistencies, data entry errors, missing values, and duplicate records – it was important to carefully examine extreme observations, also referred to as outliers, before conducting the statistical analysis. Outliers are particularly common in administrative data, and it is standard practice to address them to ensure the robustness of results (Osborne and Overbay, 2004). In this analysis, outliers were identified using a conventional method based on box plot criteria (Smiti, 2020). We acknowledge, however, that some of the excluded observations may represent genuine values rather than data errors, which constitutes a limitation discussed in the conclusions section.


Primary dataset 2022/23

The first outcome variable examined is the proportion of chronically absent students within the total student population.⁹ The box plot¹⁰ (Figure 1.1) highlights several values that stand out as **outliers**, those above the threshold of the third quartile (Q3) plus 1.5 times the interquartile range (IQR), which corresponds to a proportion of students greater than 58.14 per cent). In total, 55 such observations are identified and removed.

⁹ For the histograms of the outcome variables, please see Figures A.2.1, A.2.2, A.3.1, A.3.2, A.4.1, A.4.2, A.5.1 and A.5.2 in the Appendices. As it can be observed, the outcome variables – the share of chronically absent students and days lost per student – are somewhat skewed to the right.

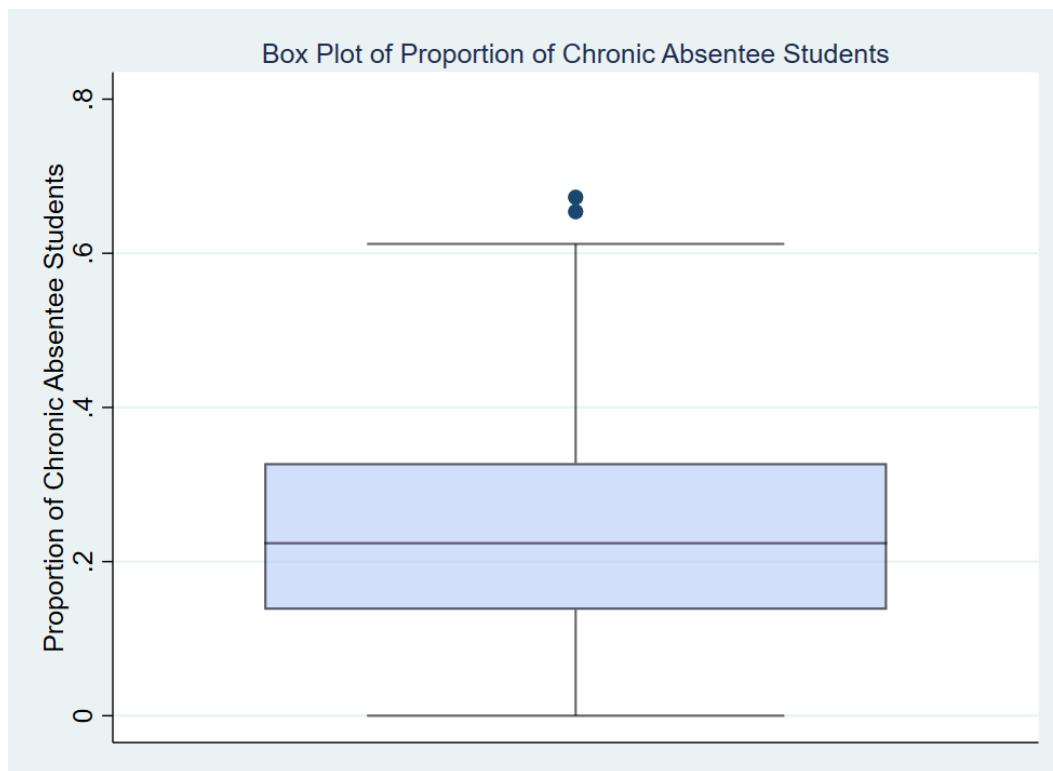
¹⁰ A box plot is a way of showing how a set of values is spread out. The box itself shows the middle half of the data, from the first quartile (Q1, or the 25th percentile) to the third quartile (Q3, or the 75th percentile). The line inside the box marks the median, or middle value. The 'whiskers' stretch to values that are not too far from this middle range, and any points beyond them are shown as outliers.


FIGURE 1.1 BOX PLOT OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (PRIMARY 22/23)

Source: Data from TESS.

The same approach is applied to the other dependent variable of interest: days lost per student in each school. The box plot (see Figure 1.2) highlights a relatively high number of outliers – 91 observations above the upper bound ($Q3 + 1.5 \times IQR$) and 29 below the lower bound ($Q1 - 1.5 \times IQR$). These correspond to thresholds of 25.9 and 3.17 days lost per student, respectively, and are excluded from the analysis.

FIGURE 1.2 BOX PLOT OF DAYS LOST PER STUDENT (PRIMARY 22/23)



Source: Data from TESS.

Post-primary dataset 2022/23

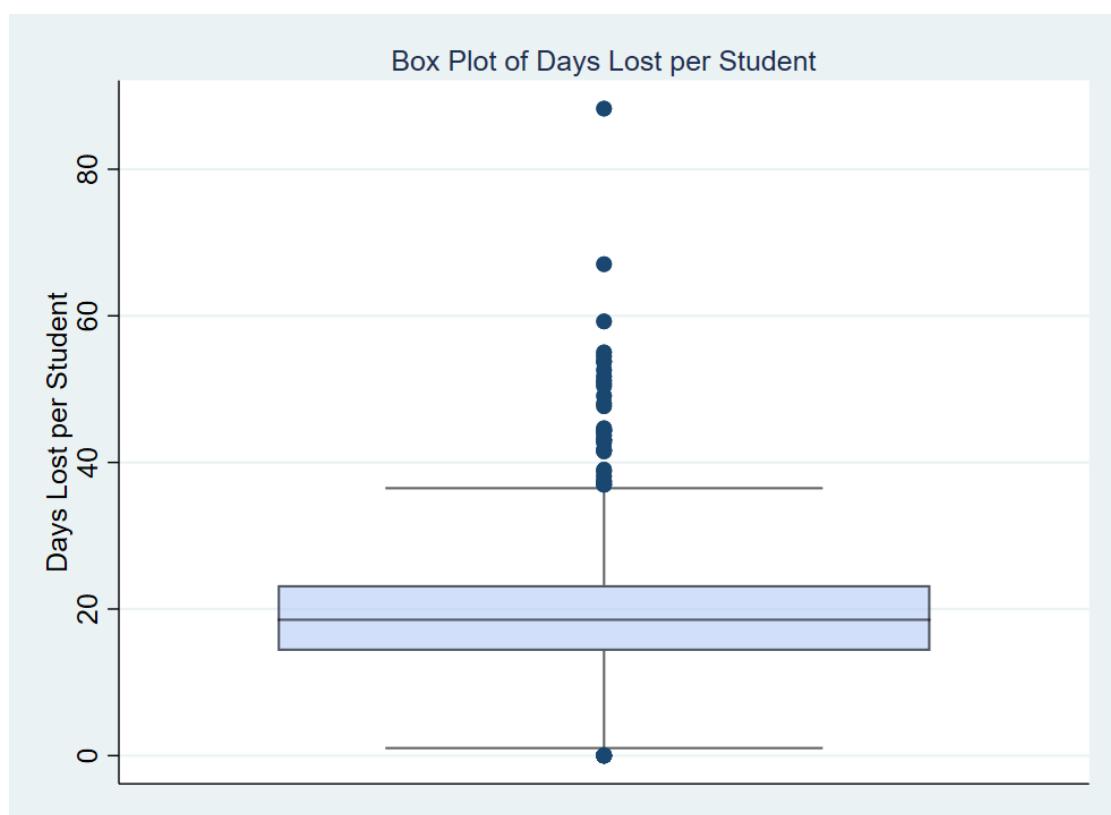
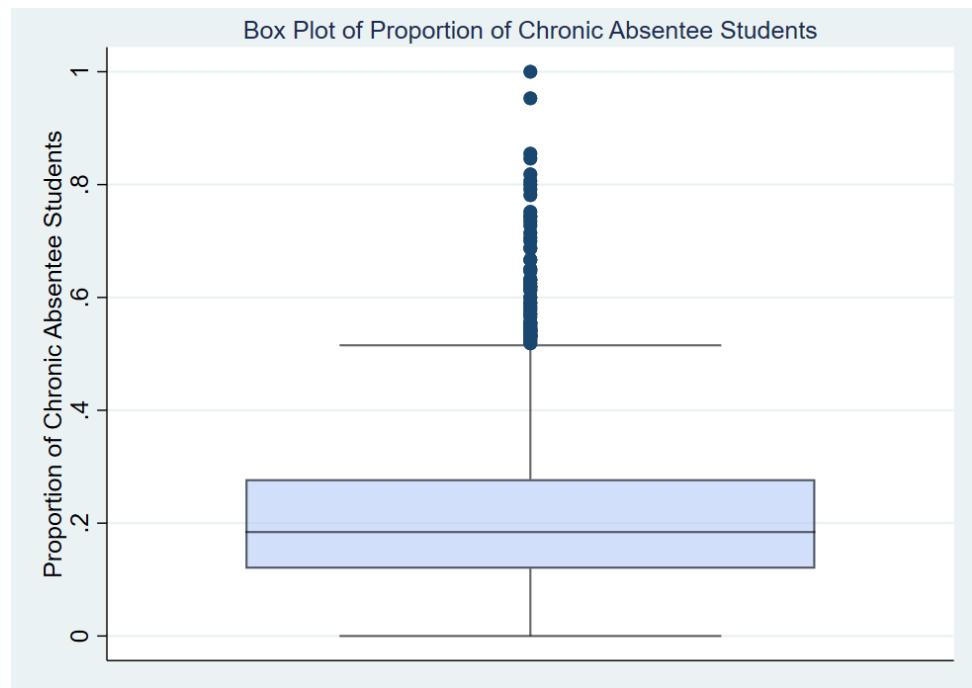

The box plot in Figure 1.3 displays the distribution of the proportion of chronically absent students relative to the total student population in post-primary schools. Several values appear as outliers, defined as observations exceeding the threshold of the third quartile (Q3) plus 1.5 times the interquartile range (IQR). In this case, the outlier threshold corresponds to a proportion of students with chronic absenteeism greater than **61.33 per cent**. A total of **two such observations** were identified and subsequently removed from the analysis.

FIGURE 1.3 BOX PLOT OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (POST-PRIMARY 22/23)

Source: TESS AAR data.

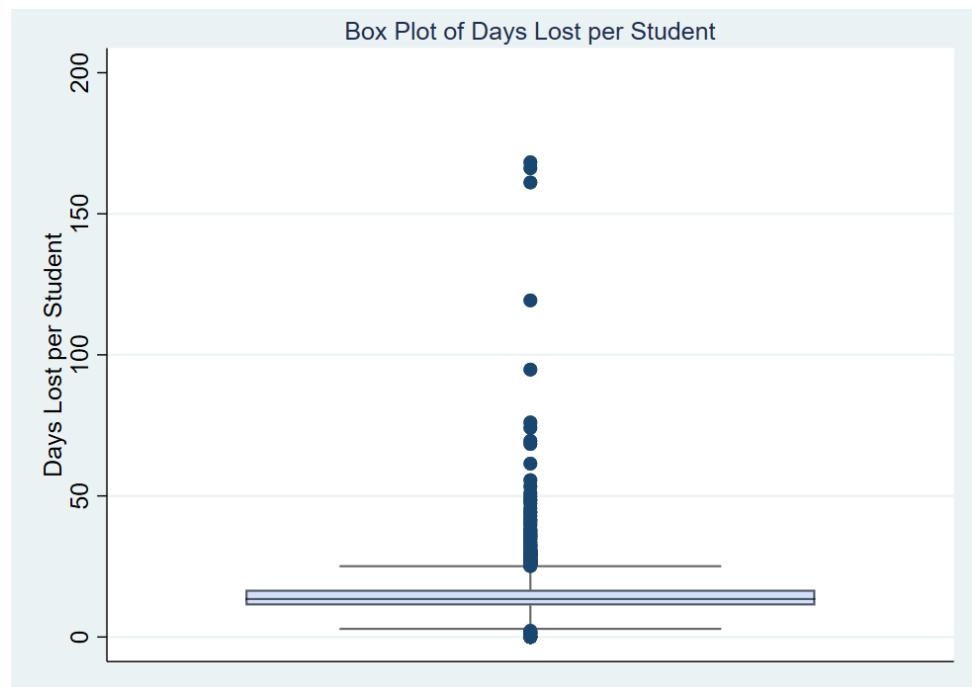
The box plot of days lost per student (Figure 1.4) also reveals the presence of outliers, with 34 observations exceeding the upper threshold of 36.74 days and six observations falling below the lower threshold of 0.80 days.


FIGURE 1.4 BOX PLOT OF DAYS LOST PER STUDENT (POST-PRIMARY 22/23)

Source: TESS AAR data.

Primary dataset 2023/24

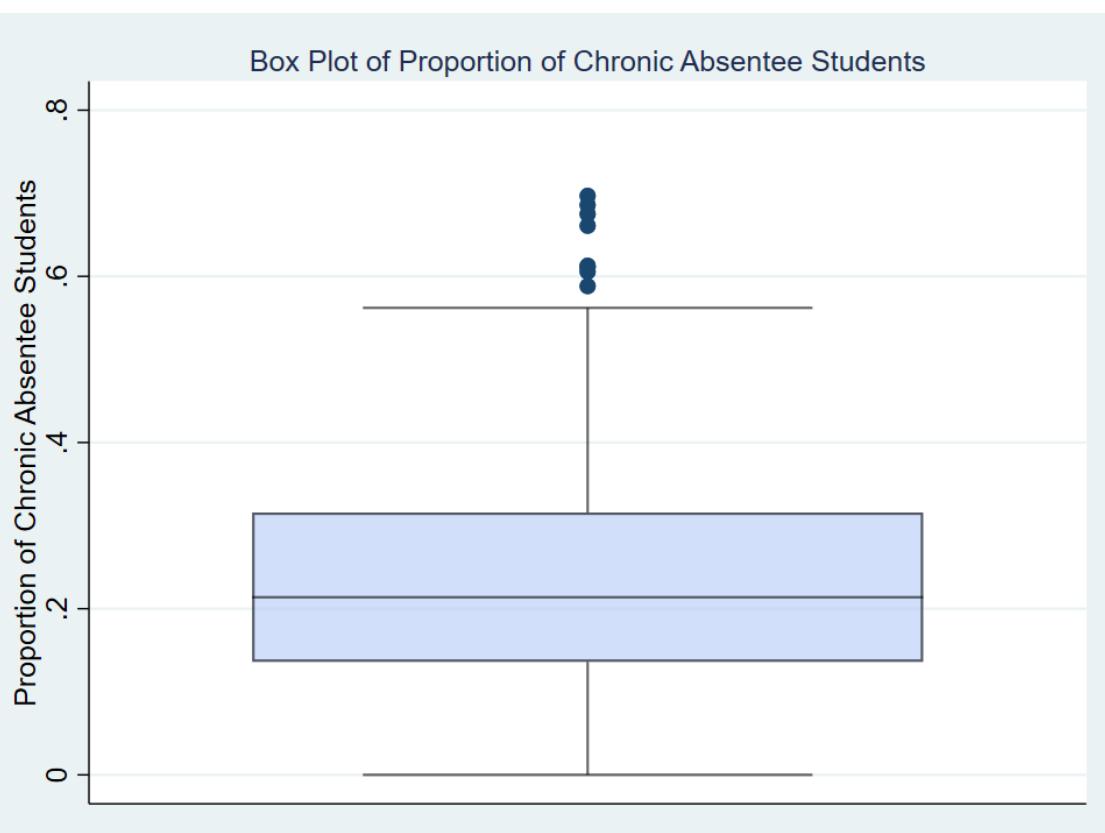
The box plot in Figure 1.5 displays the distribution of the proportion of chronically absent students relative to the total student population. Several values appear as outliers, defined as observations exceeding the threshold of the third quartile (Q3) plus 1.5 times the interquartile range (IQR). In this case, the outlier threshold corresponds to a proportion of students with chronic absenteeism greater than **51.57 per cent**. A total of **75 such observations** were identified and subsequently removed from the analysis.


FIGURE 1.5 BOX PLOT OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (PRIMARY 23/24)

Source: TESS AAR data.

The boxplot of the outcome variable (see Figure 1.6) – **days lost per student** – also reveals the presence of outliers, with an upper threshold of **25.10 days** and a lower threshold of **2.835 days**. A total of **48 observations above** and **21 below** these thresholds were removed.

FIGURE 1.6 BOX PLOT OF DAYS LOST PER STUDENT (PRIMARY 23/24)



Source: TESS AAR data.

Post-primary dataset 2023/24

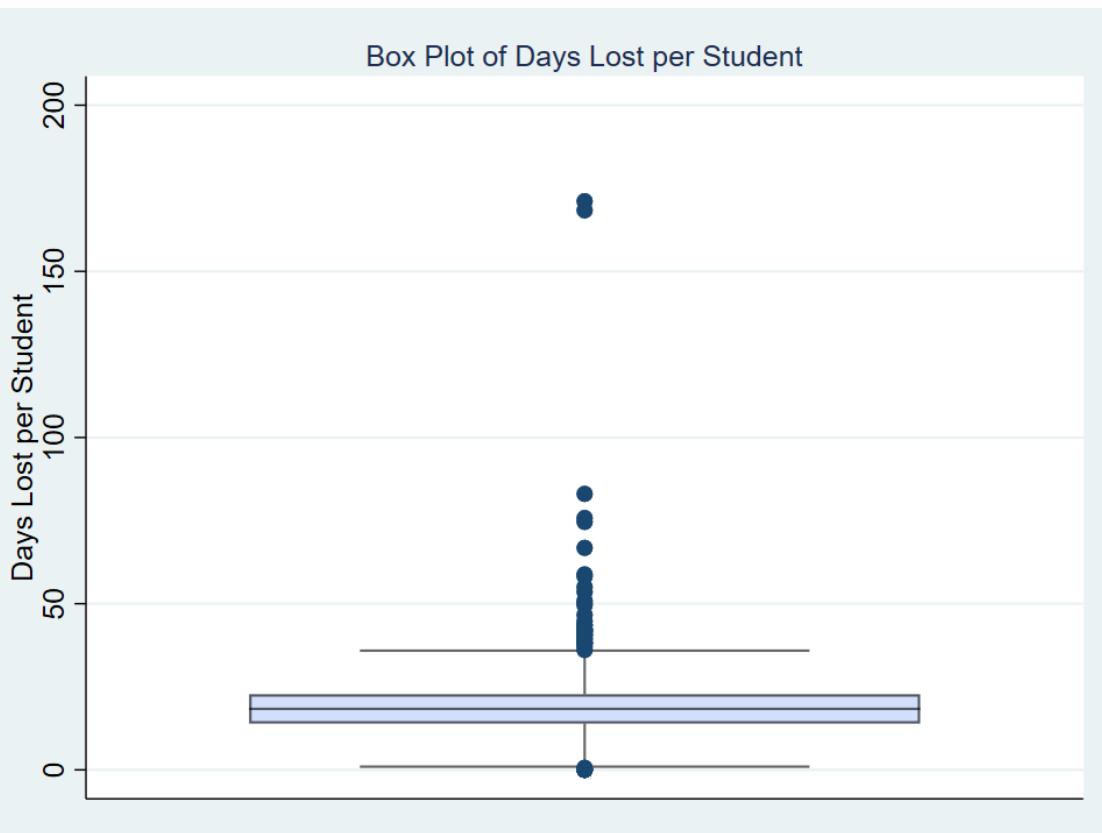

The box plot in Figure 1.7 displays the distribution of the proportion of chronically absent students relative to the total student population. Several values appear as outliers, defined as observations exceeding the threshold of the third quartile (Q3) plus 1.5 times the interquartile range (IQR). In this case, the outlier threshold corresponds to a proportion of students with chronic absenteeism greater than **58.55 per cent**. A total of **eight such observations** were identified and subsequently removed from the analysis.

FIGURE 1.7 BOX PLOT OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (PRIMARY 23/24)

Source: TESS AAR data.

The boxplot of the outcome variable (Figure 1.8) – **days lost per student** – also reveals the presence of outliers, with an upper threshold of **35.98 days** and a lower threshold of **0.69 days**. A total of **29 observations above** and **9 below** these thresholds were removed.

FIGURE 1.8 BOX PLOT OF DAYS LOST PER STUDENT (PRIMARY 23/24)

Source: TESS AAR data.

1.3 OUTLINE OF THE REPORT

Each of the following four chapters corresponds to data from a specific educational stage and year. Specifically, Chapters 2, 3, 4 and 5 correspond respectively to primary 2022/23, post-primary 2022/23, primary 2023/24, and post-primary 2023/24.

Each chapter begins by presenting descriptive graphs showing the distribution of quantiles of CA rates and days lost per student by the different school variables previously outlined. We also present the overall CA rate and the average days lost per student by school type (e.g. Band 1 schools have this share of CA and this number of days lost overall). We then move on to the regression models, first explaining the models with CA rates as the outcome and then those with days lost per student. The regression analysis is divided into subsections, with a main model followed by additional models and interaction terms.

Chapter 6 examines time trends over the two years. The first part covers primary schools and the second part covers post-primary schools. As in previous chapters, we begin with descriptive graphs plotting the distribution of increases or decreases

by school type, followed by the results of regression models using two approaches: the year-as-dummy model and the regressor variable method. The chapter is structured so that graphs and regression results are presented first for one outcome, and then for the other.

Chapter 7 presents the conclusions, outlining the main results as well as their implications for attendance data, and for policy, practice, and further research.

CHAPTER 2

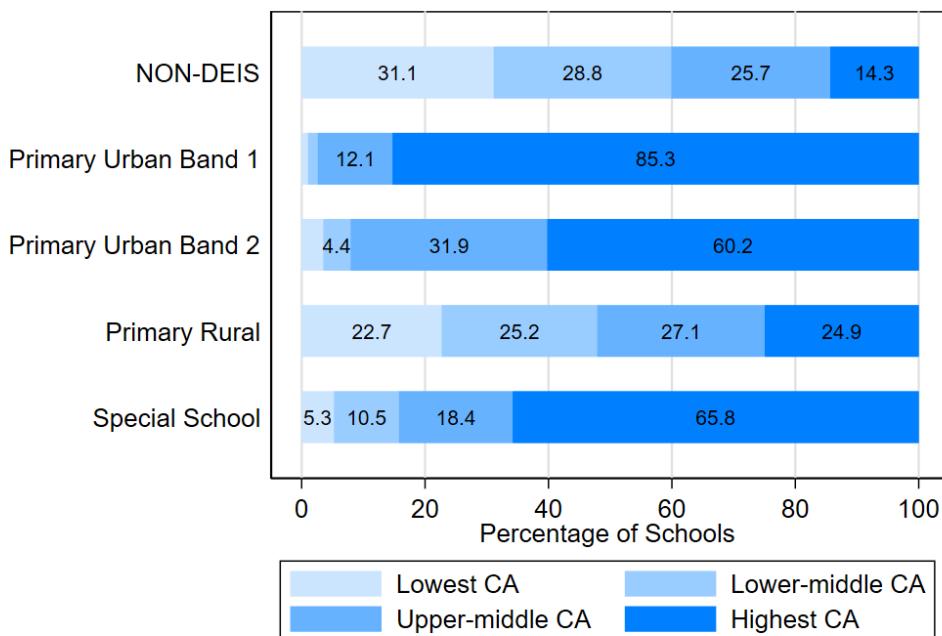
School absence in primary schools, 2022/23

2.1 THE PROFILE OF THE STUDENT POPULATION BY PRIMARY SCHOOL TYPE

The TESS AAR data do not contain information on student-level characteristics, such as family background (see Chapter 1). As context for the analyses of TESS data, Growing Up in Ireland (GUI) data were used to explore the profile of students across different types of schools. Not surprisingly, given how they are identified, students attending DEIS Urban Band 1 schools are more likely to come from the lowest income quintile, from lone-parent families and are less likely to have mothers with a degree-level qualification (Appendix Table 1.1). Urban Band 2 and Rural DEIS schools are more disadvantaged in profile than non-DEIS schools, with a higher proportion from lone-parent families in Band 2 schools. There is little systematic variation in student profile by gender mix of the school at primary level. Minority faith and multi-denominational students are more likely to have graduate mothers and less likely to be in the lowest income group than those in Catholic schools. Finally, those attending Irish-medium schools tend to be more advantaged in terms of maternal education, income and family structure than those in English-medium schools. These differences must be borne in mind in interpreting the patterns of non-attendance across school types.

2.2 DESCRIPTIVE PATTERNS

In primary schools, the average chronic absence (CA) rate is 22.93 per cent, meaning that, on average, one-in-five students misses 20 or more days of school a year. The 25 per cent of schools with the lowest CA rates have 14.3 per cent or fewer of their students chronically absent, while those with the highest CA rates have 30.3 per cent or more.


Primary students lose an average of 14.9 days per year. In the 25 per cent of schools with the lowest average days lost, students miss 12.05 days or fewer. In contrast, in the quarter of schools with the highest average days lost, students miss 17.33 days or more.

DEIS Classification and special school status

At the descriptive level, DEIS classification and special school status appear to be the most important factors related with differences in the distribution of CA counts across schools. In non-DEIS schools, the proportion of chronically absent students is 19.94 per cent, which is below the overall average of 22.93 per cent. In contrast, DEIS schools show significantly higher rates, with notable variation by DEIS type. The highest proportion is observed in DEIS Band 1 schools at 39.86 per cent,

followed by special schools at 34.53 per cent, Band 2 schools at 32.95 per cent, and DEIS rural schools at 22.85 per cent.

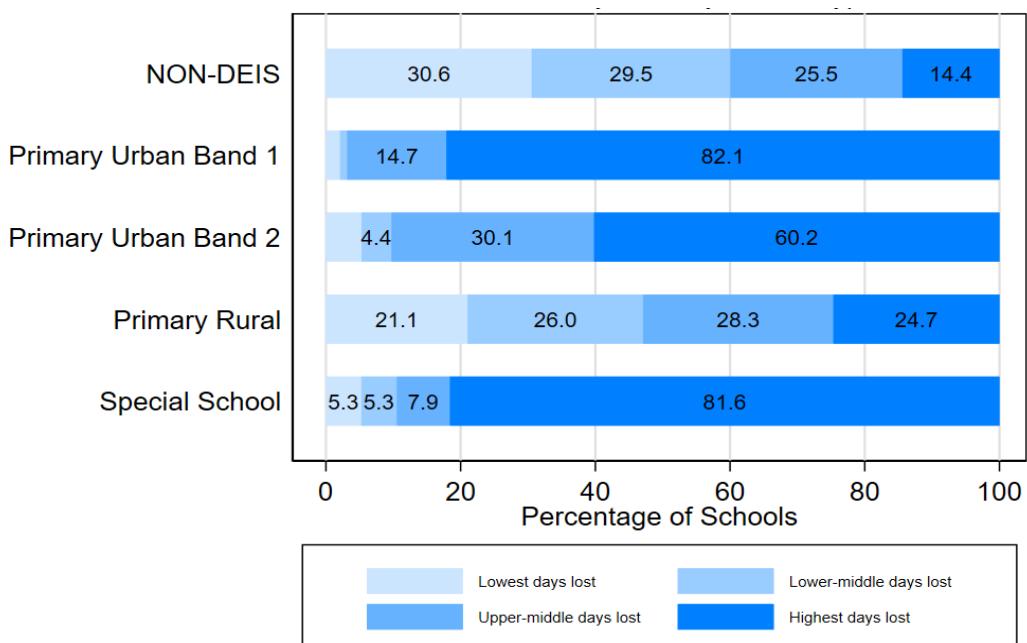
FIGURE 2.1 PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY DEIS AND SPECIAL SCHOOL STATUS

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

Looking at quantiles (Figure 2.1) reinforces the fact that non-DEIS schools show the most favourable attendance patterns by a large margin, with 31.1 per cent of schools in the lowest CA category. When combined with the 28.8 per cent in the second-lowest category, this results in a total of 59.9 per cent of non-DEIS schools falling into the two best attendance categories.

In contrast, DEIS and special schools perform considerably worse in terms of chronic absenteeism. Among these, primary Urban Band 1 schools show the most alarming patterns, with 85.3 per cent of schools falling into the highest category of chronic absenteeism. This represents a stark difference of 59.9 percentage points compared to non-DEIS schools. The situation appears even more concerning when considering that a combined 97.4 per cent of primary Urban Band 1 schools fall into either the highest or second-highest CA categories.

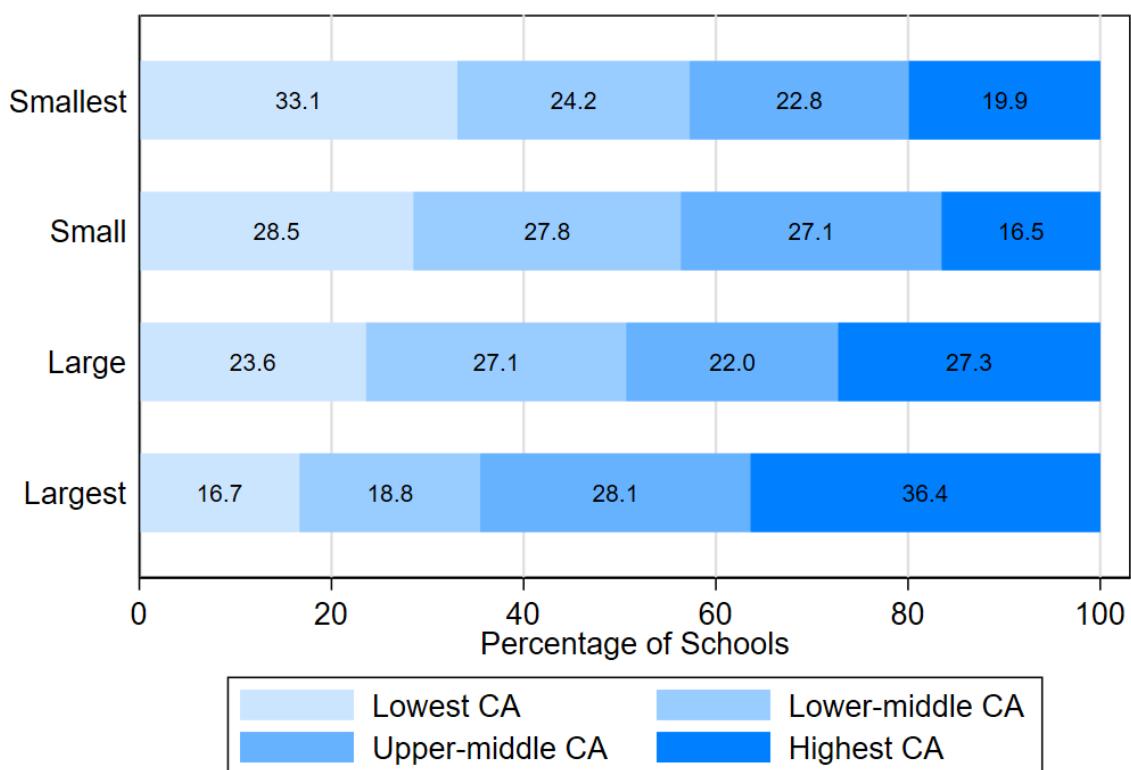

Special schools follow behind primary Urban Band 1 schools with the largest share of schools in the highest category of chronic absenteeism (with 65.8 per cent of them falling into this group) – 19.5 percentage points lower than the 85.3 per cent observed in Primary Urban Band 1 schools. When considering the combined share of schools in the two highest CA categories, the figure is 84.2 per cent.

Primary Urban Band 2 schools also show relatively poor outcomes compared to non-DEIS schools. A total of 60.2 per cent of these schools fall into the highest category of chronic absenteeism. When combining the two worst categories, the figure rises to 91.3 per cent, which is not far from the respective figure for primary Urban Band 1 schools (97.4 per cent).

Primary Rural DEIS schools show relatively better outcomes compared to other DEIS categories. While 24.9 per cent of these schools fall into the highest category of chronic absenteeism – still higher than for non-DEIS schools (14.3 per cent) – the gap is notably smaller than in urban DEIS or special schools. Moreover, a combined 52 per cent of primary Rural DEIS schools fall into the two best attendance categories – indicating a more balanced distribution than in other DEIS groups.

When examining days lost per student (Figure 2.2), the pattern remains largely similar. The average number of days lost per student in non-DEIS schools is 13.9, which is lower than in DEIS and special schools. Special schools and Band 1 schools have the highest figures, with 20.86 and 20.38 days lost per student, respectively. They are followed by Band 2 schools with 17.95 days, and DEIS rural schools with 15.10 days. Looking at quantiles reveals that, in this metric, special schools fare even worse than before. A striking 81.6 per cent of special schools fall into the quantile with the highest rates of days lost per student.

FIGURE 2.2 PRIMARY 2022/23: LEVELS OF DAYS LOST PER DEIS AND SPECIAL SCHOOL STATUS



School size

The smallest and small schools report similar rates of chronic absenteeism, at 20.94 per cent and 20.76 per cent respectively, both below the overall average of 22.94 per cent. However, absenteeism increases with primary school size: large schools show a rate of 23.73 per cent, while the largest schools have the highest proportion at 26.35 per cent.

Looking at quantiles (Figure 2.3) indicates that the comparison between the smallest and small schools shows only modest differences in attendance outcomes. Small schools have a similar share of schools in the worst chronic absenteeism category – 16.5 per cent compared to 19.9 per cent for the smallest schools – representing a difference of only 3.4 percentage points. Looking at the best and combined two best attendance categories, the differences remain small. The smallest schools have a combined 54.2 per cent in the top two categories, while small schools have 53.3 per cent.

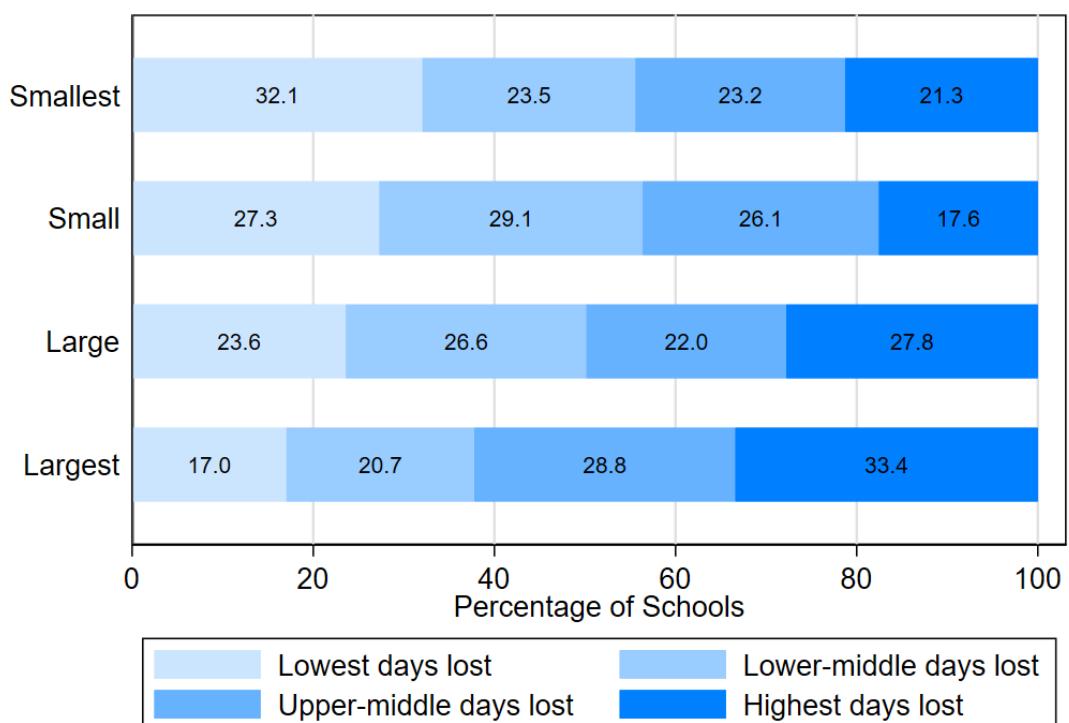

Both categories of smaller schools outperform, albeit to varying degrees, larger ones in terms of attendance. In the lowest chronic absenteeism quantile, 33.1 per cent of the smallest schools and 28.5 per cent of small schools fall into this group, compared to 23.6 per cent of large schools and just 16.7 per cent of the largest. Conversely, in the highest CA category, 19.9 per cent of the smallest schools and 16.5 per cent of small schools fall into this group, compared to 27.3 per cent of large schools and 36.4 per cent of the largest.

FIGURE 2.3 PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY SCHOOL SIZE

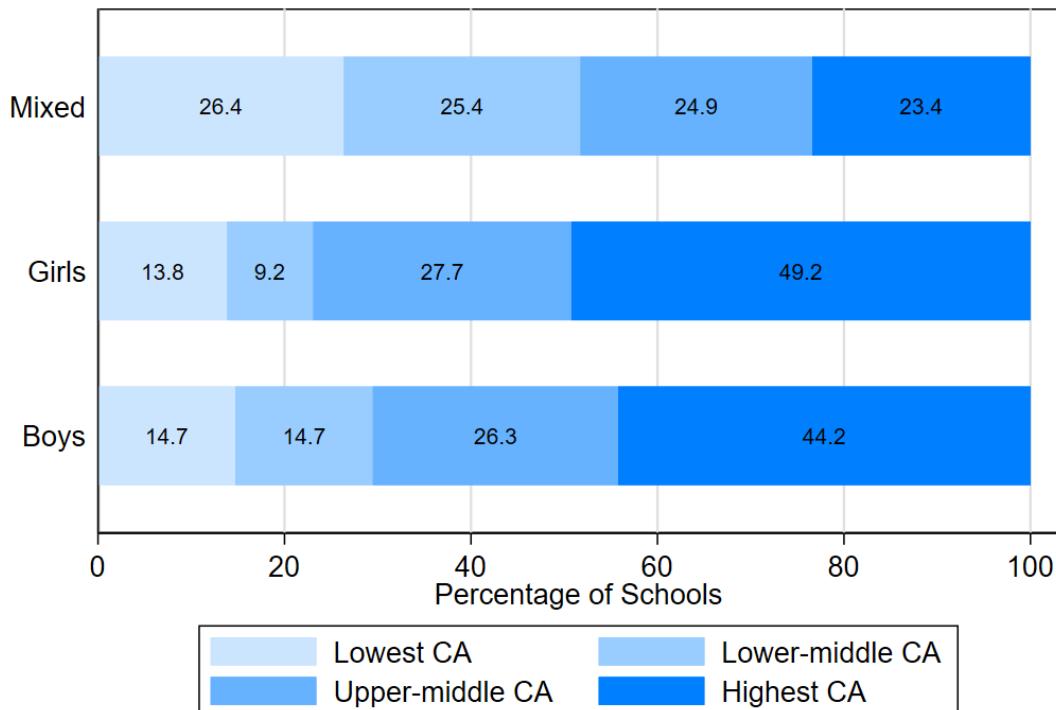
Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

Looking at the average number of days lost per student (Figure 2.4), rather than the relative count of chronically absent students, offers very similar results. The smallest and small schools report nearly identical averages – 14.43 and 14.37 days respectively – both below the overall mean of 14.95 days. Slightly above these figures, students in large schools lose an average of 15.15 days, while those in the largest schools miss 15.85 days. The distribution of attendance quantiles across different school sizes remains largely consistent with this metric, varying only by a few percentage points.

FIGURE 2.4 PRIMARY 2022/23: LEVELS OF DAYS LOST BY SCHOOL SIZE

Source: Data from TESS.

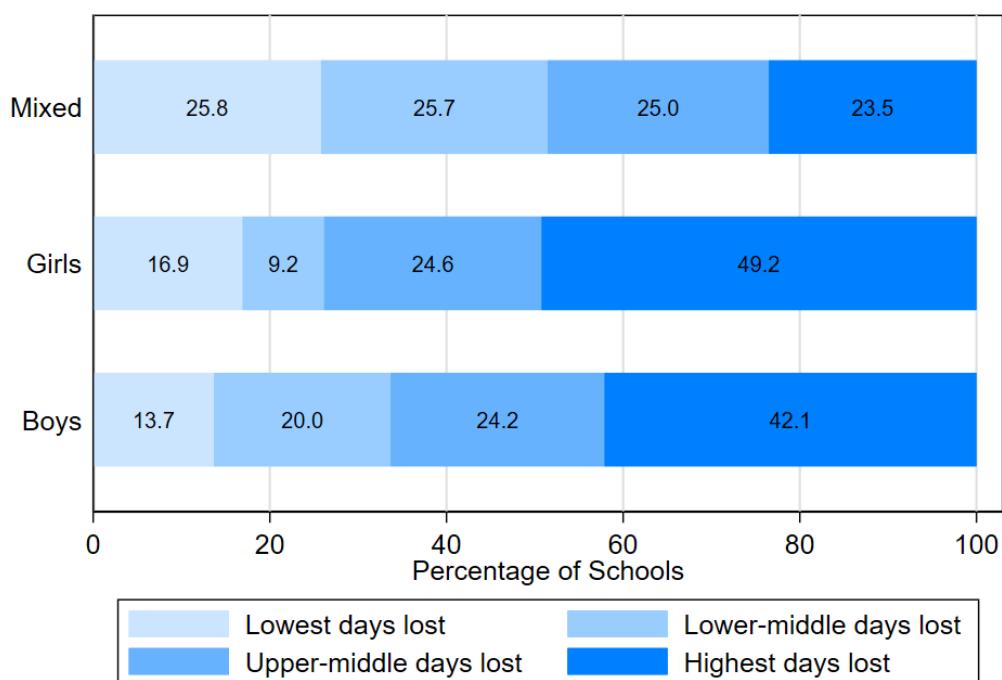

Gender mix

Looking at the gender mix of schools also provides relevant insights into attendance patterns. Mixed-gender schools report the lowest proportion of chronically absent students at 22.53 per cent, slightly below the overall average of 22.94 per cent. In contrast, single-gender schools show higher rates: girls' schools have the highest proportion at 28.83 per cent, closely followed by boys' schools at 28.06 per cent.

Looking at the quantile distribution (Figure 2.5) indicates that mixed schools show lower levels of chronic absenteeism compared to single-gender schools: 23.4 per cent of mixed schools fall into the worst category for chronic absenteeism, whereas this figure rises significantly to 44.2 per cent for all-boys schools and 49.2 per cent for all-girls schools, representing differences of 20.8 and 25.8 percentage points respectively. Similarly, when examining the share of schools in the best chronic absenteeism category, mixed schools again perform better, with 26.4 per cent in this group – 11.7 and 12.6 percentage points higher than boys' and girls' schools respectively (which are 14.7 per cent and 13.8 per cent). The gap becomes even more pronounced when focusing on the two best attendance categories: 51.8 per cent of mixed schools fall into these categories, compared to 70.5 per cent of boys' schools and 76.9 per cent of girls' schools.

When comparing single-gender schools, the overall percentages are quite similar, but boys' schools appear to fare slightly better. In the worst attendance category, 44.2 per cent of boys' schools fall into this group compared to 49.2 per cent of girls' schools – a difference of 5 percentage points. Likewise, boys' schools have a higher combined share in the top two attendance categories, 29.4 per cent, compared to 23.0 per cent for girls' schools.

FIGURE 2.5 PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY GENDER MIX



Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

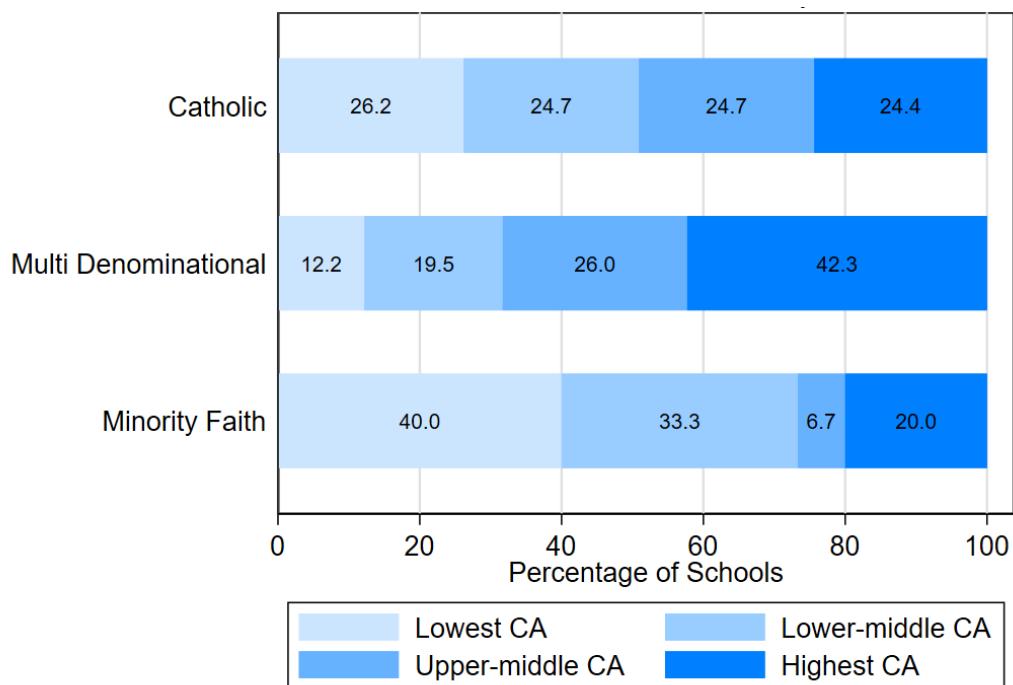
When looking at average days lost per student (Figure 2.6), the findings remain largely consistent. Mixed-gender schools report the lowest average at 14.83 days, slightly below the overall mean of 14.95 days. In contrast, students in single-gender schools experience notably higher absenteeism: girls' schools average 16.45 days lost, while boys' schools are slightly higher at 16.62 days.

The quantile distribution shows that mixed-gender schools continue to show an overall advantage in attendance compared to single-gender schools, with more favourable distributions across the quantiles. The main difference is that, while girls' schools still have a higher share than boys' schools in the worst attendance category, they now also have a slightly higher share in the best category – 16.9 per cent compared to 13.7 per cent. However, this difference remains quite small.

FIGURE 2.6 PRIMARY 2022/23: LEVELS OF DAYS LOST BY GENDER MIX

Source: Data from TESS.

School ethos

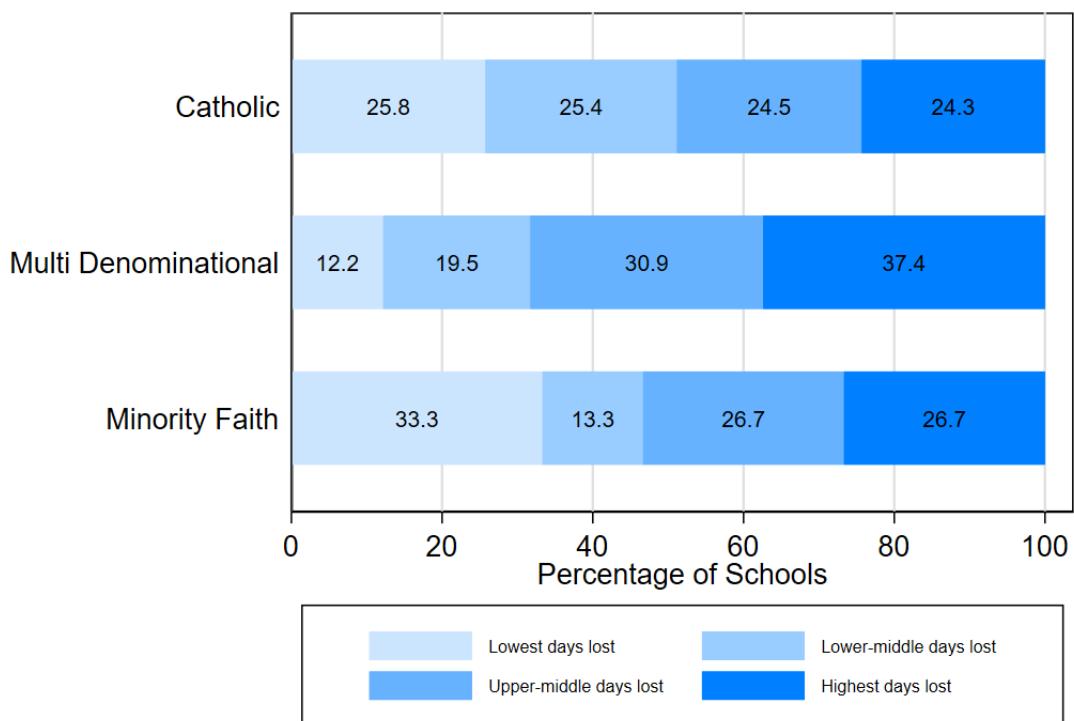

The ethos – here used to refer to religious denomination – of a school also appears to be related to attendance patterns, with sizeable differences in chronic absenteeism (CA) levels across school types. Minority faith schools report the lowest proportion of chronically absent students at 19.34 per cent, below the overall average of 23 per cent. Catholic schools are close to the average, with a rate of 22.77 per cent. In contrast, multi-denominational schools show a higher rate at 27.20 per cent.

When looking at quantiles (Figure 2.7), we further see how minority faith schools demonstrate the most positive outcomes, with 40 per cent of them falling into the category with the lowest levels of chronic absenteeism. This stands in stark contrast to just 12.2 per cent of multi-denominational schools – 27.8 percentage points lower – and 26.2 per cent of Catholic schools, which is 13.8 percentage points lower.

This gap remains pronounced when looking at the two best attendance categories combined. A striking 73.3 per cent of minority faith schools fall within these top two categories. In comparison, 50.9 per cent of Catholic schools and only 31.7 per cent of multi-denominational schools fall into the same range – representing differences of 22.4 and 41.6 percentage points, respectively, compared to minority faith schools.

At the opposite end of the spectrum, 20 per cent of minority faith schools fall into the worst CA category. Catholic schools have a similar figure, just 4.4 percentage points higher (24.4 per cent). In contrast, 42.3 per cent of multi-denominational schools fall into the worst CA category – a difference of 22.3 percentage points compared to minority faith schools, and 17.9 percentage points compared to Catholic schools.

FIGURE 2.7 PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY ETHOS



Source: Data from TESS.

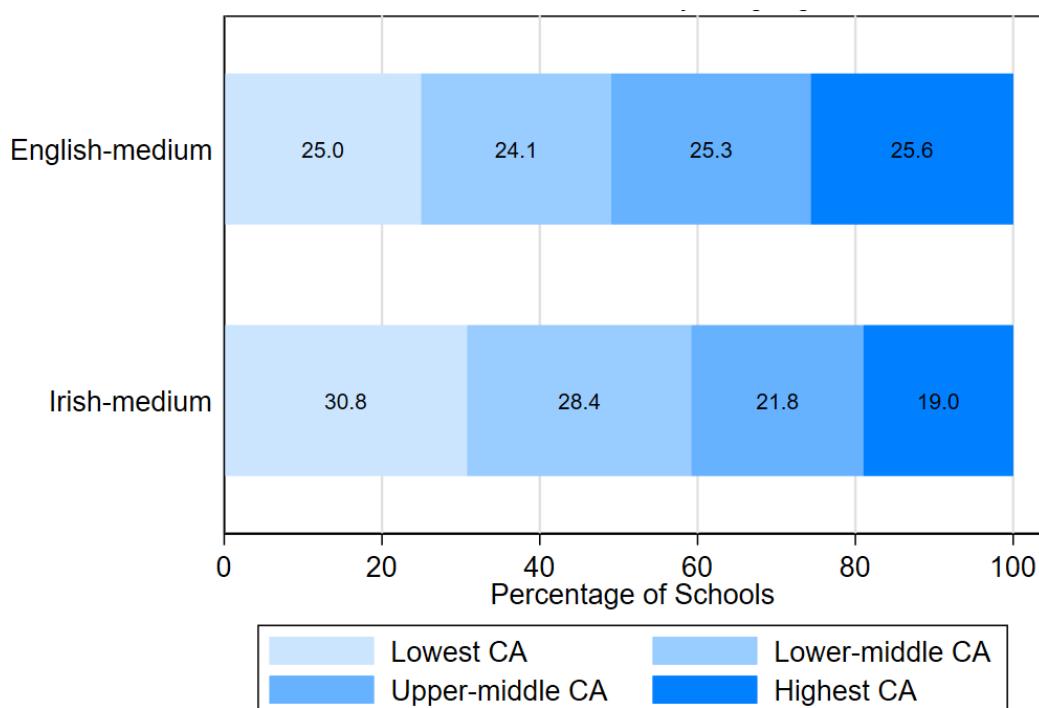
Notes: CA = chronic absenteeism quantile.

Overall, when considering both the highest and lowest CA categories, multi-denominational schools show less favourable attendance outcomes compared to both Catholic and minority faith schools.

Looking at average days lost per student (Figure 2.8) reveals very similar attendance category distributions for Catholic and multi-denominational schools, with only minor changes compared to the chronic absenteeism (CA) data. Just as when looking at CA counts, minority faith schools report the lowest average at 14.74 days, followed closely by Catholic schools at 14.88 days – both slightly below the overall mean of 14.96 days. Multi-denominational schools show a marginally higher average of 16.33 days lost per student.

FIGURE 2.8 PRIMARY 2022/23: LEVELS OF DAYS LOST BY ETHOS

Source: Data from TESS.


However, looking at the quantiles reveals more noticeable shifts for minority faith schools. While they continue to show the strongest attendance outcomes overall, the margin has narrowed. Previously, only 26.7 per cent of minority faith schools fell into the two worst attendance categories. This figure has now increased significantly to 53.4 per cent. Conversely, their share in the two best attendance categories has dropped sharply – from 73.3 per cent previously to just 46.6 per cent now. Overall, while minority faith schools still perform well, the gap between them and other school types narrows when attendance is measured using average days lost per student rather than CA rates.

Irish language

Finally, the classification of schools by their use of Irish as a language of instruction also appears to be somewhat related to levels of chronic absenteeism, although the differences are not as pronounced as with other variables. Yet schools that use Irish for some or all subjects present, to some extent, better attendance outcomes than those with no Irish inclusion. Although the figures are very similar, Irish-medium schools report a slightly lower proportion of chronically absent students at 21.01 per cent, compared to 23.14 per cent in English-medium schools.

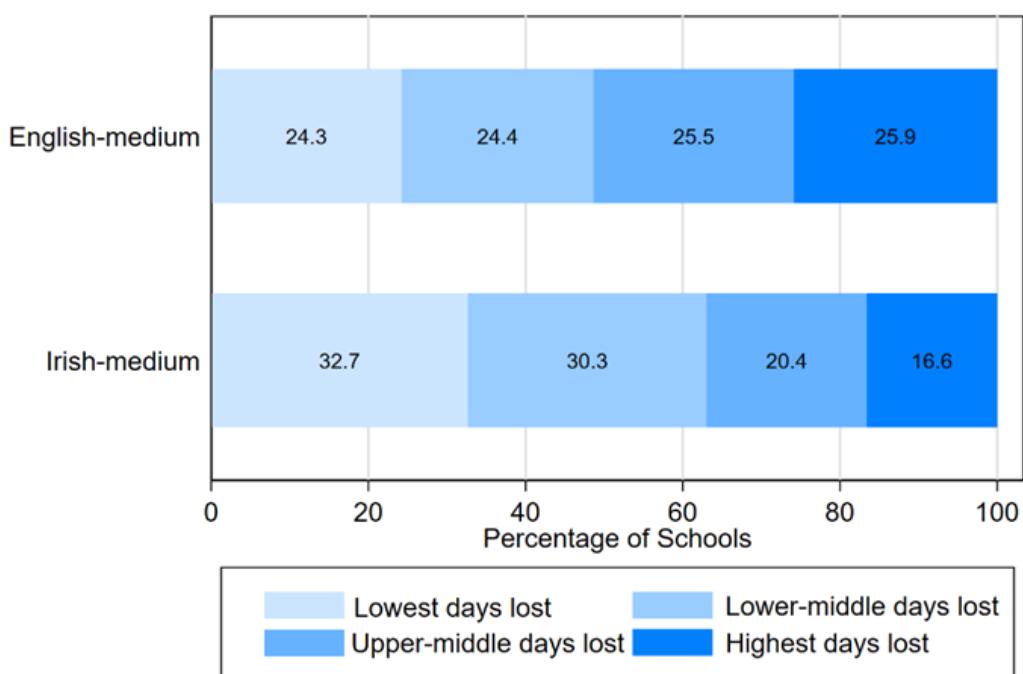

Examining the distribution across quantiles (Figure 2.9) provides additional insight. Among English-medium schools, 25 per cent fall into the lowest chronic absenteeism (CA) category, compared to 30.8 per cent of Irish-medium schools. Similarly, when looking at the worst (highest) CA category, Irish-instruction schools again fare better: 19 per cent fall into this group, compared to 25.6 per cent of schools with no Irish inclusion – a difference of 6.6 percentage points. When considering the share of schools that fall into the two worst CA categories combined, English-medium schools have a total of 50.9 per cent. This is 10.1 percentage points higher than the figure for schools that incorporate Irish, which stands at 40.8 per cent.

FIGURE 2.9 PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY LANGUAGE OF INSTRUCTION

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

FIGURE 2.10 PRIMARY 2022/23: LEVELS OF DAYS LOST BY LANGUAGE OF INSTRUCTION

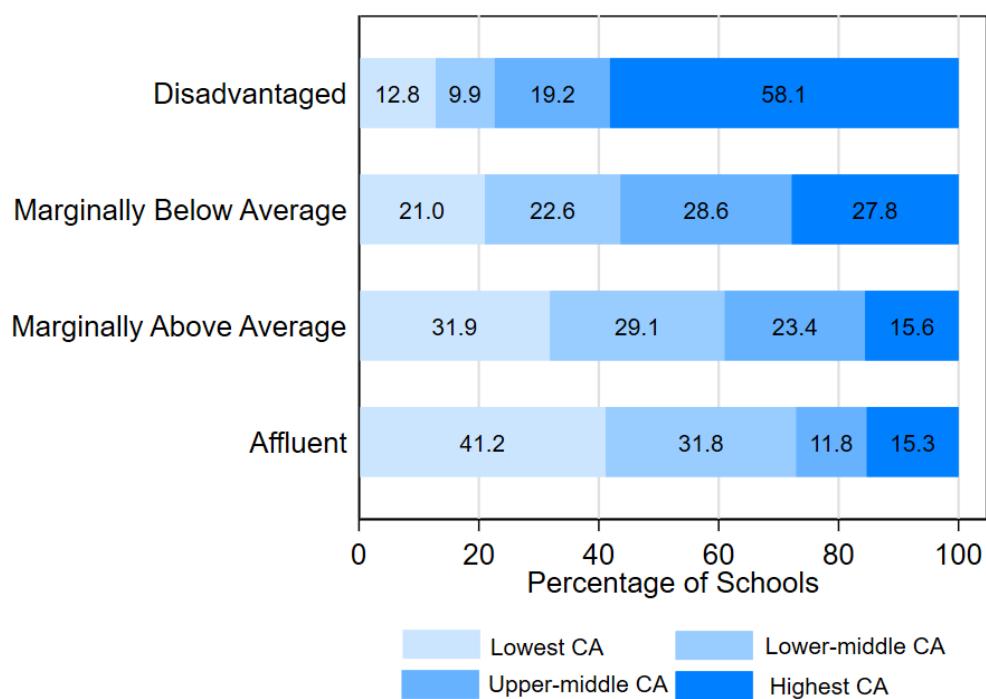
Source: Data from TESS.

Looking at the variable average days lost per student (Figure 2.10) yields very similar results. Overall, the figures are closely similar, with a slight advantage for Irish-medium schools: on average, students in Irish-medium schools lost 14.09 days compared to 15.04 days in English-medium schools. Likewise, the distribution across attendance quantiles using this metric remains largely unchanged, with only marginal differences in percentage points.

HP Pobal Index¹¹

Schools located in disadvantaged areas report the highest proportion of chronically absent students at 32.49 per cent, noticeably above the overall average of 22.93 per cent. This rate steadily declines as affluence increases, with schools in marginally below average areas having a rate of 23.91 per cent, schools in marginally above average areas dropping to 20.22 per cent, and affluent schools reporting the lowest rate at 18.11 per cent.

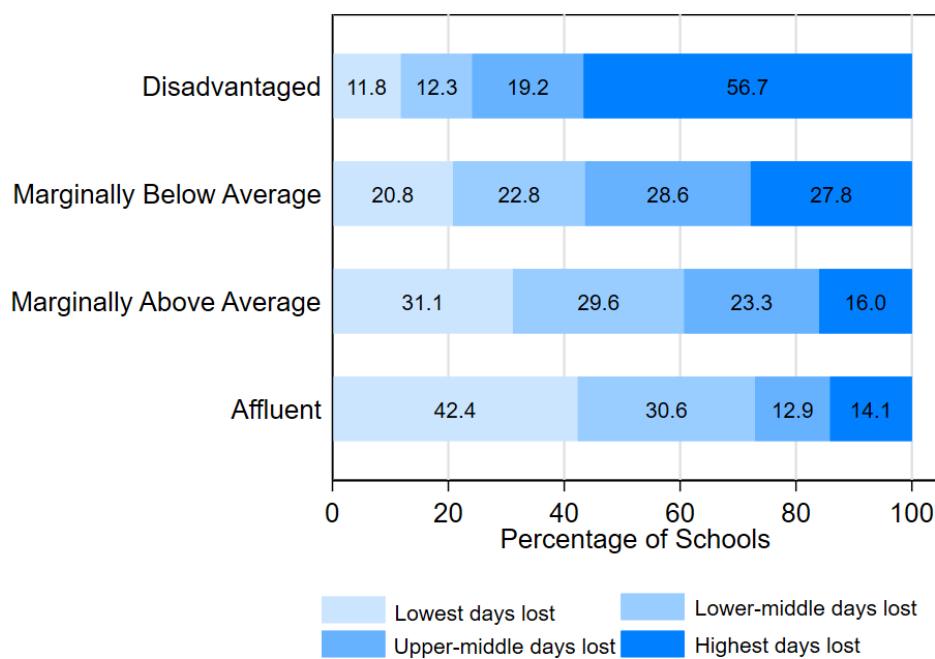
The distribution of quantiles (Figure 2.11) reveals this same gradient more clearly. Schools in disadvantaged areas show a stark concentration of high chronic absenteeism, with 58.1 per cent falling into the highest CA category and only 12.8 per cent in the lowest. This contrasts sharply with schools in affluent areas,


¹¹ The HP Pobal Index uses Census data on ten indicators of socio-economic deprivation to provide a summary measure of area-level deprivation.

where 41.2 per cent are in the lowest CA category and just 15.3 per cent in the highest, indicating much better attendance outcomes.

Schools in marginally below average areas display a more even distribution, though still skewed toward higher absenteeism: 27.8 per cent fall into the highest CA group, while 21.0 per cent are in the lowest. Meanwhile, marginally above average schools show a shift toward lower absenteeism, with nearly a third (31.9 per cent) in the lowest CA category and only 15.6 per cent in the highest.

Overall, the graph highlights a strong inverse relationship between socio-economic advantage and chronic absenteeism. As affluence increases, the proportion of schools with lower levels of chronic absenteeism rises, while the share with high absenteeism declines.


FIGURE 2.11 PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY HP POBAL INDEX

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

Looking at days lost (Figure 2.12) as the metric reveals the same gradient. Schools in disadvantaged areas report the highest average at 18.12 days, well above the overall mean of 14.95 days. This figure steadily declines with increasing affluence: marginally below average schools report 15.26 days, marginally above average schools drop to 14.10 days, and affluent schools have the lowest average at 13.02 days.

FIGURE 2.12 PRIMARY 2022/23: LEVELS OF DAYS LOST BY HP POBAL INDEX

Source: Data from TESS.

2.3 REGRESSION MODELS

2.3.1 Chronic absenteeism counts

The model is estimated using a standard OLS regression.^{12,13}

DEIS, ethos, gender mix, size and language of instruction

The analyses so far have looked at each type of school characteristics separately. In practice, some characteristics are closely intertwined, with, for example, DEIS schools being smaller on average. We use a regression model to disentangle the individual effects of DEIS, ethos, gender mix, school size and language of instruction, with the regression results being captured in Table 2.1.

We find **that all types of DEIS schools**, compared to non-DEIS schools, are positively and statistically significantly associated with chronic absenteeism at the 1 per cent significance level. The largest effect is observed for Urban Band 1: this type of DEIS school, as opposed to a non-DEIS school, is associated with a **19.6**

¹² The number of observations is 2,169.

¹³ A Breusch–Pagan/Cook–Weisberg test for heteroskedasticity applied to the model with the proportion of chronically absent students fails to reject the null hypothesis (p-value = 0.745), indicating that the errors have constant variance.

percentage point higher proportion of chronically absent students. Special schools also show a substantial difference, with a **15.4 percentage point increase**. Urban Band 2 DEIS schools are not far behind, with a **12.1 percentage point increase** in the proportion of chronically absent students. While rural DEIS schools also experience higher absenteeism rates than non-DEIS schools, the effect is less pronounced, with a **4.2 percentage point increase**.

Overall, the differences between DEIS and special schools, on the one hand, and non-DEIS schools, on the other, are striking. DEIS status, particularly in Urban Band 1, and special schools have by far the strongest association with increased counts of chronic absenteeism compared to all other variables in the model. These effects are substantially larger than those linked to other school characteristics such as ethos, gender mix, school size, Irish-medium status or county location.

After DEIS status, school ethos is the second largest predictor of absenteeism. Multi-denominational schools exhibit significantly higher levels of chronic absenteeism than both Catholic and Minority Faith schools at the 5 per cent significance level, with a 4.5 percentage point increase compared to Catholic schools. Minority faith schools, in turn, show a 5.4 percentage point lower rate of absenteeism than multi-denominational schools. The difference between minority faith and Catholic schools is not statistically significant.

School gender mix is not significantly associated with chronic absenteeism once other school characteristics are considered. Specifically, attending a single-gender school – whether all-boys or all-girls – does not result in statistically different levels of chronic absenteeism compared to mixed schools. Furthermore, no significant difference in chronic absenteeism is observed between boys' and girls' schools.

Several pairwise comparisons among **size categories** yield statistically significant results at the 5 per cent and 10 per cent level, as can be seen in the output with difference categories as base (Tables 2.1, 2.2 and 2.3). Using the smallest schools as the reference category, the 'largest' school group is associated with significantly higher rates of CA. Controlling for other variables, the largest schools have, on average, a **3.4 percentage point higher** proportion of chronically absent students than the smallest schools. When the 'small' school group (second quartile) is used as the comparison category, both the 'large' and 'largest' school groups exhibit significantly higher rates of chronic absenteeism, with **1.1 and 3.6 percentage point increases**, respectively. Comparing 'large' to 'largest' schools reveals a further increase of 2.53 percentage points in the proportion of chronically absent students in the largest category.

TABLE 2.1 PRIMARY 2022/23: REGRESSION MODEL OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS

Variable	Coefficient
DEIS type	
Urban Band 1	0.196***
Urban Band 2	0.121***
Primary Rural	0.042***
Special School	0.154***
<i>Base: Non-DEIS</i>	
School ethos	
Catholic	-0.045***
Minority Religion	-0.054**
<i>Base: Multi-denominational</i>	
Gender mix	
Girls	-0.002
Boys	0.008
<i>Base: Mixed</i>	
School size	
Small	-0.002
Large	0.009
Largest	0.034***
<i>Base: smallest</i>	
Irish-medium	-0.025***
Constant	0.187***

Source: Data from TESS.

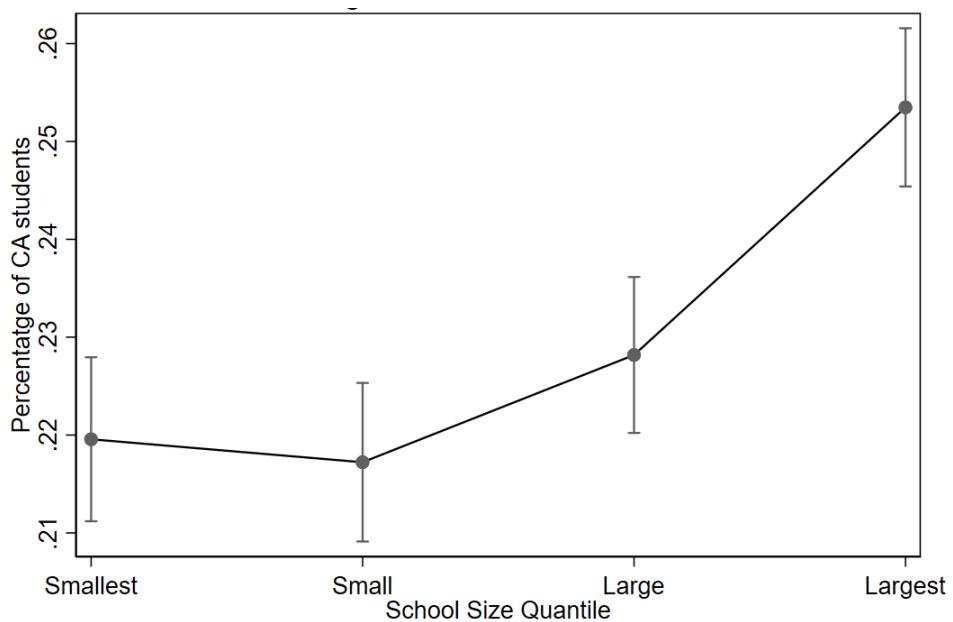
Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Adjusted R-squared = 0.3259.

TABLE 2.2 PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (SIZE, ALTERNATIVE BASE)

Variable	Coefficient
School size	
Smallest	0.002
Large	0.011*
Largest	0.036***
<i>Base: Small</i>	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). The regression controls for DEIS status, gender mix, language of instruction and ethos (see the complete model output in Table 2.1).


TABLE 2.3 PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (SIZE, ALTERNATIVE BASE)

Variable	Coefficient
School size	
Smallest	-0.008
Small	-0.001 *
Largest	0.025***
Base: Large	

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***)¹. The regression controls for DEIS status, school gender mix, language of instruction and ethos (see the complete model output in Table 2.1).

In contrast, differences between the ‘small’ and ‘smallest’ school groups, as well as between the ‘smallest’ and ‘large’ groups, are not statistically significant. Overall, the pattern – captured in Figure 2.13 – suggests that smaller schools tend to have better outcomes in terms of chronic absenteeism. However, the relationship is not entirely linear or symmetrical, indicating some nuance in how school size relates to absenteeism outcomes.

FIGURE 2.13 PRIMARY 2022/23: PREDICTED PROPORTION OF CHRONICALLY ABSENT STUDENTS BY SIZE

Source: Data from TESS.

Notes: The graph plots the predicted probabilities of the share of chronically absent (CA) students at different values of school size, with the other variables (DEIS status, gender mix, ethos, and language of instruction) held at their means.

Schools that incorporate Irish as a language of instruction are significantly associated with lower levels of chronic absenteeism at the 1 per cent level. Specifically, these schools exhibit a **2.54 percentage point lower proportion** of chronically absent students compared to schools that do not use Irish as a language of instruction. In practical terms, schools that use Irish as a medium of instruction have, on average, 6.91 fewer chronically absent students.

HP Pobal Index

We estimate a model using the baseline school characteristics – DEIS status, ethos, gender mix, size, and language of instruction – and add the HP Pobal Index of the electoral districts where schools are located. The results can be seen in Tables 2.4 to 2.6.

Using the ‘disadvantaged’ schools as the reference category, schools in the ‘marginally below average’, ‘marginally above average’, and ‘affluent’ categories are associated with statistically significantly lower proportions of chronically absent students – by **2.1, 4.8, and 8.9 percentage points**, respectively. When the ‘marginally below average’ category is used as the reference, the same pattern persists: schools in the ‘marginally above average’ and ‘affluent’ categories again show statistically significantly lower proportions of chronically absent students, though the differences are slightly smaller, at **2.7 and 6.7 percentage points**, respectively.

There are also differences between the ‘better-off’ categories: comparing schools in the ‘marginally above average’ category to those in the ‘affluent’ category, the latter are associated with a **4.0 percentage point lower** proportion of chronically absent students.

Overall, there is a clear inverse relationship between a school’s relative affluence, as measured by the HP Pobal Index, and the number of CA students. As schools are situated in progressively more advantaged areas – ranging from disadvantaged and marginally below average to marginally above average and affluent – the number of CA students decreases accordingly. The largest reductions in CA levels are observed between the most disadvantaged and the most affluent schools, as could be expected. All of these associations are estimated while controlling for the DEIS classification of schools, indicating that the deprivation level of the area in which a school is located has an effect on CA levels beyond that captured by DEIS status alone.

TABLE 2.4 PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (HP POBAL INDEX)

Variable	Coefficient
DEIS type	
Primary Urban Band 1	0.174***
Primary Urban Band 2	0.110***
Primary Rural	0.027***
Special School	0.148***
Base: Non-DEIS	
Ethos	
Multi-denominational	0.052***
Minority faith	-0.008
Base: Catholic	
Gender mix	
Girls	-0.001
Boys	0.009
Base: Mixed	
School size	
Small	-0.001
Large	0.011*
Largest	0.041***
Base: Smallest	
Irish-medium	-0.028***
Pobal classification	
Marginally above average	-0.021**
Marginally below average	-0.048***
Affluent	-0.089***
Base: Disadvantaged	
Constant	0.174***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Adjusted R-squared = 0.3471.

TABLE 2.5 PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	0.021**
Marginally above average	-0.026***
Affluent	-0.067***
Base: Marginally below average	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). The regression controls for DEIS, school gender mix, ethos, size and language of instruction. See the complete model output in Table 2.4.

TABLE 2.6 PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	0.047***
Marginally below average	0.026***
Affluent	-0.040***
Base: Marginally above average	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). The regression controls for DEIS, school gender mix, ethos, size and language of instruction. See the complete model output in Table 2.4.

Counties

Moving on to counties, and using Dublin as the reference category, only a few counties display statistically significant differences in the number of chronically absent students. Kilkenny, Monaghan, Tipperary and Cork are associated with lower levels of absenteeism, with reductions of 3.8, 4.6, 2.5, and 1.6 percentage points respectively. In contrast, Kerry and Roscommon show marginally higher levels of absenteeism, with increases of 2.0 and 2.7 percentage points respectively. The direction of the coefficients across counties is mixed, neither predominantly positive nor negative, and the vast majority are not statistically significant. Moreover, the difference between Dublin North and South is not statistically significant at the 10 per cent level. The regression output can be found in Tables A.2.1 and A.2.2 in Appendix 2.

This suggests that there is **no consistent geographical pattern in CA levels at the county level**. By contrast, as previously noted, a clearer pattern does emerge when considering area-level deprivation as measured by the HP Pobal Index.

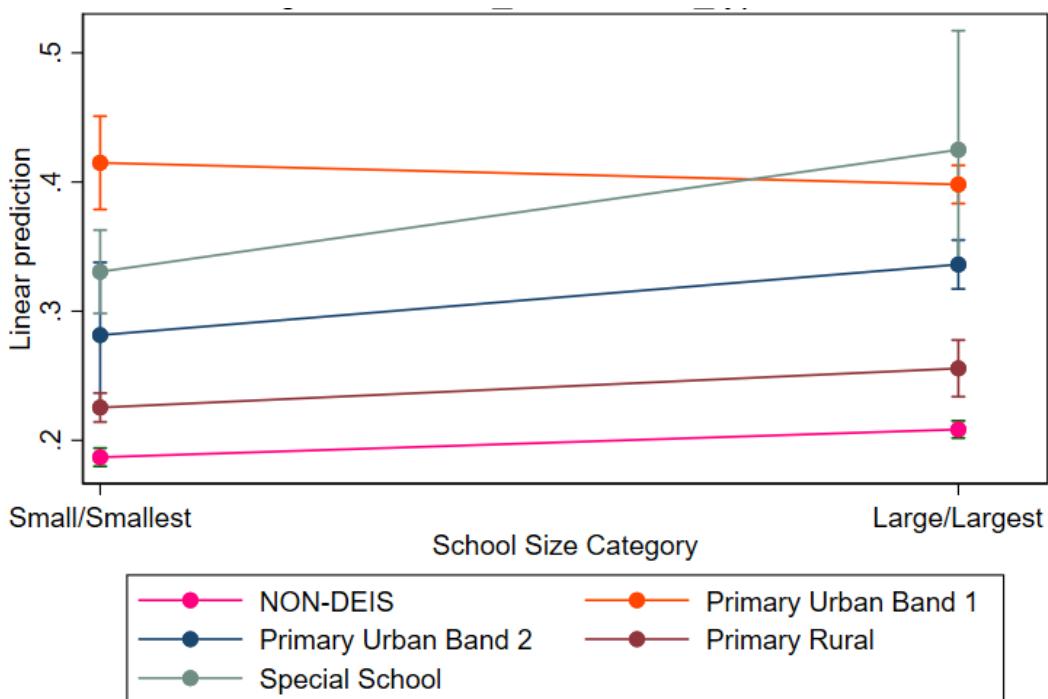
Interactions

As well as looking at the relationship between school characteristics and absence rates, the analyses also looked at whether particular school features interacted to produce more or less absenteeism.

When interacting DEIS status with gender mix (Table 2.7), as previously mentioned, we use a binary variable for DEIS status that groups all DEIS types together. Among mixed-gender schools, DEIS schools have a 9.2 percentage point higher share of chronically absent students than non-DEIS mixed schools. However, the DEIS effect is larger in single-gender schools. In girls-only schools, DEIS status is associated with a 14.4 percentage point increase in chronic absenteeism, while in boys-only schools the increase is 13.5 percentage points, both relative to their non-DEIS counterparts. The difference between girls-only and boys-only schools is not

statistically significant. These results suggest that the effect of DEIS status on absenteeism may be more pronounced in single-gender schools than in mixed-gender ones. However, these findings should be interpreted with caution, as the main effects of gender mix are not statistically significant.

TABLE 2.7 PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: GENDER X DEIS INTERACTION

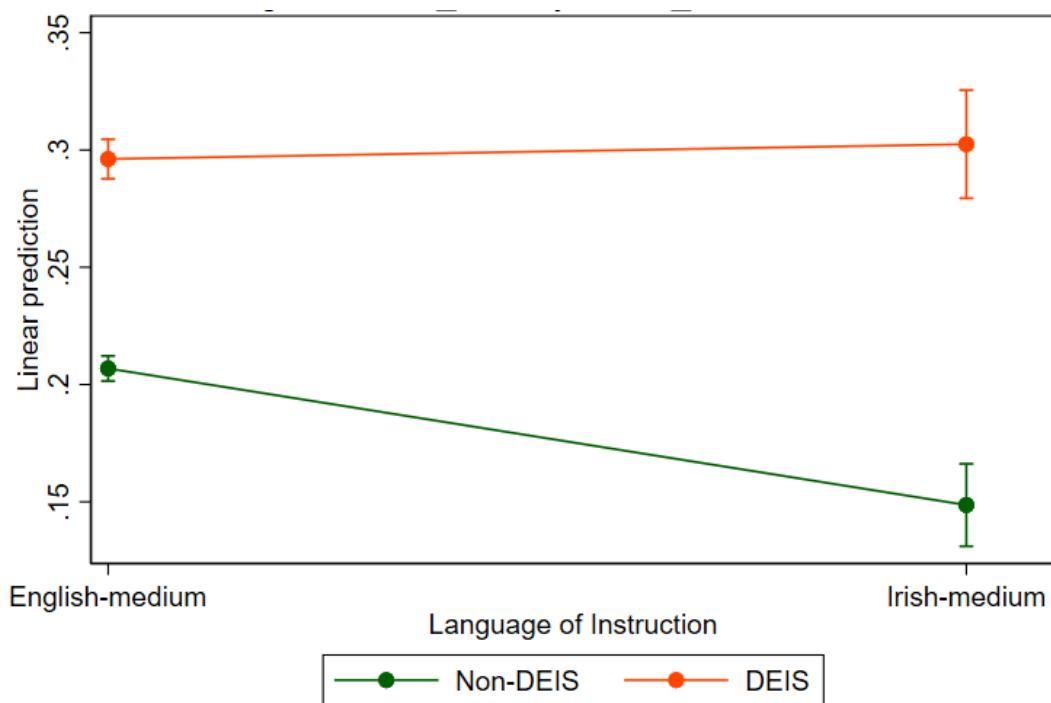

Variable	Coefficient
DEIS	0.092 ***
Gender mix	
Girls	-0.0002
Boys	0.008
<i>Base: Mixed</i>	
DEIS x Gender mix	
DEIS x Girls	0.052 **
DEIS x Boys	0.043 **
<i>Base: non-DEIS mixed</i>	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). The regression controls for school gender mix, ethos, size and language of instruction. See the complete model output in Table A.2.3 in Appendix 2. Adjusted R-squared = 0.2058.

To interact school size with DEIS status (Table A.2.4 in Appendix 2 and Figure 2.14), as previously mentioned, we use a variable that groups schools into only two size categories, as there are too few small schools in Band 1 and Band 2. The interaction terms are not statistically significant, with the exception of the interaction between Urban Band 1 and large or largest schools, which is significant at the 10 per cent level. Among small schools, Urban Band 1 schools have a 22.8 percentage point higher share of chronically absent students than non-DEIS small schools. Among large schools, the effect of Urban Band 1 is reduced to 19.0 percentage points – a 3.8 point attenuation, as indicated by the interaction term. This suggests that the negative impact of DEIS status in Urban Band 1 schools is somewhat weaker in larger schools than in smaller ones. Overall, however, the effect of DEIS status on chronic absenteeism remains largely consistent across schools of different sizes, with this one exception.

FIGURE 2.14 PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: INTERACTION SIZE X DEIS AND SPECIAL SCHOOL



Source: Data from TESS.

Notes: The graph plots the predicted probabilities of the share of chronically absent (CA) students at different values of school size and DEIS / special school status, with the other variables (DEIS status, gender mix, ethos, and language of instruction) held at their means.

To interact DEIS status with language of instruction (Table A.2.6 in Appendix 2 and Figure 2.15), we again use a binary DEIS variable for sample size reasons. The interaction term is statistically significant at the 1 per cent level. Among non-DEIS schools, those that use Irish as a medium of instruction have a 5.8 percentage point lower share of chronically absent students compared to English-medium non-DEIS schools. However, the positive interaction term (+0.065) indicates that the attendance advantage of Irish-medium instruction is offset in DEIS schools. The total effect of Irish-medium instruction in DEIS schools consists of the main effect of Irish-medium instruction (-0.058) and the interaction term with DEIS status (+0.065), resulting in an overall effect of approximately +0.007. This suggests that in DEIS schools, Irish-medium instruction is associated with a 0.07 percentage point higher share of chronically absent students – indicating little difference. Overall, the interaction term suggests that the positive association between Irish-medium instruction and lower absenteeism is largely confined to non-DEIS schools.

FIGURE 2.15 PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: INTERACTION LANGUAGE OF INSTRUCTION X DEIS

Source: Data from TESS.

Notes: The graph plots the predicted probabilities of the share of chronically absent (CA) students at different values of language of instruction and DEIS / special school status, with the other variables (DEIS status, size, gender mix, and ethos) held at their means.

When interacting DEIS status with the **HP Pobal Index** of the electoral districts in which schools are located (Table 2.8), we group the HP Pobal Index into two categories due to sample size constraints. One category captures disadvantaged and marginally below average areas, while the other includes marginally above average and affluent areas. While deprivation and DEIS status individually increase absenteeism, their effects are **not additive** in the case of Urban Band 1 schools. The negative interaction term (-0.036) **cancels out** the additional absenteeism associated with area-level deprivation in these schools ($+0.036$). In other words, **being in a deprived area does not further increase the already elevated absenteeism seen in Urban Band 1 schools**. However, it is ultimately important to consider that the rest of the interaction terms are not significant, suggesting that overall the effect of DEIS status on absenteeism does not differ substantially between deprived and non-deprived areas.

TABLE 2.8 PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: HP POBAL INDEX X DEIS INTERACTION

Variable	Coefficient
DEIS type	
Urban Band 1	0.211 ***
Urban Band 2	0.130 ***
Primary Rural	0.027 *
Special School	0.178 ***
Base: Non-DEIS	
Deprived	0.036 ***
Interaction: DEIS x HP Pobal	
Urban Band 1 x Deprived	-0.036 *
Urban Band 2 x Deprived	-0.029
Primary Rural x Deprived	0.001
Special School x Deprived	-0.050
Base: Non-DEIS, not deprived	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). The regression controls for school gender mix, ethos, size and language of instruction. See the complete model output in Table A.2.5 in Appendix 2. Adjusted R-squared = 0.3428.

2.3.2 Days lost per student

The model is estimated using standard OLS regression with robust standard errors.¹⁴

¹⁴ A Breusch–Pagan/Cook–Weisberg test for heteroskedasticity, applied to the main model (including DEIS, ethos, school size and language of instruction as explanatory variables) with days lost per student as the dependent variable, fails to reject the null hypothesis at the 5 per cent significance level (p-value = 0.0427), indicating that the errors cannot be assumed to have constant variance.

DEIS, ethos, gender mix, size and language of instruction**TABLE 2.9 PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT**

Variable	Coefficient
DEIS type	
Urban Band 1	6.434 ***
Urban Band 2	3.930 ***
Primary Rural	1.539 ***
Special School	7.084 ***
<i>Base: Non-DEIS</i>	
School ethos	
Multi-denominational	1.490 ***
Minority religion	0.657
<i>Base: Catholic</i>	
Gender mix	
Girls	-0.393
Boys	0.238
<i>Base: Mixed</i>	
School size	
Smallest	-0.948***
Small	-0.919***
Large	-0.705***
<i>Base: Largest</i>	
Irish-medium	-1.068***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). R-squared = 0.2957.

The primary model considers DEIS status, ethos, gender mix, school size and language of instruction (Table 2.9). Considering DEIS status, as with CA counts, all DEIS classifications compared to non-DEIS schools are highly statistically significant at the 1 per cent level. These effects are the largest in magnitude relative to other variables in the model, including school ethos, gender mix, school size, language of instruction and county. The largest differences are observed in special schools and primary Urban Band 1 schools, which are associated with 7.08 and 6.43 more days lost per student, respectively, compared to non-DEIS mainstream schools. DEIS primary Urban Band 2 schools show 3.93 additional days lost per student, and DEIS primary Rural schools have 1.54 more days lost per student, on average.

Moving on to school ethos, multi-denominational schools show significantly higher absenteeism as measured by this metric compared to Catholic schools, with an average of 1.49 more overall days lost per student. The other comparisons, between Catholic and minority faith schools, and between multi-denominational and minority faith schools, do not yield statistically significant differences. The only difference with the CA model is that now the difference between multi-denominational versus minority faith is no longer significant.

Regarding gender mix, there is no statistically significant association between being a mixed-gender school and the number of days lost, compared to single-gender schools (either boys' or girls' schools). Similarly, differences between girls' and boys' schools are not statistically significant. The same holds true for the model based on CA counts.

Compared to the smallest and small schools, the largest schools experience 0.948 and 0.919 more days lost per student, respectively. Compared to large schools, the largest schools have 0.705 more days lost. The other size-related associations are not statistically significant at the 10 per cent level. This suggests that higher numbers of days lost are specifically associated with the largest schools, while no clear pattern emerges across the remaining school size categories. This is a similar finding to that observed with CA counts, with the exception that in the CA counts model, small schools also had a statistically significant difference from large schools at the 10 per cent significance level.

Finally, with respect to language of instruction, schools that incorporate Irish as a medium of instruction experience significantly lower absenteeism as measured by overall days lost at the 1 per cent significance level, with 1.068 fewer days lost per student on average. This finding is consistent with the results from the CA counts model.

HP Pobal Index

The results of the model including the HP Pobal Index are presented in Table 2.10 to 2.12 and Figure 2.16. Looking at the level of deprivation in the areas where schools are located, and using the 'disadvantaged' category as the reference (the most deprived category), all the other categories have fewer days lost per student. Schools in 'marginally below average areas' have 0.645 fewer, schools in 'marginally above average' areas have 1.421 fewer days lost, and those in 'affluent' areas have 3.057 fewer days lost. Similarly, when using the 'marginally below average' category as the reference, statistically significant differences are observed with the 'marginally above average' and 'affluent' categories, amounting to 0.776 and 2.412 fewer days lost per student, respectively. Finally, it is notable that the difference between 'marginally above average' and 'affluent' areas is also statistically significant, with schools in affluent areas recording 1.636 fewer days lost per student. Therefore, the overall pattern indicates a **strong and consistent relationship between school absenteeism and area-level deprivation** – particularly given that the results from the CA model presented the same pattern.

TABLE 2.10 PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX)

Variable	Coefficient
DEIS type	
Primary Urban Band 1	5.763***
Primary Urban Band 2	3.605***
Primary Rural	1.107***
Special School	6.915***
Base: Non-DEIS	
Ethos	
Multi-denominational	1.740***
Minority faith	0.725
Base: Catholic	
Gender mix	
Girls	-0.318
Boys	0.411
Base: Mixed	
School size	
Small	0.068
Large	0.314
Largest	1.171***
Base: Smallest	
Irish-medium	-1.130***
Pobal classification	
Marginally Below Average	-0.645*
Marginally Above Average	-1.421***
Affluent	-3.057***
Base: Disadvantaged	
Constant	14.584***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). R-squared = 0.3143.

TABLE 2.11 PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	0.645 *
Marginally above average.	-0.776 ***
Affluent	-2.412 ***
Base: Marginally below average	

Source: Data from TESS.

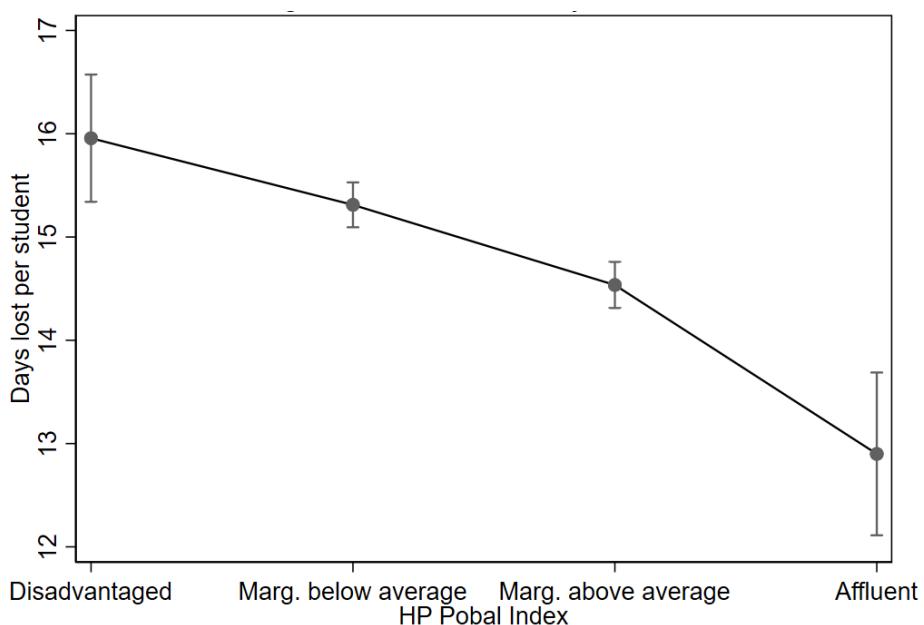

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS status, ethos, gender mix, size, and language of instruction. See the complete model output in Table 2.10.

TABLE 2.12 PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	1.421 ***
Marginally below average	0.776 ***
Affluent	-1.636 ***
<i>Base: Marginally above average</i>	

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***). Controlling for DEIS status, ethos, gender mix, size, and language of instruction. See the complete model output in Table 2.10.

FIGURE 2.16 PRIMARY 2022/23: PREDICTED DAYS LOST PER STUDENT BY HP POBAL INDEX

Source: Data from TESS.

Notes: The graph plots the predicted probabilities of the days lost per student at different values of HP Pobal Index, with the other variables (DEIS status, gender mix, ethos, size, and language of instruction) held at their means.

Counties

As can be observed in Appendix Table A.2.7, only a handful of counties show a statistically significant difference in comparison with Dublin. Compared to Dublin, students in **Kerry** and **Roscommon** lose significantly more days per year; **1.22** and **1.04** additional days, respectively. In contrast, absenteeism is significantly lower in **Cavan** (-0.78), **Kilkenny** (-1.24), **Monaghan** (-1.75), and **Tipperary** (-0.87) days lost per student. Within Dublin itself, the difference between the north and south regions is not statistically significant either (see Table A.2.8 in Appendix 2). Overall, the vast majority of counties do not exhibit a statistically significant difference in absenteeism relative to Dublin, and there is no clear pattern of predominantly positive or negative coefficients. This makes it difficult to draw any meaningful conclusions regarding county-level variation in absenteeism.

Interactions

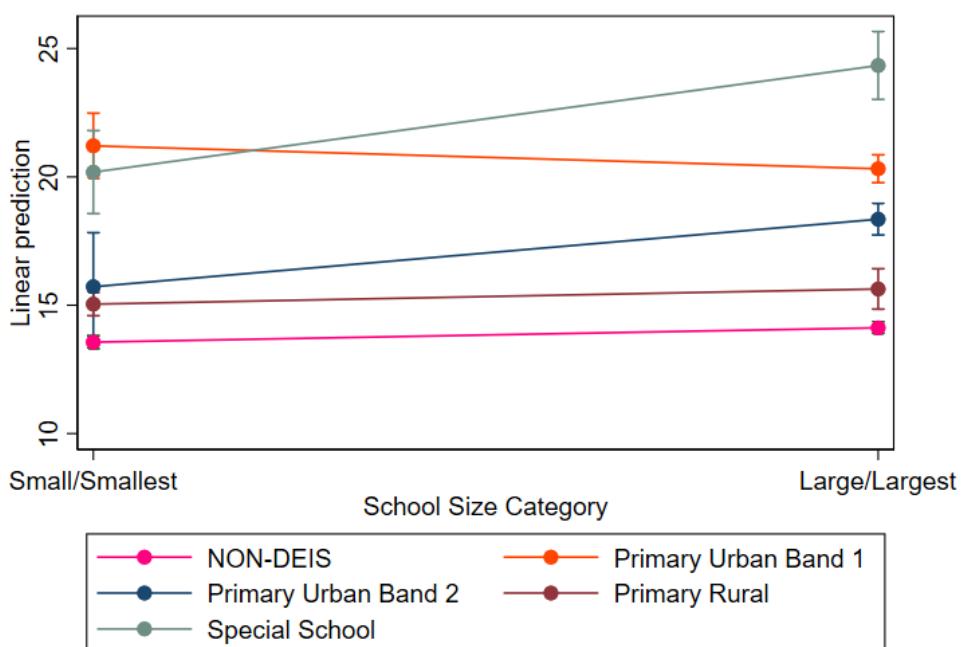
TABLE 2.13 PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT: INTERACTION GENDER X DEIS

Variable	Coefficient
DEIS	2.990 ***
Gender mix	
Girls	-0.669
Boys	0.034
Base: Mixed	
DEIS x Gender mix	
DEIS x Girls	2.401 ***
DEIS x Boys	2.039 ***
Base: Non-DEIS Mixed	

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***). Controlling for DEIS status, ethos, gender mix, size, and language of instruction. See the complete model output in Table A.1.1 in Appendix 1. R-squared = 0.1745.

As can be seen in Table 2.13, the interaction terms between DEIS status and single-gender schools (with non-DEIS mixed schools as the reference category) are both positive and statistically significant at the 1 per cent level. Among mixed-gender schools, DEIS schools record 2.98 more days lost per student compared to non-DEIS mixed schools. For single-gender schools, this DEIS effect is even larger due to the positive and significant interaction terms. In girls-only schools, the DEIS effect is 5.38 more days lost per student compared to non-DEIS girls-only schools. In boys-only schools, the DEIS effect is 5.019 more days lost per student compared to non-DEIS boys-only schools.


However, it is important to note that the interaction terms between boys' and girls' schools are not statistically significant, suggesting that the effect of DEIS status on days lost is similar across boys' and girls' schools. Moreover, the main effect of gender mix (being a single-gender school, regardless of DEIS status) is not statistically significant, meaning that gender mix alone does not account for differences in days lost per student.

The interaction terms regarding size (Table A.2.10 in Appendix 2 and Figure 2.17) suggest that the impact of DEIS and special school status on absenteeism varies across school sizes. For **primary Urban Band 1 schools**, among **smaller schools**, DEIS status is associated with **7.64 more days lost per student** compared to non-DEIS schools. In **larger Band 1 schools**, this effect is partially offset, as indicated by the interaction term of **-1.45**, suggesting that the detrimental effect of Band 1 is marginally reduced in larger schools. In Primary Urban Band 2 schools, the effect of DEIS status among smaller schools is 2.16 additional days lost per student. In larger Band 2 schools, the positive interaction effect of +2.07 further amplifies this,

resulting in approximately 4.23 more days lost per student compared to non-DEIS large schools. This suggests that, unlike in Band 1, the negative effect of Band 2 DEIS status is actually more pronounced in larger schools. **Smaller special schools** have **6.62 more days lost per student**. Among **larger special schools**, the interaction term of **+3.59** indicates that these schools lose **even more days** per student than large mainstream, suggesting that **the absenteeism burden is greater in larger special schools**.

Overall, the relationship between DEIS status and school size is somewhat complex. While larger schools generally show higher levels of absenteeism as indicated by the main effects of the model, this pattern does not hold uniformly: in Band 1, larger size appears to marginally mitigate the negative effect of DEIS status. In contrast, larger Band 2 and special schools seem to face particularly acute challenges. This trend can be seen with the predictive probabilities of size plotted in Figure 2.17.

FIGURE 2.17 PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT: INTERACTION SIZE X DEIS AND SPECIAL SCHOOL

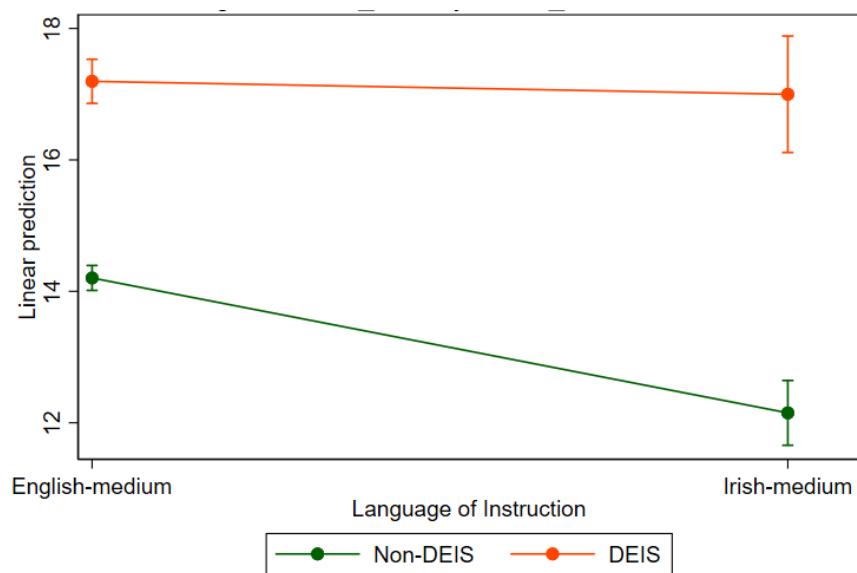
Source: Data from TESS.

Note: The graph plots the predicted probabilities of days lost per student at different values of size and DEIS / special school status, with the other variables (DEIS status, size, gender mix, ethos and language of instruction) held at their means.

Moving on to the interaction with the HP Pobal Index (Table 2.14), the only statistically significant interaction coefficient is for Band 1 × Deprived areas, significant at the 10 per cent level (base: non-DEIS, non-deprived). In non-deprived areas, being a Band 1 school is associated with 7.02 more days lost per student. In deprived areas, this effect is slightly reduced by 1.25 days (the interaction term),

suggesting that the detrimental effect of Band 1 status is somewhat mitigated in more deprived contexts. However, this interpretation should be treated with caution, as the interaction effect is only marginally significant and the interaction terms for the other DEIS categories are not statistically significant.

TABLE 2.14 PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT: INTERACTION HP POBAL INDEX X DEIS


Variable	Coefficient
DEIS type	
Primary Urban Band 1	7.023 ***
Primary Urban Band 2	3.850 ***
Primary Rural	1.262 **
Special School	7.932 ***
Base: Non-DEIS	
Deprived	1.085 ***
DEIS x Deprivation	
Band 1 x Deprived	-1.253 *
Band 2 x Deprived	-0.388
Rural x Deprived	-0.168
Special School x Deprived	-1.775
Base: Non-DEIS x non-deprived	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for ethos, gender mix, size, and language of instruction. See the complete model output in Table A.2.11 in Appendix 2. R-squared = 0.3097.

Finally, considering the language of instruction (Figure 2.18), English-medium DEIS schools have 2.992 more days lost per student compared to English-medium non-DEIS schools. In Irish-medium schools, the positive interaction term – statistically significant at the 1 per cent level – indicates that the effect of DEIS status is even more pronounced, with an additional 1.856 days lost per student. This suggests that the negative association between DEIS status and attendance is somewhat exacerbated in Irish-medium schools.

FIGURE 2.18 PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT: INTERACTION LANGUAGE OF INSTRUCTION X DEIS

Source: Data from TESS.

Note: The graph plots the predicted probabilities of days lost per student at different values of language of instruction and DEIS / special school status, with the other variables (DEIS status, size, gender mix, ethos and size) held at their means.

CHAPTER 3

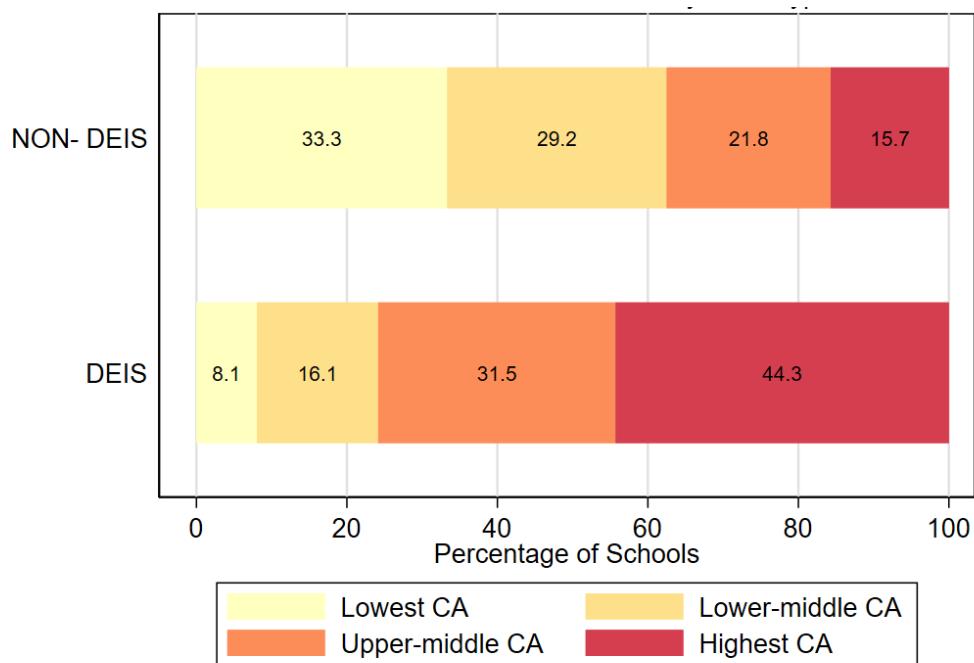
School absence in post-primary schools, 2022/23

3.1 THE PROFILE OF THE STUDENT POPULATION BY POST-PRIMARY SCHOOL TYPE

As in Chapter 2, Growing Up in Ireland (GUI) data were used to explore the profile of students across different types of schools as context for the analyses of TESS data (Appendix Table A.1.2). Over half (57 per cent) of students attending DEIS post-primary schools come from households in the lowest two income quintiles; they are more likely to live in a lone-parent family and less likely to have a mother with degree-level qualifications. In contrast to the pattern at primary level, students attending single-sex schools tend to have higher levels of maternal education and household income, as well as more stable family structures.

In terms of school ethos, minority faith schools have a more advantaged profile in terms of education and income while multi/inter-denominational schools have a less advantaged profile than Catholic schools. At post-primary level, students in Irish-medium schools are more likely to have a graduate mother but do not differ significantly in income levels from those in English-medium schools.

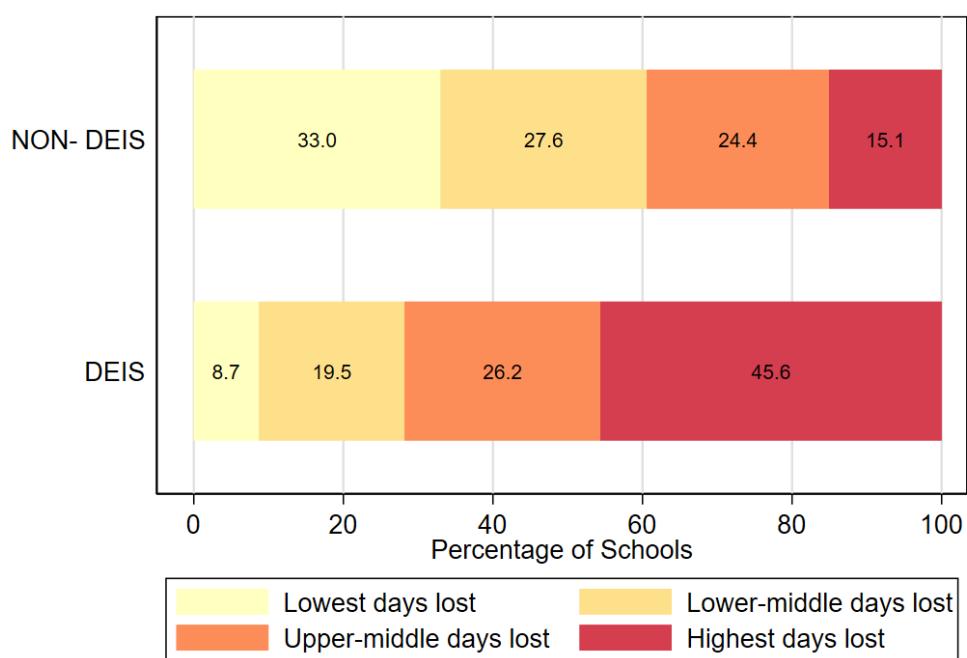
3.2 DESCRIPTIVE PATTERNS


In post-primary schools, the average chronic absence (CA) rate is slightly lower than at primary level at 23.86 per cent. The quartile of schools with the lowest CA rates has 13.76 per cent or fewer students chronically absent, whereas the quartile with the highest rates has 33.03 per cent or more. In post-primary schools, the average number of days lost per student is higher than at primary level, at 18.18 days. The quartile of schools with the lowest days lost has 14.13 days or fewer, while the highest quartile has 22.16 days or more.

DEIS Classification

Similar to the pattern observed in primary schools, **DEIS classification** is related to important and large differences in the distribution of chronic absenteeism (CA) patterns across post-primary schools. For non-DEIS schools, the **average proportion of chronically absent students is 20.3 per cent**, compared to **31.3v per cent** for DEIS schools. As can be seen in Figure 3.1, among DEIS post-primary schools, 44.3 per cent fall into the worst CA category, compared to just 15.7 per cent of non-DEIS schools, a difference of 28.6 percentage points. Non-DEIS schools also have a substantially larger share in the best CA category, representing 33.3 per cent of schools, whereas only 8.1 per cent of DEIS schools fall into this group.

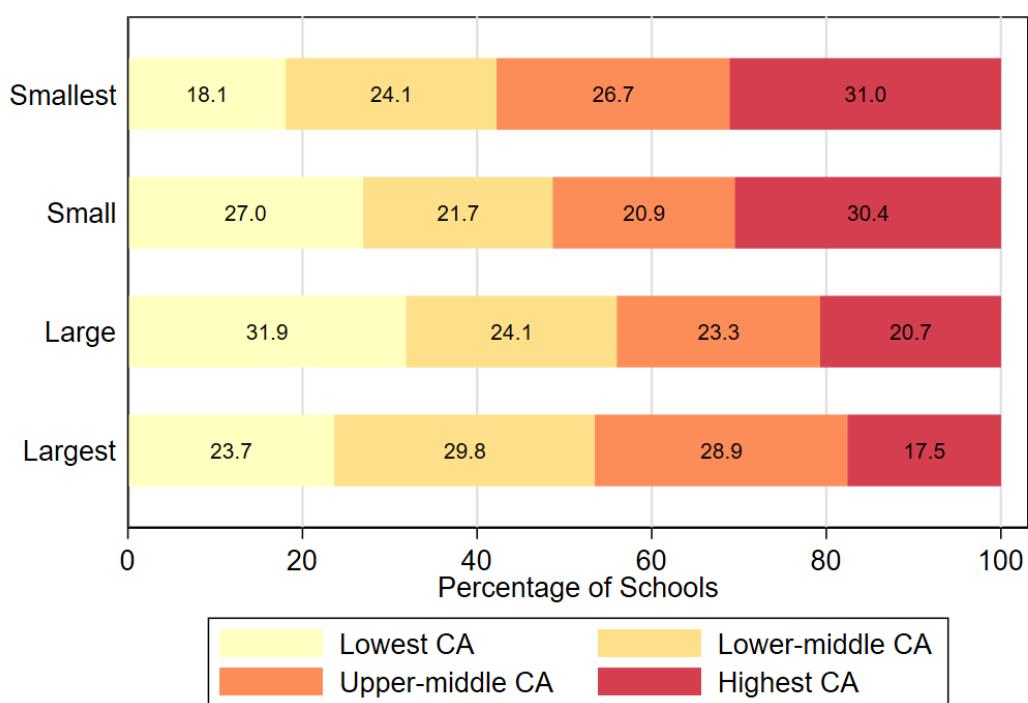
Looking at the average number of days lost per pupil (Figure 3.2), rather than the percentage of chronically absent students, yields very similar results.


FIGURE 3.1 POST-PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY DEIS AND SPECIAL SCHOOL STATUS

Source: Data from TESS.

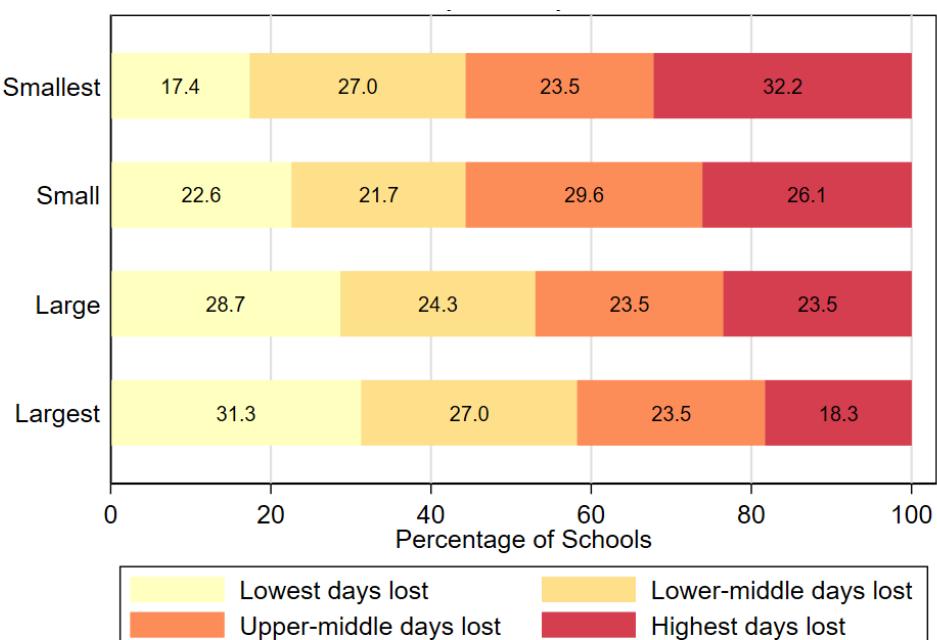
Notes: CA = chronic absenteeism quantile.

FIGURE 3.2 POST-PRIMARY 2022/23: LEVELS OF DAYS LOST BY DEIS


Source: Data from TESS.

School size

The proportion of chronically absent students is 26.33 per cent in the smallest schools, 24.83 per cent in small schools, 21.63 per cent in large schools, and 22.61 per cent in the largest schools. The average number of days lost is 19.82 in the smallest schools, 18.53 in small schools, 17.54 in large schools, and 16.83 in the largest schools.


As can be seen in Figure 3.3, the smallest post-primary schools show the most concerning attendance patterns, with 18.1 per cent of schools in the lowest CA category (i.e. best attendance) and a high 31 per cent in the highest CA category (i.e. worst attendance). Small schools perform somewhat better. While they show a similar share in the worst chronic absenteeism category, they have a slightly higher proportion in the lowest CA category, at 27.0 per cent. When looking at the worst category, larger schools – both large and largest – perform better than smaller ones, with 20.7 per cent and 17.5 per cent of schools, respectively, in the worst CA category. However, when focusing on the best attendance category, the pattern shifts slightly: small schools have a higher share in the best category (27.0 per cent) than the largest schools (23.7 per cent). In summary, while larger schools generally perform better in terms of having fewer schools in the worst attendance category, the descriptive graph suggests a non-linear relationship between school size and absenteeism.

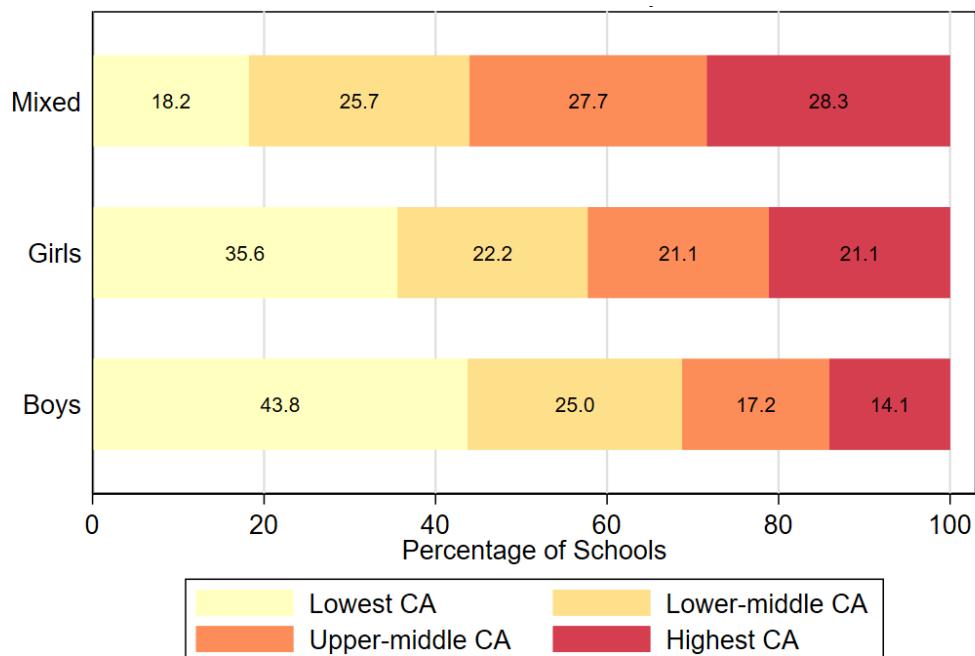
Examining average days lost per student (Figure 3.4) presents a very similar picture. In both cases, smaller schools, especially the smallest, exhibit worse attendance outcomes, with the highest share in the worst category. Conversely, larger schools perform better. The key difference is that, when using the days lost metric, the share of schools in both the best and worst attendance quantiles increases and decreases more consistently with school size, presenting a clearer linear pattern.

FIGURE 3.3 POST-PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY SCHOOL SIZE

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

FIGURE 3.4 POST-PRIMARY 2022/23: LEVELS OF DAYS LOST BY SCHOOL SIZE


Source: Data from TESS.

Gender mix

The proportion of chronically absent students is 25.66 per cent in mixed schools, 21.17 per cent in girls' schools, and 19.01 per cent in boys' schools. The average number of days lost per student is 18.91 in mixed schools, 16.83 in girls' schools, and 16.59 in boys' schools.

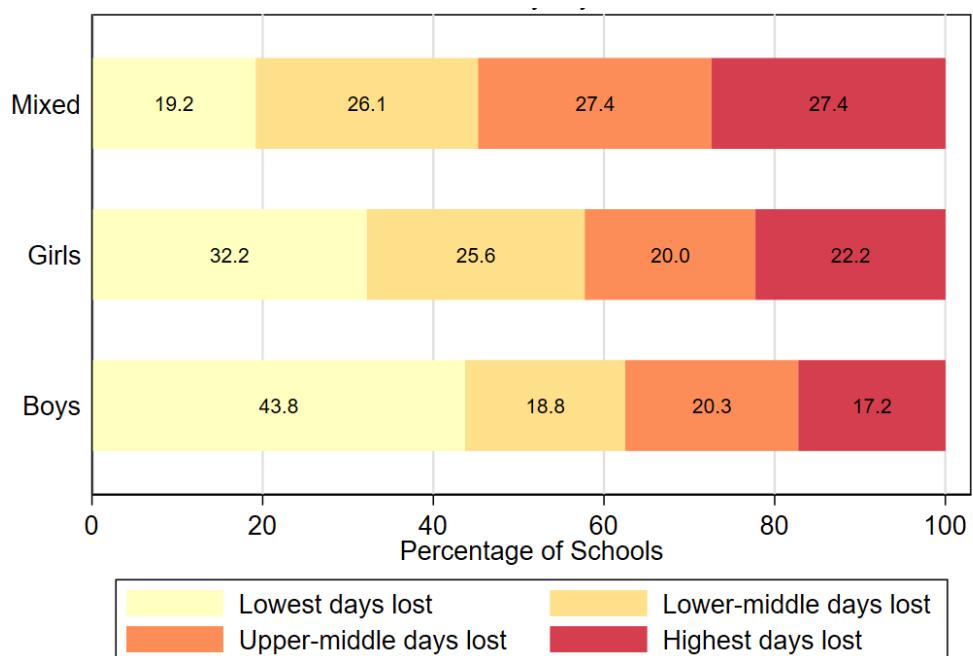

Mixed schools show the most concerning attendance patterns as seen in Figure 3.5, with only 18.2 per cent of schools in the lowest CA category (indicating best attendance) and a relatively high 28.3 per cent in the highest CA category (indicating worst attendance). In contrast, girls' schools perform better, with 35.6 per cent in the lowest CA category, nearly double that of mixed schools, and a lower 21.1 per cent in the highest CA category. Boys' schools have the best attendance outcomes overall, with 43.8 per cent of schools in the lowest CA category and 14.1 per cent in the highest. This means boys' schools outperform mixed schools by 25.6 percentage points in the best attendance category and by 14.2 percentage points in avoiding the worst. Girls' schools also outperform mixed schools, though to a lesser extent. These figures suggest the pattern that single-gender schools, particularly boys' schools, show better attendance outcomes than mixed schools, a pattern that may be related to their more advantaged profile.

FIGURE 3.5 POST-PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY GENDER MIX

Source: Data from TESS.

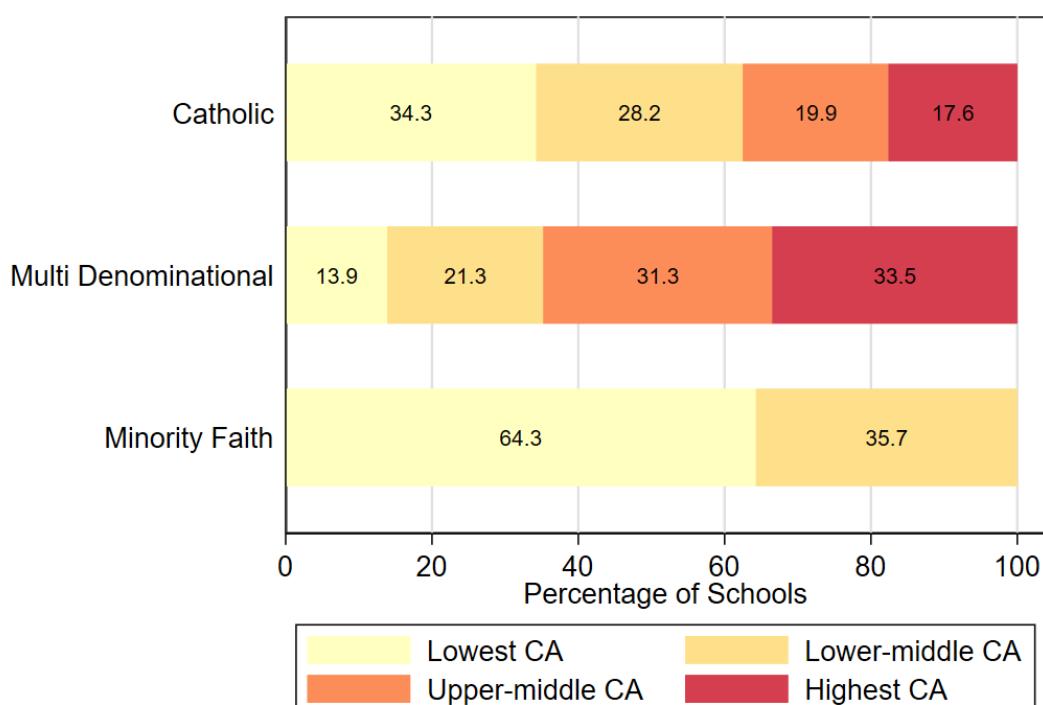
Notes: CA = chronic absenteeism quantile.

FIGURE 3.6 POST-PRIMARY 2022/23: LEVELS OF DAYS LOST BY GENDER MIX

Source: Data from TESS.

Moving on to average days lost per student, boys' schools – again – show the best attendance outcomes, with the highest share in the lowest days lost category (43.8 per cent) and the lowest in the highest category (17.2 per cent). While the exact percentages differ slightly as shown in Figure 3.6, the overall trend is consistent with the previous graph: single-gender schools, especially boys' schools, have better attendance outcomes than mixed schools, whether measured by chronic absenteeism or average days lost.

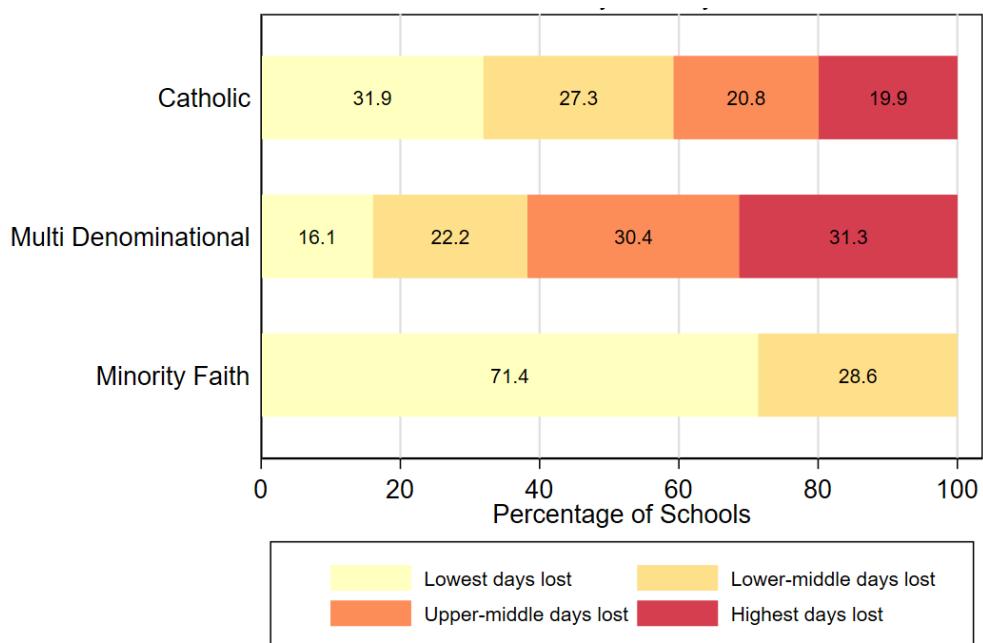
School ethos


The highest proportion of chronically absent students as a percentage of the total student population is found in multi-denominational schools, at 27.58 per cent, followed by Catholic schools at 20.84 per cent, and minority faith schools at 10.25 per cent. In terms of average days lost per student, multi-denominational schools again report the highest figure at 19.75 days, followed by Catholic schools at 16.96 days, and minority faith schools at 11.48 days.

As Figure 3.7 illustrates, multi-denominational schools¹⁵ have worse CA outcomes compared to both Catholic and minority faith schools. They have 33.5 per cent of schools in the highest CA category, which is 15.9 percentage points higher than

¹⁵ Multi-denominational includes inter-denominational schools. Minority faith schools include 13 Church of Ireland schools, one Jewish school, one Presbyterian school, and one Quaker school.

Catholic schools, which stand at 17.6 per cent. In contrast, none of the 15 minority faith schools fall into the worst CA category. Instead, 64.3 per cent are in the lowest CA category (best attendance), and the remaining 35.7 per cent are in the lower-middle category – indicating strong attendance outcomes overall, though the small sample size (15 schools) limits the strength of this conclusion. Multi-denominational schools also underperform in the best attendance categories: only 13.9 per cent fall into the lowest CA category and 21.3 per cent into the lower-middle, totalling 35.2 per cent. This is much lower than Catholic schools, where 62.5 per cent fall into the two best categories, and especially lower than minority faith schools, where the figure reaches 100 per cent.


FIGURE 3.7 POST-PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY ETHOS

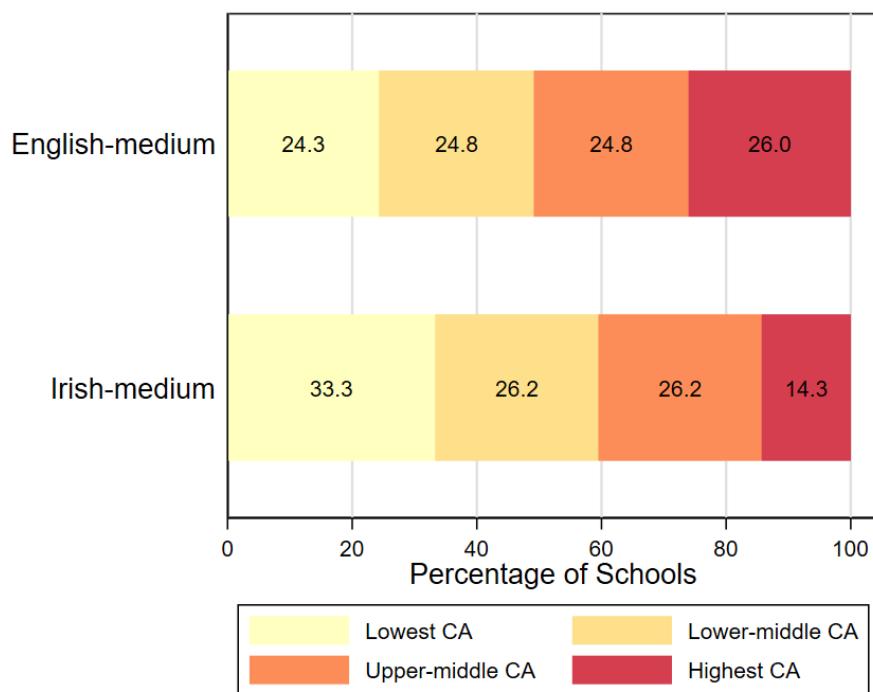
Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

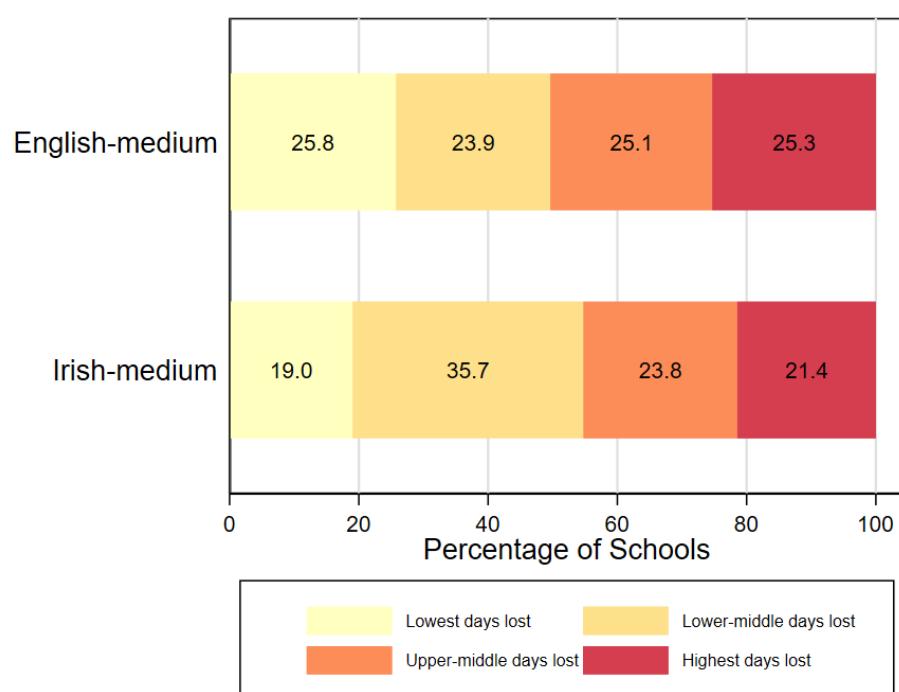
Looking at days lost per pupil instead of relative CA counts leads to similar findings (Figure 3.8). The overall pattern remains that multi-denominational schools show the worst attendance outcomes, while minority faith schools perform best. Moreover, the specific percentage distributions across schools are very similar to those in the CA counts graph, with only minor differences of a few percentage points.

FIGURE 3.8 POST-PRIMARY 2022/23: LEVELS OF DAYS LOST BY ETHOS

Source: Data from TESS.


Language of instruction

Irish-medium schools have a chronically absent student rate of 21.04 per cent as a proportion of the total student population, which is 3.10 percentage points lower than that of English-medium schools, at 24.14 per cent. Regarding days lost per student, the figures are very similar: English-medium schools report an average of 18.16 days lost per student, while Irish-medium schools report 18.28 days.


As can be observed in Figure 3.9, 26 per cent of English-medium schools fall into the worst CA category, compared to 14.3 per cent of schools that include Irish to some degree¹⁶ – a difference of 11.7 percentage points. When looking at the better attendance categories, 49.1 per cent of English-medium schools fall into either the lowest or lower-middle CA categories, whereas 59.5 per cent of schools incorporating Irish as a language of instruction fall into these two categories – 10.4 percentage points higher. These figures suggest that schools incorporating Irish tend to present slightly better attendance outcomes, although the differences are relatively modest.

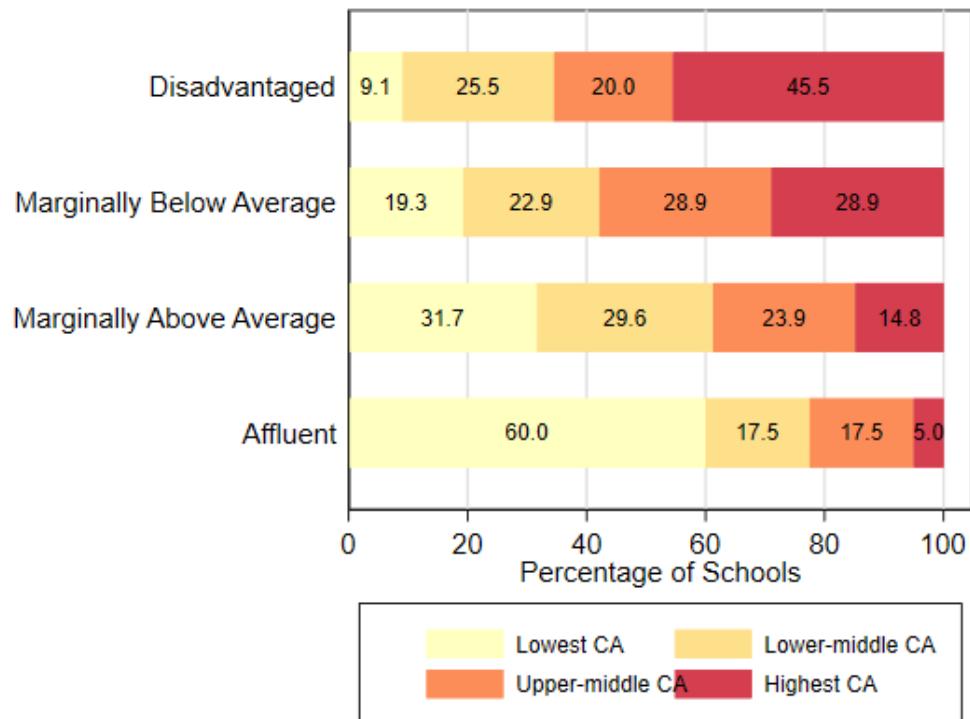
¹⁶ The inclusion of Irish-medium education comprises schools where: all pupils are taught all subjects through Irish; some pupils are taught all subjects through Irish; and some pupils are taught some subjects through Irish.

FIGURE 3.9 POST-PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY LANGUAGE OF INSTRUCTION

FIGURE 3.10 POST-PRIMARY 2022/23: LEVELS OF DAYS LOST BY LANGUAGE OF INSTRUCTION

The conclusions shift when examining average days lost per student instead of CA category counts (Figure 3.10). For English-medium schools, the distribution across categories remains largely consistent, with only minor percentage point differences. However, the picture changes for schools incorporating Irish. The share of these schools in the worst category rises to 21.4 per cent, compared to 14.3 per cent in the CA counts graph – bringing it much closer to the 25.3 per cent observed in non-Irish schools. Moreover, the proportion of Irish-medium schools in the best attendance category decreases, with a 6.8 percentage point lower share compared to the CA-based classification. Overall, this suggests that while Irish-medium schools appeared to have better attendance outcomes when looking at CA counts, this advantage is less evident or disappears when using average days lost as the metric.

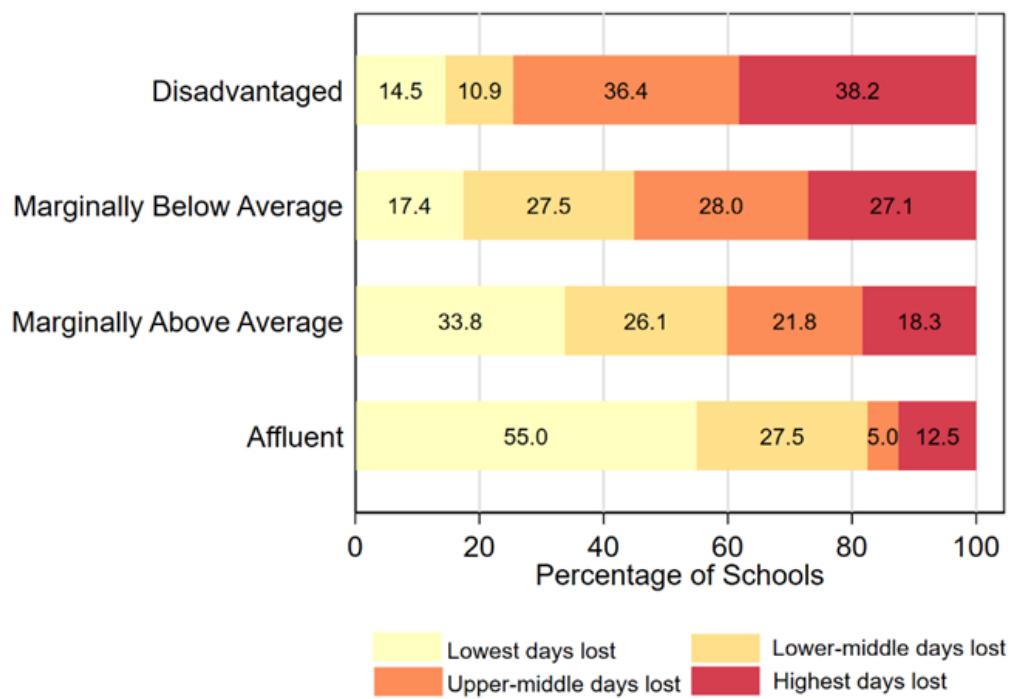
HP Pobal Index


The proportion of chronically absent students as a portion of the total student population decreases with socio-economic level of the area where schools are located. For schools in disadvantaged areas this is 29.18 per cent, for schools in marginally below areas this is 26.01 per cent, for schools in marginally above areas it is 20.69 per cent and for schools in affluent it is 14.57 per cent. A similar pattern is observed in the average number of days lost per student: 21.58 days in disadvantaged areas, 19.05 in marginally below average areas, 16.56 in marginally above average areas, and 13.54 in affluent areas.

Looking at quantiles (Figure 3.11), there is also a clear and steep socio-economic gradient in chronic absenteeism levels across schools, based on the deprivation level of the areas in which they are located. Schools in disadvantaged areas show the most severe absenteeism profile, with 45.5 per cent of schools falling into the highest CA quantile and only 9.1 per cent in the lowest, indicating that nearly half of these schools experience the worst levels of absenteeism. Schools in marginally below average areas display a more balanced distribution but still lean toward higher absenteeism, with 28.9 per cent in both the upper-middle and highest quantiles, for a combined total of 57.8 per cent in these two categories.

In contrast, schools in marginally above average areas perform better, with 31.7 per cent in the lowest CA quantile and just 14.8 per cent in the highest, suggesting a shift toward more favourable attendance outcomes. The most striking contrast is seen in schools located in affluent areas, where 60 per cent fall into the lowest CA quantile and only 5 per cent into the highest. This represents a 40.5 percentage point gap in the share of schools in the highest CA quantile and a 50.9 point gap in the lowest quantile when compared to disadvantaged areas. Overall, the figures suggest a link between area-level socio-economic deprivation and

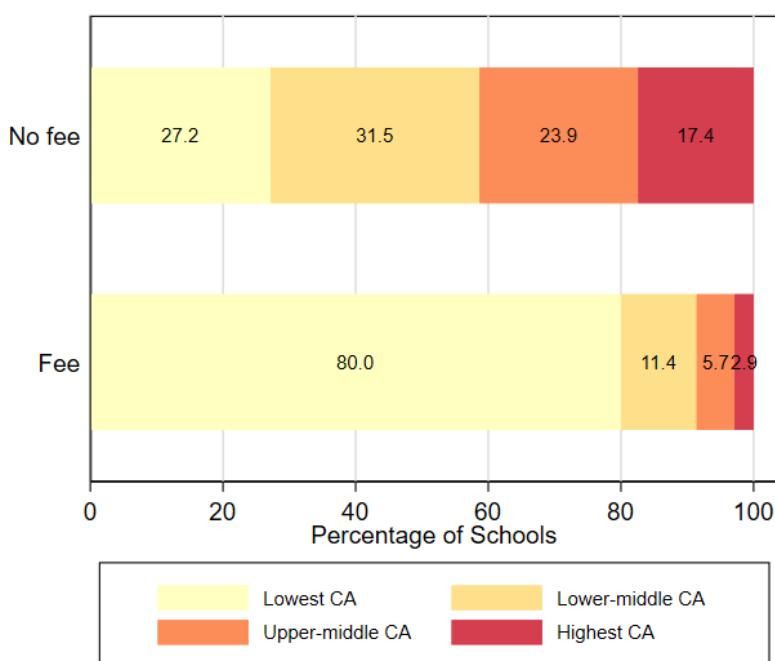
school absenteeism, with schools in more advantaged areas showing better attendance outcomes.


FIGURE 3.11 POST-PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY HP POBAL INDEX

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

When examining days lost per student (Figure 3.12), we observe the same gradient as before: a progressively higher share of schools in the worst-performing quantile and a lower share in the best-performing quantile as the level of deprivation increases. There are some slight differences in the percentages, but nothing substantial. For instance, affluent areas appear to perform slightly worse than before, with the share of schools in the lowest (best) quantile decreasing from 60 per cent to 55 per cent, and the share in the worst quantile increasing from 5 per cent to 12.5 per cent. Similarly, disadvantaged areas show a slight improvement, with the proportion of schools in the worst quantile decreasing from 45.4 per cent to 38.2 per cent. But the overall trend holds.


FIGURE 3.12 POST-PRIMARY 2022/23: LEVELS OF DAYS LOST BY HP POBAL INDEX

Source: Data from TESS.

Fee-paying status

Finally, we can see levels of chronic absenteeism by fee-paying status, a further indicator of the socio-economic background of students and their families. DEIS schools do not charge fees, but among non-DEIS schools, a minority do; 35 fee-paying schools versus 276 non-fee-paying. This allows us to compare chronic absenteeism levels within non-DEIS post-primary schools.

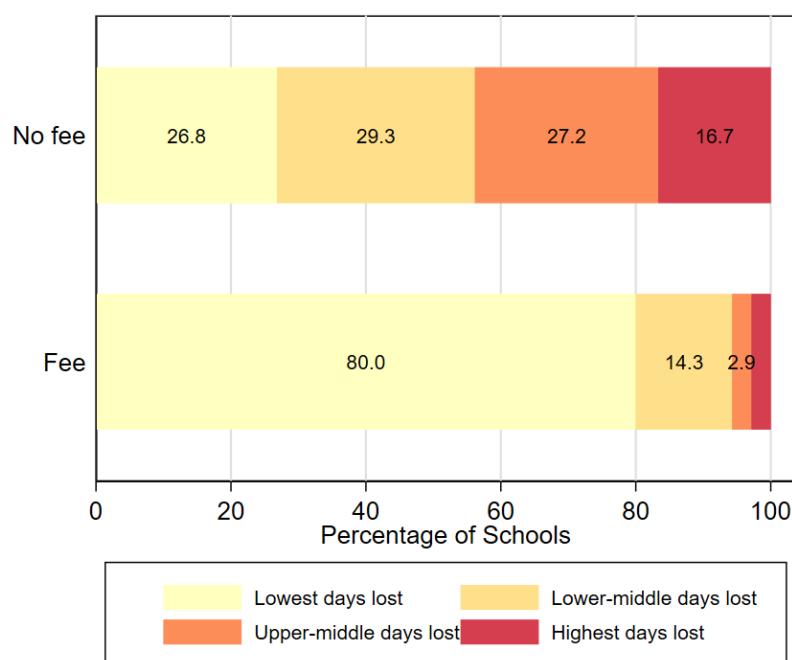

The average proportion of chronically absent students, as a share of the total student population, is 24.98 per cent for non-fee-paying schools, dropping to just 10.28 per cent for fee-paying schools. The distribution of schools across chronic absenteeism quantiles further illustrates this gap (Figure 3.13). Non-DEIS post-primary schools that charge fees show notably better attendance outcomes: a striking 80 per cent of these 35 schools fall into the best quantile for chronic absenteeism, compared to just 27.2 per cent of non-fee-paying schools. Only 2.9 per cent of fee-paying schools fall into the worst chronic absenteeism quantile, compared to 17.4 per cent of non-fee-paying schools.

FIGURE 3.13 POST-PRIMARY 2022/23: LEVELS OF CHRONIC ABSENTEEISM BY FEE-PAYING STATUS

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

Looking at days lost per student reveals very similar findings (Figure 3.14). The average number of days lost is 18.80 for non-fee-paying schools, compared to just 10.71 for fee-paying schools. The distribution across quantiles is very similar to the CA counts.

FIGURE 3.14 POST-PRIMARY 2022/23: LEVELS OF DAYS LOST BY FEE-PAYING STATUS

Source: Data from TESS.

Overall, the differences point to clear divide in attendance patterns by fee-paying status. However, it is important to keep in mind the limited number of fee-paying schools in the sample, which may affect the generalisability of the results.

3.3 REGRESSION MODELS

3.3.1 Chronic absenteeism counts

The model is estimated using standard OLS regression with robust standard errors.^{17,18}

DEIS, ethos, gender mix, size and language of instruction

After controlling for ethos classification, gender mix of schools, size, and language of instruction, DEIS status remains highly statistically significant in post-primary education as well as primary education, as can be observed in the regression output in Table 3.1. DEIS post-primary schools have, on average, an 8.8 per cent higher share of students with chronic absenteeism than non-DEIS schools, with a p-value of 0.000 – indicating significance at the 1 per cent level.

TABLE 3.1 POST-PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS AT POST-PRIMARY LEVEL

Variable	Coefficient
DEIS	0.088***
School ethos	
Multi-denominational	0.037**
Minority Faith	-0.107***
<i>Base: Catholic</i>	
Gender mix	
Girls	-0.009
Boys	-0.038**
<i>Base: Mixed</i>	
School size	
Small	0.004
Large	-0.019
Largest	-0.011
<i>Base: Smallest</i>	
Irish-medium	-0.065***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). R-squared = 0.2463.

¹⁷ The number of observations is 459.

¹⁸ A Breusch–Pagan/Cook–Weisberg test for heteroskedasticity, applied to the main model (including DEIS, ethos, school size and language of instruction as explanatory variables) with the proportion of students with chronic absenteeism as the dependent variable, fails to reject the null hypothesis at the 5 per cent significance level (p-value = 0.0267), indicating that the errors cannot be assumed to have constant variance.

With regard to gender mix, there is no statistically significant difference in chronic absenteeism between girls' schools and mixed schools. However, boys' schools report significantly lower levels of chronic absenteeism compared to mixed schools – on average, a 3.8 percentage point lower share of students with chronic absenteeism – with this difference significant at the 5 per cent level. There is no statistically significant difference between boys' and girls' schools. Overall, this suggests that the main distinction lies in boys' schools performing better than mixed schools, while girls' schools do not show a similar advantage. This pattern is surprising; both girls' and boys' schools tend to have a more middle-class and higher ability intake than coeducational schools¹⁹ so might be expected to be similar in their absence rates.

School ethos also emerges as a significant factor, as captured by the results in Table 3.2. Schools with a minority faith ethos have the lowest levels of chronic absenteeism, most likely reflecting their more advantaged student profile. Compared to Catholic schools, they report an average of **10.8 percentage points** lower in the share of chronically absent students; compared to multi-denominational schools, the gap widens to **14.5 percentage points**. Among the majority ethos types, Catholic schools perform better than multi-denominational ones, which have on average **3.7 percentage points** higher rates of chronic absenteeism. Notably, the effect sizes are particularly large, especially considering that the difference between minority faith schools and others exceeds that between DEIS and non-DEIS schools. However, it is important to keep in mind that there are only 14 minority faith schools in the dataset, so these results – while statistically significant – should be interpreted with caution due to the small sample size.

TABLE 3.2 POST-PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (ETHOS, ALTERNATIVE BASE)

Variable	Coefficient
School ethos	
Catholic	-0.037**
Minority Faith	-0.145***
<i>Base: Multi-denominational</i>	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, gender mix, size and language of instruction (see the complete model output in Table 3.1).

¹⁹ Based on Growing Up in Ireland data.

Turning to school size, none of the associations are statistically significant. This suggests that, once other factors such as DEIS status, school ethos, gender mix, and language of instruction are accounted for, school size does not appear to have a meaningful relationship with levels of chronic absenteeism at the post-primary level. The descriptive patterns for school size, with higher absence in smaller schools, therefore, reflect the fact that DEIS schools tend to be smaller than non-DEIS schools.

Schools that use Irish as the language of instruction tend to have significantly lower levels of chronic absenteeism at the 1 per cent significance level. On average, they report a **6.5 percentage point** lower share of chronically absent students compared to schools using English. This relationship is statistically significant at the 1 per cent level.

HP Pobal Index

The level of deprivation in the area where a school is located also appears to matter (Tables 3.3-3.5). Compared to schools in disadvantaged areas, those situated in marginally above-average and affluent areas have significantly fewer chronically absent students – **4.8 and 8.9 percentage points lower**, respectively. When compared to schools in marginally below-average areas as shown by Table 3.4, schools in more advantaged areas still perform better, with absenteeism rates **3.2 and 7.3 percentage points lower**, respectively.

TABLE 3.3 POST-PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (HP POBAL INDEX)

Variable	Coefficient
DEIS	0.071***
Ethos	
Multi-denominational	0.038***
Minority faith	-0.095***
Base: Catholic	
Gender mix	
Girls	-0.007
Boys	-0.034*
Base: Mixed	
School size	
Small	0.006
Large	-0.018
Largest	-0.007
Base: Smallest	
Irish-medium	-0.066***
Pobal classification	
Marginally Below Average	-0.016
Marginally Above Average	-0.048**
Affluent	-0.089***
Base: Average	
Constant	0.245***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). R-squared = 0.2802.

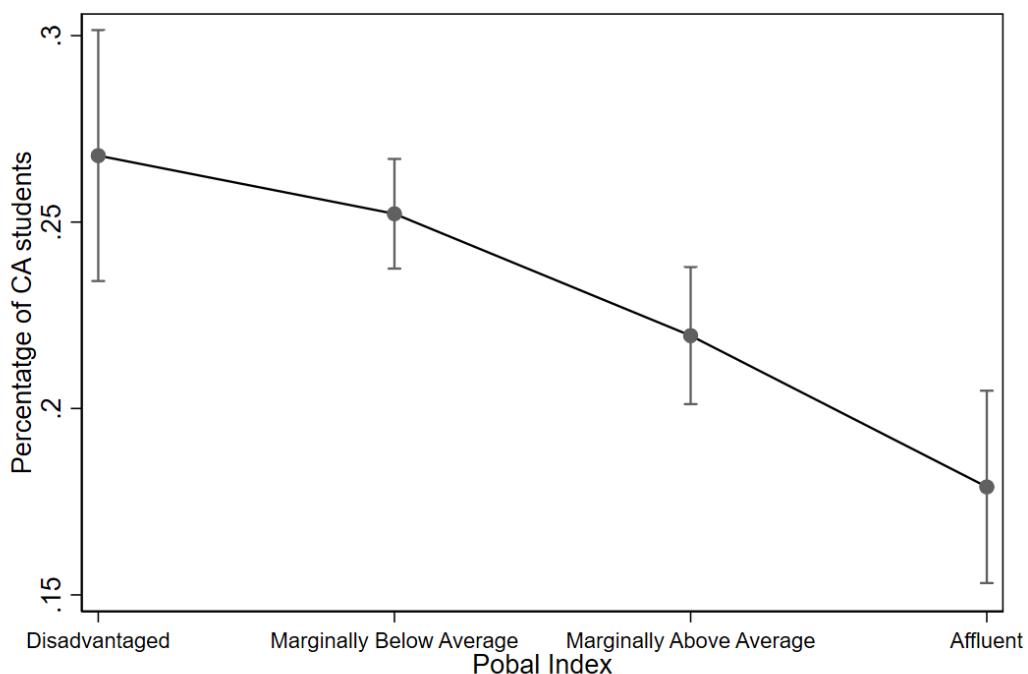
TABLE 3.4 POST-PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	0.016
Marginally Above Average	-0.033***
Affluent	-0.073***
Base: Marginally Below Average	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, school size and language of instruction. See the complete model output in Table 3.3.

TABLE 3.5 POST-PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (HP POBAL INDEX, ALTERNATIVE BASE)


Variable	Coefficient
HP Pobal Index	
Disadvantaged	0.048**
Marginally Below Average	0.033***
Affluent	-0.041***
Base: Marginally Above Average	

Source: Data from TESS.
Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, school size and language of instruction. See the complete model output in Table 3.3.

When examining differences within more disadvantaged areas, it is notable that there is no statistically significant difference in chronic absenteeism between schools located in marginally below-average areas and those in disadvantaged areas. However, a statistically significant difference does emerge between schools in marginally above-average and affluent areas, as captured by the results in Table 3.5. Schools in affluent areas have, on average, a 4.1 percentage point lower share of chronically absent students than those in marginally above-average areas, a difference that is statistically significant at the 1 per cent level.

Overall, the results reveal a clear gradient between area-level advantage and chronic absenteeism, as captured by the predictive probabilities plotted in Figure 3.15. Even within relatively advantaged contexts, higher levels of area affluence are associated with better attendance outcomes. Importantly, these relationships hold when accounting for a school's DEIS status, potentially suggesting that the socio-economic characteristics of the surrounding area may exert an independent influence on chronic absenteeism beyond the school's disadvantaged status.

FIGURE 3.15 POST-PRIMARY 2022/23: PREDICTED PROPORTION OF CA LEVELS BY HP POBAL INDEX

Source: Data from TESS.

Note: The graph plots the predicted probabilities of the proportion of chronically absent students at different values of school size, with the other variables (DEIS status, gender mix, ethos, and language of instruction) held at their means.

Counties

In comparison with Dublin, the vast majority of county dummy variables are not statistically significant at the 10 per cent level. The only exceptions are schools in **Laois**, **Wexford**, and **Wicklow**, which report absenteeism rates that are **15.5, 5.0, and 6.0 percentage points higher**, respectively, all significant at the 5 per cent level. **Kerry** also shows a **5.5 percentage point** increase, significant at the 10 per cent level. The difference between **Dublin North** and **Dublin South** is not statistically significant. This suggests that being located in a particular county – or in Dublin North versus Dublin South – does not systematically predict differences in chronic absenteeism rates (see the Tables 3.2 and 3.3 in Appendix 3).

Fee-paying status

When running a regression on non-DEIS schools only (425 in total, of which 35 are fee-paying and 276 are not), the coefficient for fee-paying status is statistically significant at the 1 per cent level. Specifically, fee-paying schools have, on average, 9.3 percentage points fewer students with chronic absenteeism. This is a substantial effect size, though it is important to keep in mind the small number of fee-paying schools in the sample. The full model is included in Table A.3.3 in Appendix 3.

Interactions

Regarding school gender mix, the interaction term for **girls-only × DEIS** is significant at the 10 per cent level – as can be seen in Table 3.6. In **mixed-gender schools**, DEIS status is associated with a **7.4 percentage point** increase in chronic absenteeism. In **girls-only schools**, this rises to **13.3 percentage points** (7.4 + 5.9), indicating a potentially stronger DEIS effect. However, this finding is tentative, as the interaction is only marginally significant and the main effect of girls-only schools is not. None of the other interaction effects for gender mix is significant. The full model can be found in Table A.3.4 in Appendix 3.

TABLE 3.6 POST-PRIMARY 2022/23: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: GENDER X DEIS INTERACTION

Variable	Coefficient
DEIS	0.074***
Gender mix	
Girls	-0.021
Boys	-0.047**
Base: Mixed	
DEIS × Gender mix	
DEIS × Girls	0.059*
DEIS × Boys	0.043
Reference: Non-DEIS × Mixed	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for ethos, size, and language of instruction. See the complete model output in Table A.3.4 in Appendix 3. R-squared = 0.2532.

The interactions between **DEIS status** and **school size, language of instruction**, and **area deprivation** are not statistically significant, as shown in Tables A.3.5, A.3.6 and A.3.7 in Appendix 3. This suggests that the relationship between DEIS status and chronic absenteeism is broadly consistent across different school types and local contexts.

3.3.2 Days lost per student

The model is estimated using standard OLS regression.²⁰

DEIS, ethos, gender mix, size and language of instruction

The results of the model can be seen in Table 3.7. DEIS status remains a strong and highly statistically significant predictor of absenteeism as measured by days lost,

²⁰ A Breusch–Pagan/Cook–Weisberg test for heteroskedasticity, applied to the main model (including DEIS, ethos, school size and language of instruction as explanatory variables) with days lost per student as the dependent variable, accepts the null hypothesis at the 10 per cent significance level (p-value = 0.7452), indicating that the errors can be assumed to have constant variance.

significant at the 1 per cent level ($p = 0.000$). On average, schools in the DEIS programme experience 4.452 more days lost to absenteeism per student than non-DEIS schools.

In terms of school ethos, minority faith schools stand out with substantially better attendance outcomes measured by days lost per student. They record 6.381 fewer days lost per student than multi-denominational schools, and 5.152 fewer days than Catholic schools – both differences are statistically significant at the 1 per cent level. By contrast, the difference between Catholic and multi-denominational schools is not statistically significant, suggesting that what matters most is the distinctiveness of minority faith schools. These results are similar to those of the CA model in that minority groups have better outcomes. However, there is a slight difference: in the CA model, Catholic schools had a statistically significant advantage over multi-denominational schools, which now becomes not significant.

TABLE 3.7 POST-PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT

Variable	Coefficient
DEIS	4.452***
School ethos	
Catholic	5.152***
Multi-denominational	6.381***
Base: Minority Faith	
Gender mix	
Mixed	1.077
Girls	0.478
Base: Boys	
School size	
Small	-0.390
Large	-0.863
Largest	-1.473*
Base: Smallest	
Irish-medium	-1.247

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***). Adjusted R-squared = 0.1714.

Regarding **school size**, the only statistically significant coefficient – significant at the 10 per cent level – is for **largest** schools compared to the **smallest**, with students in the largest schools losing **1.47 fewer days** on average. The other size categories (small and large) also have negative coefficients relative to the smallest category, suggesting a similar pattern, but these are **not statistically significant**. These findings should be interpreted with caution, as the evidence is limited to a single coefficient with **marginal significance at the 10 per cent level**.

The remaining variables in the model – **gender mix and language of instruction** – **do not show statistically significant associations** with overall days lost. This suggests that these school-level characteristics are not key drivers of absenteeism measured as days lost once other factors are controlled for. This contrasts with the CA model, where boys-only schools showed an advantage compared to mixed schools, and Irish-medium schools also performed better.

HP Pobal Index

The regression results with a model including the HP Pobal Index are captured in Tables 3.8 to 3.10. Compared to disadvantaged areas, schools in marginally below average areas have 1.553 fewer days lost per student. Compared to the more affluent areas, the difference widens; marginally above average and affluent areas experience significantly fewer days lost to absenteeism, 3.036 and 5.326 fewer days, respectively – both differences significant at the 1 per cent level. When using marginally below average areas as the reference category, marginally above average areas show 1.483 fewer days lost per student, and affluent areas 3.773 fewer days lost – both differences are statistically significant. Amongst the more advantaged categories, schools in affluent areas perform significantly better, with 2.290 fewer days lost per student compared to those in marginally above average areas.

Overall, this points to a gradient in attendance outcomes as measured per days lost within better-off areas, very similar to the one observed for the CA counts model.

TABLE 3.8 POST-PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX)

Variable	Coefficient
DEIS	3.474***
School ethos	
Multi-denominational	1.322
Minority Faith	-4.410**
Base: Catholic	
Gender mix	
Girls	-0.462
Boys	-1.032
Base: Mixed	
School size	
Small	-0.337
Large	-0.804
Largest	-1.257
Base: Smallest	
Irish-medium	-1.337
HP Pobal Index	
Marginally Below Average	-1.553*
Marginally Above Average	-3.036***
Affluent	-5.326***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Adjusted R-squared = 0.2015.

TABLE 3.9 POST-PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	1.553*
Marginally Above Average	-1.483**
Affluent	-3.773***
Base: Marginally Below Average	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, gender mix, size, and language of instruction. See the complete model output in Table 3.8.

TABLE 3.10 POST-PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	3.036***
Marginally Below Average	1.483**
Affluent	-2.290**
Base: Marginally Above Average	

Source: Data from TESS.
Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***)¹. Controlling for DEIS, gender mix, size, and language of instruction. See the complete model output in Table 3.8.

Counties

Compared to Dublin, only a handful of counties show a statistically significant difference in overall days lost: Westmeath (+5.16 days, $p = 0.011$), Wicklow (+4.34, $p = 0.012$), Kerry (+3.19, $p = 0.066$), and Leitrim (+5.44, $p = 0.087$). Within Dublin itself, there is no meaningful difference between North and South. These are the only significant results at the county level, suggesting that where a school is located by county does not explain much when it comes to overall days lost. Instead, area-level deprivation emerges as a stronger predictor in this sense. The regression output can be found in Tables A.3.8 and A.3.9 in Appendix 3.

Fee-paying status

This regression includes only non-DEIS schools. With a level of significance at the 1 per cent level, fee-paying schools are associated with, on average, 5.817 fewer days lost per student – a notably large effect size – consistent with the results observed in the model using CA counts. However, as previously mentioned, it is important to keep in mind the limited number of fee-paying schools in the sample. The full model can be found in Table A.3.10 in Appendix 3.

Interactions

The interaction between DEIS status and gender mix (Table 3.11) is significant when comparing single-gender to mixed schools. Specifically, the difference in days lost between DEIS and non-DEIS schools is further amplified in single-gender settings: girls in DEIS schools lose an additional 2.938 days, and boys an additional 3.892 days, on top of the baseline DEIS effect. However, these interaction effects are only significant at the 10 per cent level and should be interpreted with caution – especially also since the main effect of girls' schools as opposed to mixed is not statistically significant.

TABLE 3.11 POST-PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT: GENDER X DEIS INTERACTION

Variable	Coefficient
DEIS	3.575***
Gender mix	
Girls	-1.207
Boys	-1.930*
Base: Mixed	
Interaction: DEIS x Gender	
DEIS x Girls	2.938*
DEIS x Boys	3.892*
Base: Mixed, non-DEIS	

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***). Controlling for ethos, size and language of instruction. See the complete model output in Table A.3.13 in Appendix 3. Adjusted R-squared = 0.1782.

TABLE 3.12 POST-PRIMARY 2022/23: REGRESSION OF DAYS LOST PER STUDENT: LANGUAGE X DEIS INTERACTION

Variable	Coefficient
DEIS	4.868***
Irish-medium	0.223
DEIS x Irish-medium	-3.803*

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***). Controlling for ethos, size and gender mix. See the complete model output in Table A.3.14 in Appendix 3. Adjusted R-squared = 0.1760.

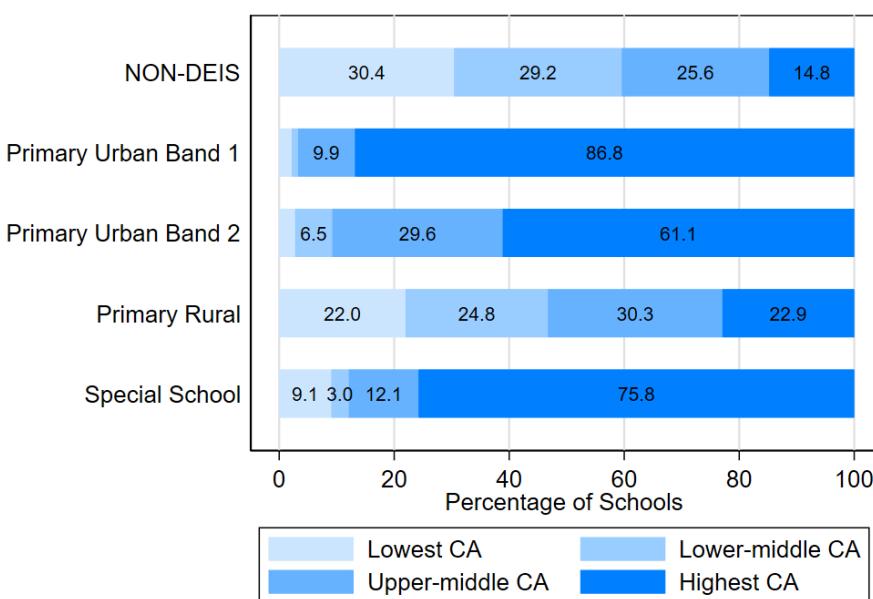
The interaction between DEIS status and language of instruction – captured in Table 3.12 – suggests that in Irish-medium schools, the negative effect of DEIS is less severe. While DEIS status in English-medium schools increases days lost per student by 4.86, this is reduced by 3.803 in Irish-medium schools, implying similar outcomes for DEIS and non-DEIS schools in that setting. However this result should be interpreted with caution, as the interaction effect is only significant at the 10 per cent level, and the main effect of Irish-medium instruction is not statistically significant in this model. Furthermore, in the model using counts as the outcome variable, this interaction did not emerge as significant.

Area-level deprivation and school size are not statistically significant (see Tables A.3.12 and A.3.13 in Appendix 3). This indicates that the effect of being a DEIS-designated school on overall days lost does not vary by the socio-economic context of the area, or the size of the school. The same conclusion was reached with CA counts as the outcome variable.

CHAPTER 4

School absence in primary schools, 2023/24

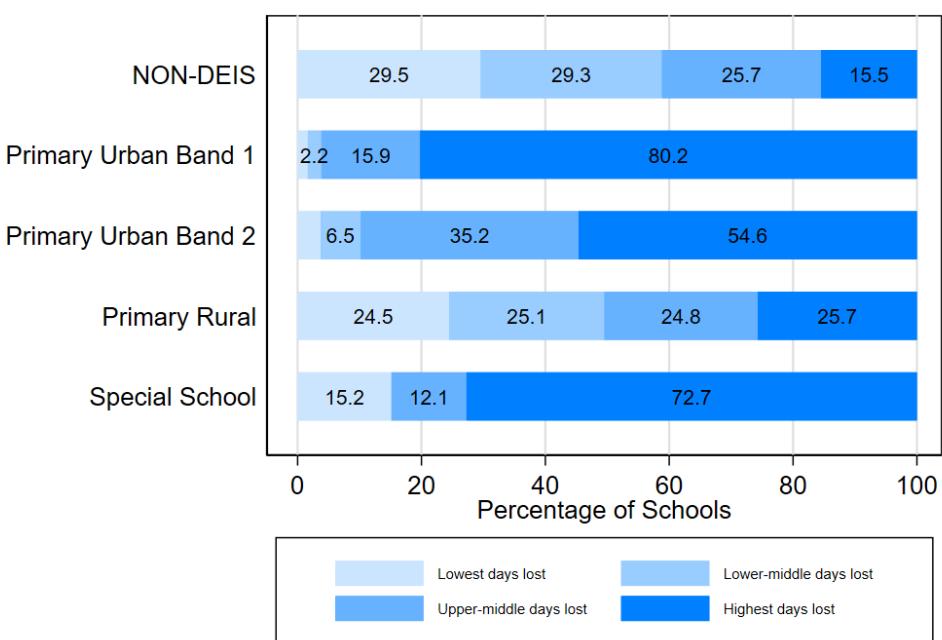
This chapter and the next, Chapter 5, perform a similar analysis to the previous two chapters but for the following academic year – 2023/24. For insights into time-based comparisons, please refer to Chapter 6, which examines absolute and relative changes across the two years, as well as whether these changes differ across subgroups of schools.


4.1 DESCRIPTIVE PATTERNS

DEIS classification and special school status

The DEIS and special school classification appears to be closely linked to varying levels of chronic absenteeism across schools in 2023/24 as in 2022/23. Non-DEIS schools report the lowest rate at 17.26 per cent, well below the overall average of 19.79 per cent. In contrast, DEIS schools show markedly higher rates, with the most acute levels found in primary Urban Band 1 schools, where 35.24 per cent of students are chronically absent. This is followed by special schools at 30.99 per cent, primary Urban Band 2 schools at 28.33 per cent, and primary Rural schools at 19.49 per cent.

Examining the distribution of quantiles (Figure 4.1) reinforces the idea that non-DEIS schools show the most favourable outcomes, with only 14.8 per cent falling into the worst chronic absenteeism category, and a combined 59.6 per cent placed in the two best categories. In stark contrast, primary Urban Band 1 schools fare the worst, with a striking 86.8 per cent in the worst category and a total of 96.7 per cent in the two worst categories. Special schools follow closely, with 75.8 per cent falling into the worst category, while Urban Band 2 schools show similarly concerning figures, with 61.1 per cent in the worst category. Primary Rural DEIS schools, although performing worse than non-DEIS schools, show less extreme differences: 22.9 per cent fall into the worst quantile – 8.1 percentage points higher than non-DEIS schools – and a combined 46.8 per cent fall into the two best categories, which is 12.8 percentage points lower than their non-DEIS counterparts.

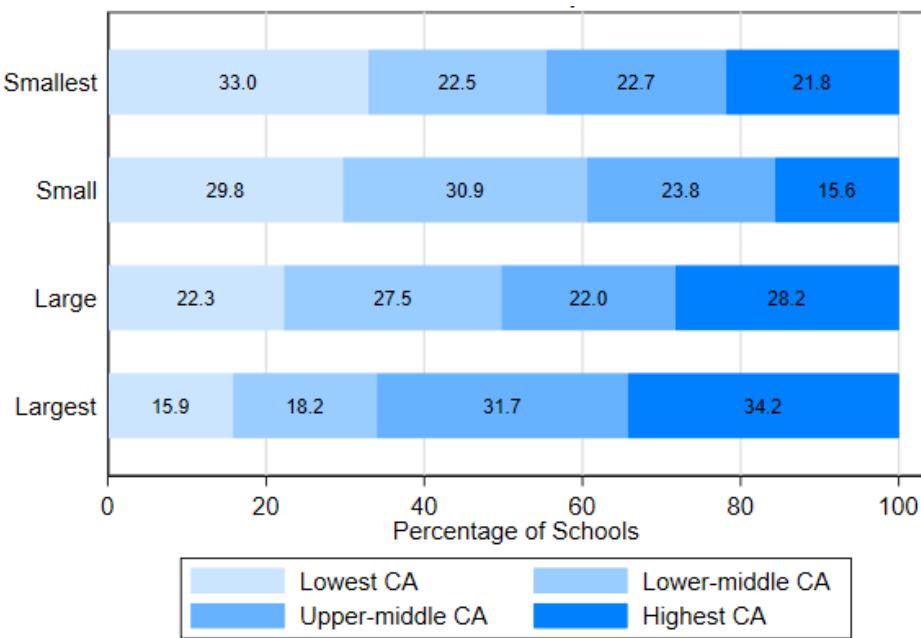

FIGURE 4.1 PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY DEIS AND SPECIAL SCHOOL STATUS

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

Looking at days lost as the outcome variable reveals a similar pattern (Figure 4.2). Non-DEIS schools report the lowest average at 13 days, slightly below the overall mean of 13.8 days. In contrast, DEIS schools – particularly those in urban settings – experience substantially higher absenteeism. Primary Urban Band 1 schools have the highest average at 18.9 days, followed by special schools at 18.63 days and primary Urban Band 2 schools at 16.5 days. Primary Rural DEIS schools are closer to the average, with a figure at 13.8 days. The quantile graphs of days lost per student only present slight differences in percentage points. For example, Band 1 schools now have a slightly smaller share in the worst category (80.2 per cent compared to the previous 86.8 per cent), and Band 2 schools also show a modest decrease (54.6 per cent versus 61.1 per cent). Despite these minor shifts, the overall patterns remain consistent.

FIGURE 4.2 PRIMARY 2023/24: LEVELS OF DAYS LOST BY DEIS


Source: Data from TESS.

School size

When examining school size, divided into four categories, we also see a relationship with levels of chronic absenteeism. The smallest and small schools report the lowest proportions of chronically absent students, at 18.29 per cent and 17.50 per cent respectively – both below the overall average of 19.79 per cent. In contrast, absenteeism increases with school size: large schools have a rate of 20.68 per cent, while the largest schools report the highest proportion at 22.69 per cent.

Examining the quantiles (Figure 4.3) further supports that smaller schools tend to perform better than larger ones in 2023/24. While the comparison between the smallest and small schools is not entirely straightforward, small schools appear to do marginally better, with a 6.2 percentage point lower share in the worst category (21.8 per cent vs 15.6 per cent). However, they also have a slightly smaller share in the best category (29.8 per cent vs 33 per cent). Still, both the smallest and small schools outperform their larger counterparts.

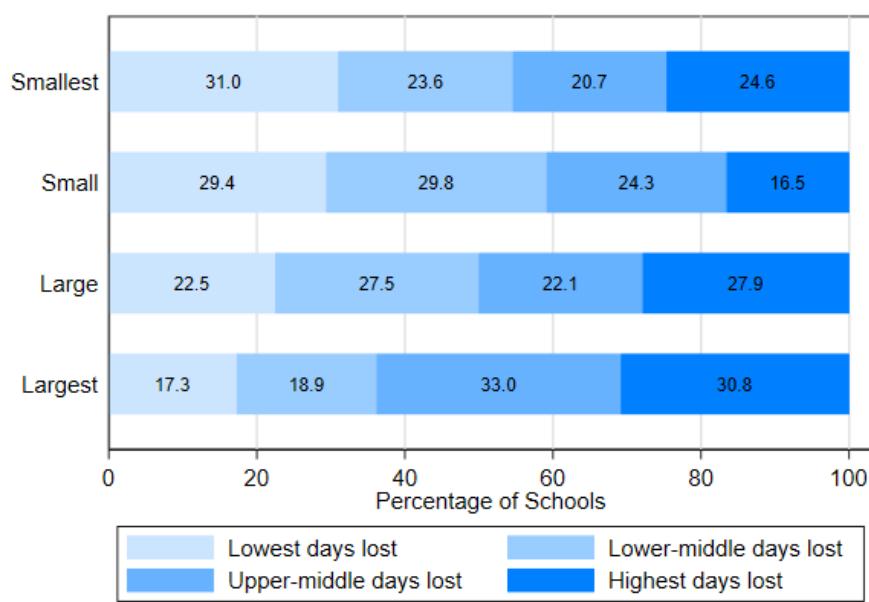

Among the larger school categories, the largest schools perform the worst – though the differences compared to large schools are not dramatic. Specifically, 34.2 per cent of the largest schools fall into the worst chronic absenteeism category, compared to 28.2 per cent for large schools. In terms of the best-performing category, only 15.9 per cent of the largest schools are represented, versus 22.3 per cent for large schools. What makes the situation particularly concerning for the largest schools is that a combined 65.9 per cent fall into the two worst categories.

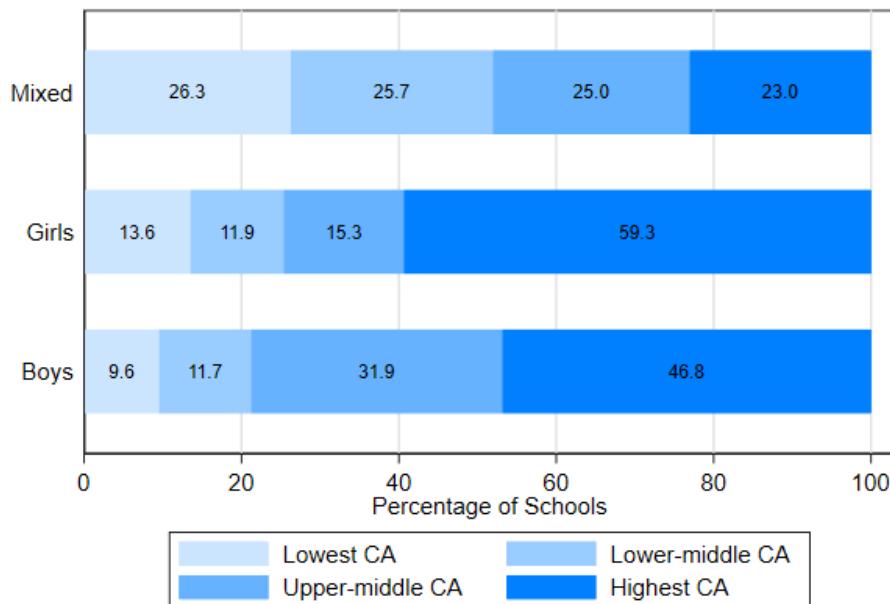
FIGURE 4.3 PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY SCHOOL SIZE

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

Looking at overall days lost (Figure 4.4) reveals a very similar pattern. The smallest and small schools report the lowest averages – 13.51 and 13.16 days respectively – both below the overall mean of 13.83 days. As school size increases, so too does the average number of days lost: large schools report 14.01 days, while the largest schools reach 14.64 days. When looking at the quantiles, the picture is also similar though with some slight changes. Small schools continue to have the lowest share in the worst category, although they also have a slightly lower share in the best category compared to the smallest schools. Once again, the largest schools appear to perform the worst when considering the overall distribution of chronic absenteeism. However, the gap between large and largest schools is now even smaller. For instance, large schools now have 27.9 per cent in the worst category, just 2.9 percentage points lower than the 30.8 per cent observed for the largest schools.

FIGURE 4.4 PRIMARY 2023/24: LEVELS OF DAYS LOST BY SCHOOL SIZE

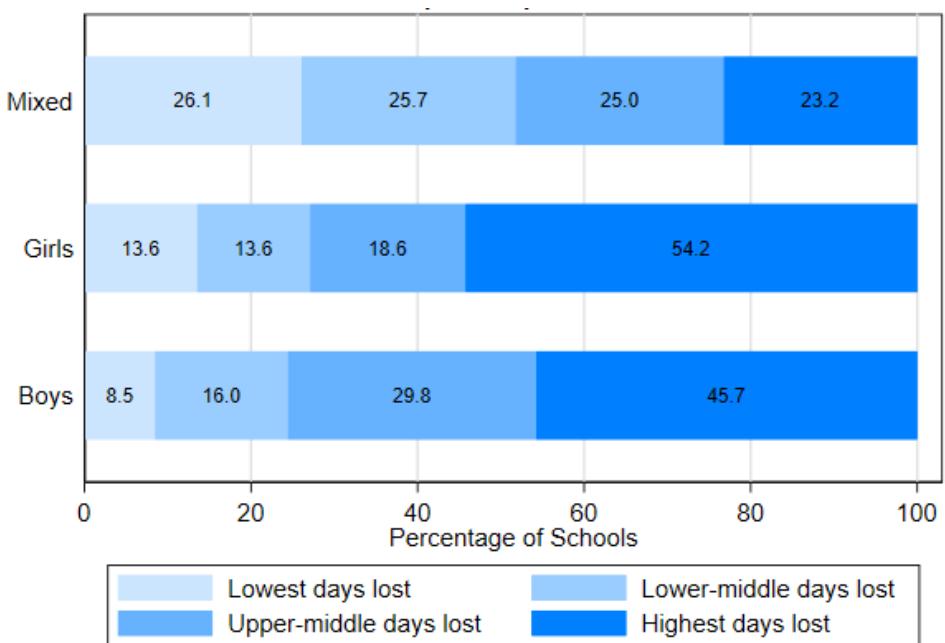

Source: Data from TESS.

Gender mix

Mixed-gender schools report the lowest rate of chronic absence at 19.29 per cent, very close to the overall average of 19.79 per cent. In contrast, single-gender schools show markedly higher rates: girls' schools have the highest proportion of chronically absent students at 27.11 per cent, followed closely by boys' schools at 26.34 per cent.

The distribution of quantiles (Figure 4.5) supports this trend. Mixed schools appear to perform the best overall, showing a fairly even distribution across all performance quantiles. Approximately one-in-four schools fall into each category – for instance, 26.3 per cent are in the top quantile, while 23 per cent are in the bottom – indicating a balanced performance without a strong skew toward either end of the spectrum. In contrast, single-gender schools perform notably worse. Nearly six-in-ten girls' schools (59.3 per cent) fall into the worst quantile, compared to 46.8 per cent of boys' schools. At the other end, only 13.6 per cent of girls' schools are in the best quantile, slightly higher than the 9.6 per cent for boys' schools.

The comparison between boys' and girls' schools is not entirely straightforward. While girls' schools have a higher share in the worst category by 12.5 percentage points, they also have a marginally higher share in the best category. Moreover, when considering the two worst quantiles combined, girls' schools actually perform slightly better, with a total of 74.6 per cent compared to 78.7 per cent for boys' schools – a difference of 4.1 percentage points. What is clear, however, is that mixed schools consistently outperform both boys' and girls' schools across the board.


FIGURE 4.5 PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY GENDER MIX

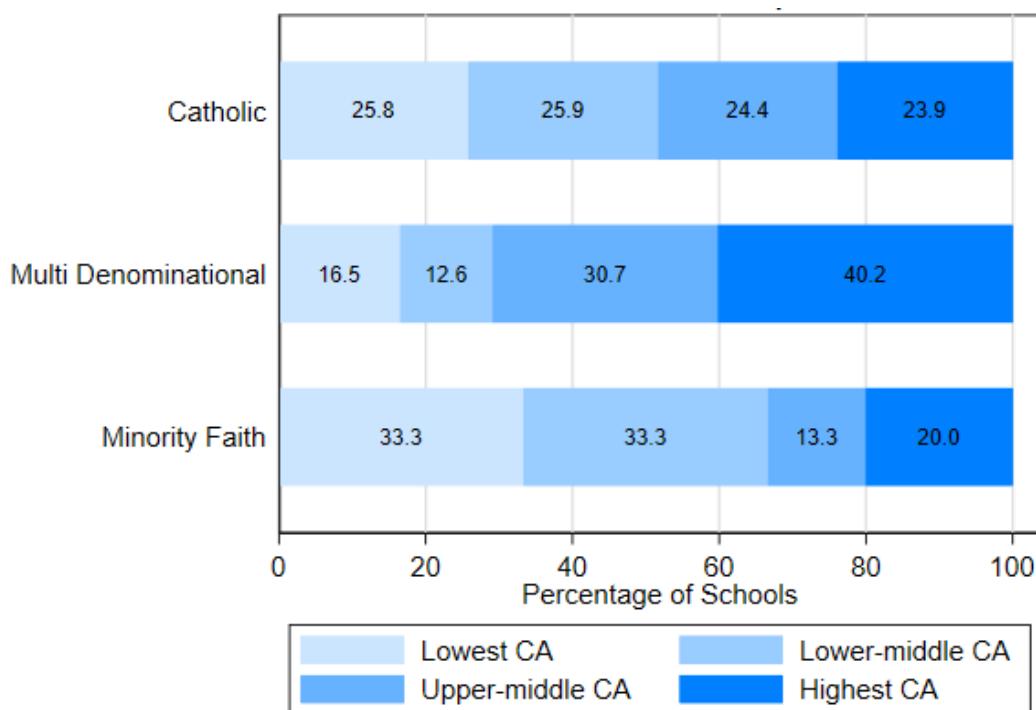
Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

Moving on to *days lost per student* as the metric (Figure 4.6), the overall pattern remains largely consistent. Mixed-gender schools report the lowest average at 13.67 days, again very close to the overall mean of 13.83 days. In contrast, students in single-gender schools present higher absenteeism, with very similar figures now when looking at days lost, girls' schools average 15.93 days lost, while boys' schools are nearly identical at 15.94 days.

The main notable difference is that the gap between girls' and boys' schools in the share of the worst category has narrowed. Previously, the difference was 12.5 percentage points (59.3 per cent for girls vs 46.8 per cent for boys). Now, that gap has reduced to 8.5 percentage points (54.2 per cent for girls vs 45.7 per cent for boys), indicating that the advantage previously seen for boys' schools has become less pronounced.

FIGURE 4.6 PRIMARY 2023/24: LEVELS OF DAYS LOST BY GENDER MIX

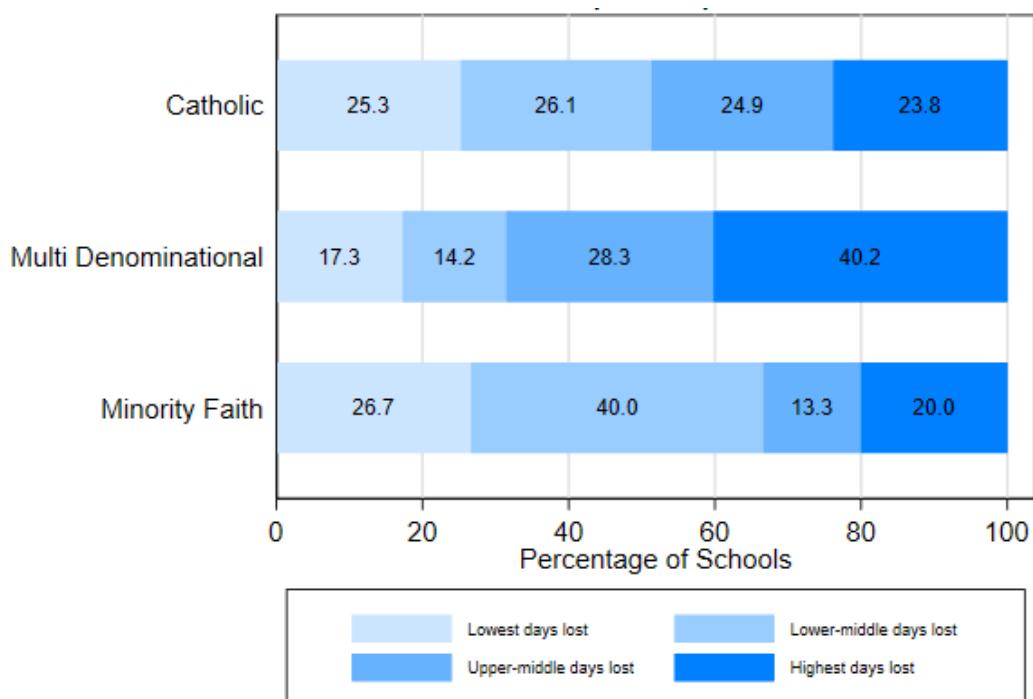

Source: Data from TESS.

Ethos

Schools with different ethos types also show varying levels of chronic absenteeism. Minority faith schools report the lowest rate at 16.46 per cent, below the overall average of 19.71 per cent. Catholic schools are close to the average, with a rate of 19.47 per cent. In contrast, multi-denominational schools show a higher rate of 23.77 per cent.

Looking at the distribution of quantiles (Figure 4.7) reinforces this pattern, showing how multi-denominational schools appear to have the most concerning figures, with four-in-ten (40.2 per cent) falling into the worst chronic absenteeism quantile. A combined 70.9 per cent fall into the two worst quantiles, while only 29.1 per cent are in the two best.

Catholic and minority faith schools perform better than multi-denominational schools, with relatively similar outcomes – although minority faith schools seem to have a slight edge. The share of schools in the worst category is close: 23.9 per cent for Catholic and 20.0 per cent for minority faith. The difference becomes more noticeable when looking at the best-performing quantiles: 33.3 per cent of minority faith schools are in the top quantile compared to 25.8 per cent of Catholic schools. When combining the two best quantiles, minority faith schools reach 66.6 per cent, while Catholic schools total 51.7 per cent, a difference of 15 percentage points.

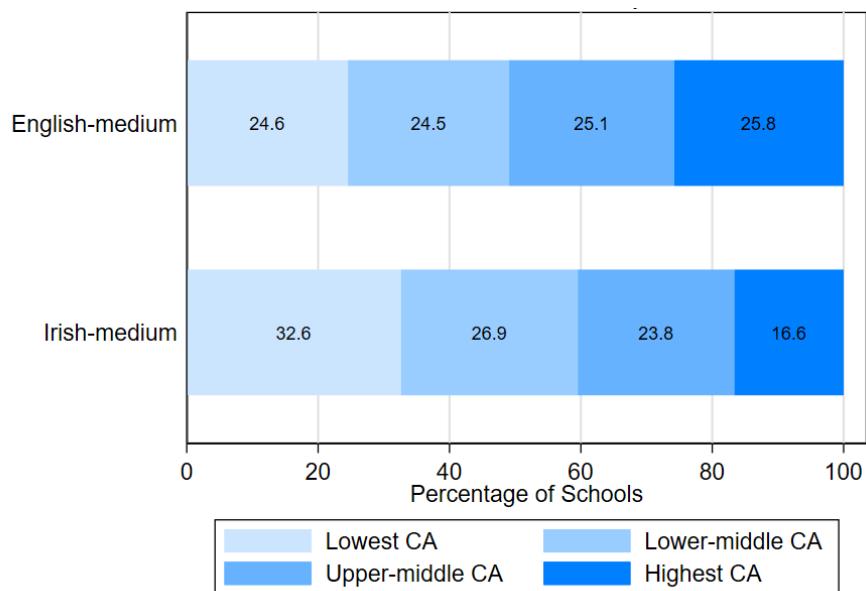

FIGURE 4.7 PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY SCHOOL ETHOS

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

If we look at days lost per student as the metric, the results are very similar. Consistent with the differences observed in CA rates, minority faith schools report the lowest average at 12.68 days, followed by Catholic schools at 13.72 days – both below the overall mean of 13.80 days. In contrast, multi-denominational schools show a higher average of 15.18 days lost per student.

When looking at the quantiles (Figure 4.8), one difference is that the share of minority faith schools in the best CA quantile has slightly decreased, from 33.3 per cent to 26.7 per cent, bringing it closer to 25.3 per cent for Catholic schools. However, this shift is offset by an increase in their representation in the second-best quantile. When combining the top two categories, minority faith schools still outperform, with 66.7 per cent compared to 51.4 per cent for Catholic schools.


FIGURE 4.8 PRIMARY 2023/24: LEVELS OF DAYS LOST BY SCHOOL ETHOS

Source: Data from TESS.

Irish-medium schools

Now looking at chronic absenteeism by language of instruction, English-medium schools tend to perform worse than Irish-medium schools, although the differences are not dramatic. Irish-medium schools report a lower rate of 17.18 per cent, compared to 20.04 per cent in English-medium schools. Both figures are close to the overall average of 19.79 per cent, but with Irish-medium schools having a marginal advantage.

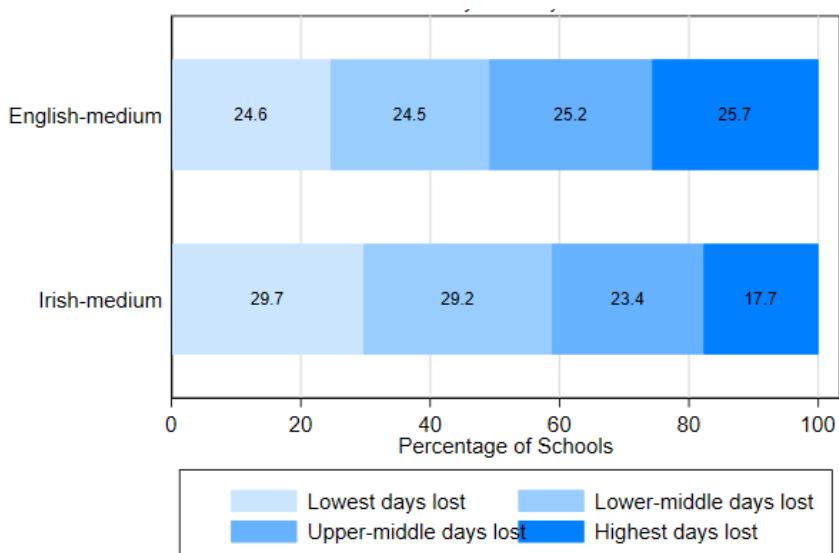

As can be seen in Figure 4.9, the share of English-medium schools in the worst chronic absenteeism quantile is 25.8 per cent, which is 9.3 percentage points higher than the 16.7 per cent for Irish-medium schools. When combining the two worst quantiles, Irish-medium schools still outperform, with a total of 40.1 per cent compared to 60 per cent for English-medium schools. Similarly, at the other end of the distribution, 32.8 per cent of Irish-medium schools fall into the best quantile – 8.3 percentage points more than the 24.5 per cent of English-medium schools.

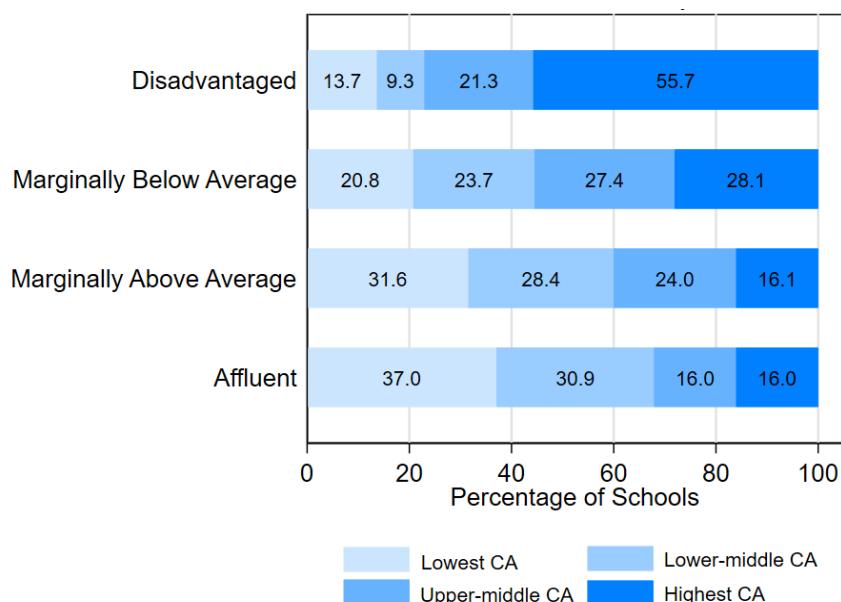
FIGURE 4.9 PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY LANGUAGE OF INSTRUCTION

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

Looking at days lost as the metric (Figure 4.10) reveals similar dynamics. The averages of days lost per student are again very similar with a marginal advantage for Irish-medium schools, which report an average of 13.10 days, compared to 13.90 days in English-medium schools. The differences in the distribution across quantiles are minor.

FIGURE 4.10 PRIMARY 2023/24: LEVELS OF DAYS LOST BY LANGUAGE OF INSTRUCTION


Source: Data from TESS.

HP Pobal Index

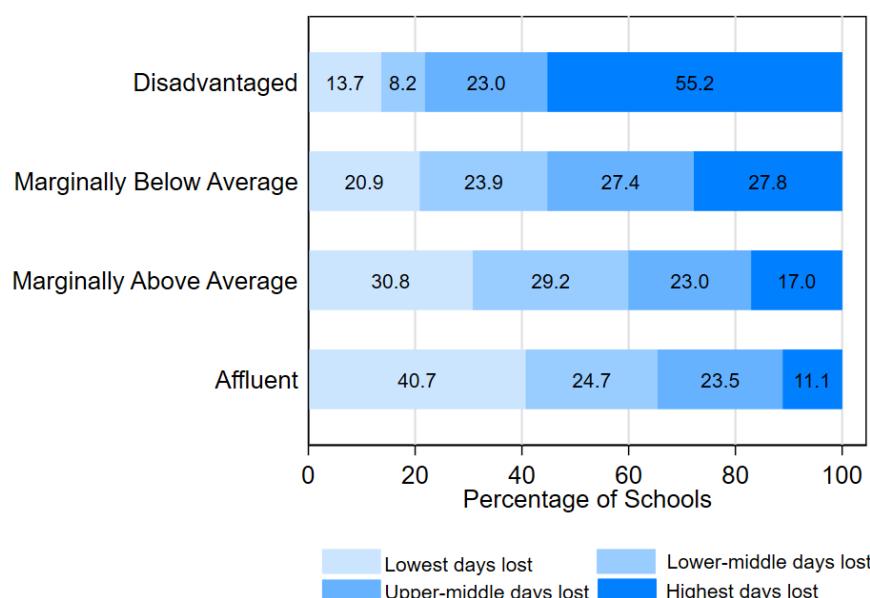
When examining the level of socio-economic deprivation where schools are located – measured by the HP Pobal Index – a clear gradient emerges; schools situated in more advantaged areas tend to have better chronic absenteeism outcomes. Schools in disadvantaged areas report the highest CA rate at 27.44 per cent, well above the overall average of 19.79 per cent. This rate declines steadily with increasing affluence: marginally below average schools report 20.67 per cent, marginally above average schools drop to 17.61 per cent, and affluent schools have the lowest rate at 16.01 per cent.

Looking at the quantiles reveals a similar picture (Figure 4.11). Among schools in disadvantaged areas, 55.7 per cent fall into the worst chronic absenteeism quantile. When combining the two worst quantiles, this rises to 77 per cent, indicating that over three-quarters of schools in disadvantaged areas are concentrated in the bottom half of absenteeism performance.

FIGURE 4.11 PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY HP POBAL INDEX

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.


Schools in marginally below average areas perform noticeably better; 28.1 per cent fall into the worst quantile – 27.6 percentage points lower than disadvantaged schools. Additionally, 20.9 per cent of these schools are in the best-performing quantile, compared to just 13.7 per cent of disadvantaged schools – a difference of 7.2 percentage points.

Schools in marginally above average and affluent areas perform better than those in marginally below average and disadvantaged areas. Marginally above average and affluent schools have 16 per cent and 16.1 per cent of schools in the worst chronic absenteeism quantile. This is approximately a 40-percentage point difference compared to disadvantaged schools (55.7 per cent) and a 12-point difference compared to marginally below average schools (28.1 per cent).

They also have the largest shares in the best-performing quantile: 31.6 per cent for marginally above average and 37 per cent for affluent schools. Compared to marginally below average schools (20.8 per cent), this represents differences of 10.8 and 16.2 percentage points, respectively. Compared to disadvantaged schools (13.7 per cent), the differences are even more pronounced; 17.9 and 23.3 percentage points, respectively.

Looking at days lost also reveals this gradient of more disadvantaged areas having higher chronic absenteeism. Schools in disadvantaged areas report the highest average at 16.48 days, well above the overall mean of 13.82 days. This figure declines steadily with increasing affluence: marginally below average schools report 14.18 days, marginally above average schools drop to 13.02 days, and affluent schools report the lowest average at 12.48 days. Looking at the quantiles (Figure 4.12) does reveal that now the gradient is even more pronounced in the advantaged areas. Now schools in affluent areas have expanded their advantage relative to those marginally above average.

FIGURE 4.12 PRIMARY 2023/24: LEVELS OF DAYS LOST BY HP POBAL INDEX

4.2 REGRESSION MODELS

4.2.1 Chronic absenteeism counts

The model is estimated using standard OLS regression.^{21,22}

DEIS, ethos, gender mix, size and language of instruction

TABLE 4.1 PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS IN PRIMARY SCHOOLS IN 2023/24

Variable	Coefficient
DEIS	
Primary Urban Band 1	0.174***
Primary Urban Band 2	0.102***
Primary Rural	0.045***
Special School	0.156***
<i>Base: Non-DEIS</i>	
Ethos	
Catholic	-0.038***
Minority Faith	-0.044*
<i>Base: Multi-denominational</i>	
Gender mix	
Girls	0.014
Boys	0.014
<i>Base: Mixed</i>	
School size	
Small	-0.005
Large	0.014**
Largest	0.033***
<i>Base: Smallest</i>	
Irish	-0.033***
Constant	0.159***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Adjusted R-squared = 0.3321.

The main model – including DEIS, ethos, gender mix, school size and language of instruction – can be seen in Table 4.1. The DEIS classification is highly significantly correlated with chronic absenteeism counts in 2023/24 as in 2022/23, with a p-value of 0.000 for all DEIS types. Special schools and Band 1 schools show the largest differences compared to non-DEIS schools. Controlling for school ethos,

²¹ The number of observations is 2,103.

²² A Breusch–Pagan/Cook–Weisberg test for heteroskedasticity, applied to the main model (including DEIS, ethos, school size and language of instruction as explanatory variables) with the proportion of students with chronic absenteeism as the dependent variable, accepts the null hypothesis at the 10 per cent significance level (p-value = 0.308), indicating that the errors can be assumed to have constant variance.

gender mix, size, and language of instruction, Band 1 schools have, on average, a 17.4 percentage point higher share of students with CA, while special schools have a 14.5 percentage point higher share. Band 2 schools follow, with an average increase of 10.1 percentage points, whereas rural DEIS schools show a smaller difference of 3.5 percentage points. These are the largest effect sizes in the model by a considerable margin.

In terms of school ethos, multi-denominational schools fare the worst, with an average chronic absenteeism rate 3.76 percentage points higher than Catholic schools ($p < 0.01$) and 4.44 percentage points higher than minority faith schools ($p < 0.05$). The difference between minority faith and Catholic schools is not statistically significant.

None of the coefficients for the gender mix of schools are statistically significant at the 10 per cent level, indicating that gender mix is not associated with differences in the number of chronically absent students.

Turning to school size (see Tables 4.1 to 4.3), the results indicate that larger schools tend to have higher rates of chronic absenteeism. Compared to the smallest schools, large and largest schools have on average, 1.42 and 3.17 percentage points higher CA rates, respectively. When small schools are used as the reference category, the increases are 1.90 and 3.66 percentage points for large and largest schools, respectively. The difference between small and smallest schools is not statistically significant. However, the difference between large and largest schools is significant, with the largest schools exhibiting a 1.75 percentage point higher CA rate on average. However, it is important to note that **primary DEIS Band 1 and Band 2 schools are underrepresented among the smallest and small school categories**, even though the model statistically controls for school size. This underrepresentation may influence the interpretation of size-related effects. The relation between size-related effects and levels of CA can also be seen visually in Figure 4.13.

TABLE 4.2 PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (SIZE, ALTERNATIVE BASE)

Variable	Coefficient
School size	
Smallest	0.005
Large	0.019***
Largest	0.036***
Base: Small	

Source: Data from TESS.

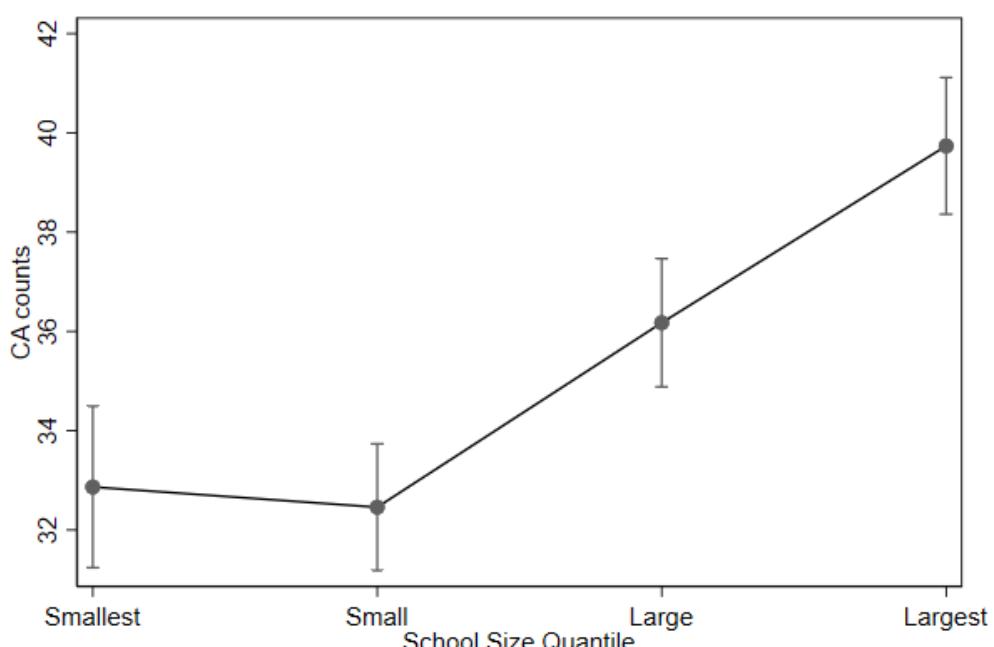

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***). Controlling for DEIS, ethos, gender mix and language of instruction (see the complete model output in Table 4.1).

TABLE 4.3 PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (SIZE, ALTERNATIVE BASE)

Variable	Coefficient
School size	
Smallest	-0.014**
Small	-0.019***
Largest	0.017***
Base: Large	

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***). Controlling for DEIS, ethos, gender mix and language of instruction (see the complete model output in Table 4.1).

FIGURE 4.13 PRIMARY 2023/24: PREDICTED CA LEVELS BY SCHOOL SIZE

Source: Data from TESS.

Notes: The graph plots the predicted probabilities of the proportion of chronically absent students at different values of school size, with the other variables (DEIS status, gender mix, ethos, and language of instruction) held at their means.

Regarding language of instruction, Irish-medium schools have significantly better outcomes at the 1 per cent significance level, with a 3.3 percentage point lower share of students with chronic absenteeism compared to English-medium schools.

HP Pobal Index

The results of the model including HP Pobal Index can be found in Tables 4.4 to 4.6. Using schools in disadvantaged areas as the reference group, schools in marginally above average areas have, on average, a 2.8 percentage point lower share of students with chronic absenteeism ($p < 0.01$), while schools in affluent areas have a 6.0 percentage point lower share ($p < 0.01$). This gradient also holds when using marginally below average areas as the reference group, though the effect sizes are slightly smaller: schools in marginally above average and affluent areas have, respectively, 2.0 and 5.2 percentage points fewer students with chronic absenteeism ($p < 0.01$ for both).

When comparing between the broader categories of 'deprived' (disadvantaged and marginally below average) and 'non-deprived' (marginally above average and affluent) areas, the difference between disadvantaged and marginally below average schools is not statistically significant. However, the difference between marginally above average and affluent schools is significant, with schools in affluent areas reporting on average, 3.2 percentage points fewer students with chronic absenteeism ($p < 0.01$).

TABLE 4.4 PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (HP POBAL INDEX)

Variable	Coefficient
DEIS	
Primary Urban Band 1	0.161***
Primary Urban Band 2	0.093***
Primary Rural	0.025***
Special School	0.141***
Base: Non-DEIS	
Ethos	
Multi-denominational	0.044***
Minority Faith	-0.005
Base: Catholic	
Gender mix	
Girls	0.016
Boys	0.017*
Base: Mixed	
School size	
Small	-0.005
Large	0.016***
Largest	0.036***
Base: Smallest	
Irish	-0.036***
HP Pobal Index	
Marginally Below Average	-0.008
Marginally Above Average	-0.028***
Affluent	-0.060***
Base: Disadvantaged	
Constant	0.178***

Source: Data from TESS.

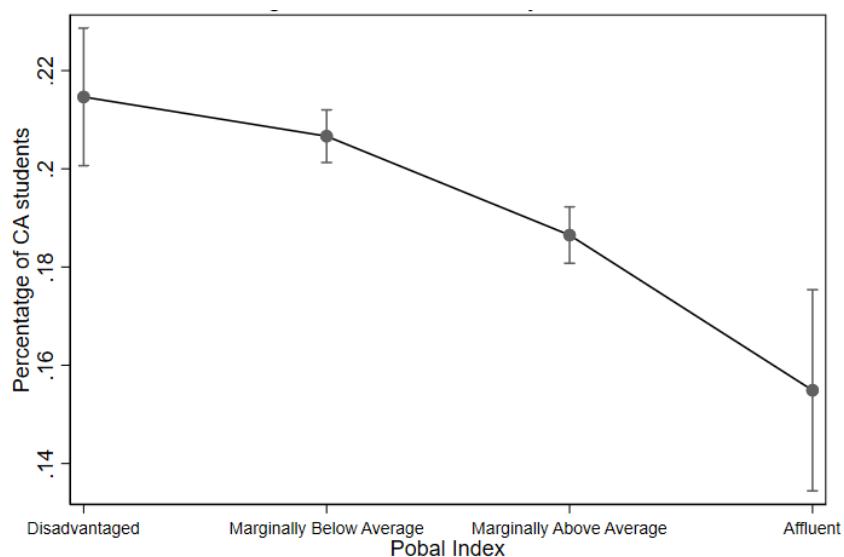
Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Adjusted R-squared = 0.3451.

TABLE 4.5 PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	0.008
Marginally Above Average	-0.020***
Affluent	-0.052***
Base: Marginally Below Average	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, size and language of instruction. See the complete model output in Table 4.4.


TABLE 4.6 PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	0.028***
Marginally Below Average	0.020***
Affluent	-0.032***
Base: Marginally Above Average	

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***)¹. Controlling for DEIS, ethos, gender mix, size and language of instruction. See the complete model output in Table 4.4.

Overall, the results indicate a consistent socio-economic gradient: schools located in more advantaged areas tend to have significantly fewer students experiencing chronic absenteeism, even after controlling for other school characteristics. This trend can be observed looking at the predictive probabilities in Figure 4.14.

FIGURE 4.14 PRIMARY 2023/24: PREDICTED CA LEVELS BY HP POBAL INDEX

Source: Data from TESS.

Notes: The graph plots the predicted probabilities of chronically absent students at different values of the HP Pobal Index, with the other variables (DEIS status, school size, gender mix, ethos, and language of instruction) held at their means.

Counties

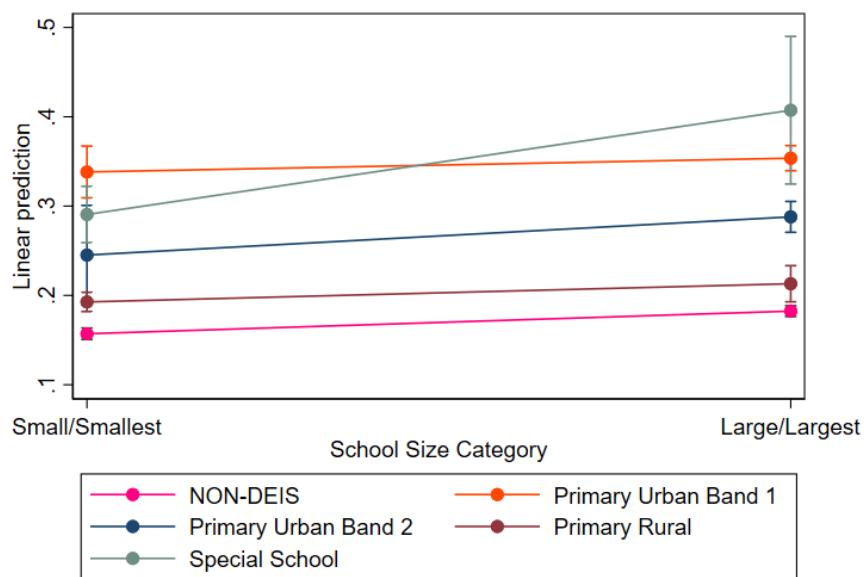
The results of the model with counties versus Dublin as well as the model comparing Dublin North vs South can be seen in Tables A.4.1 and A.4.2 in Appendix 4. In comparison with Dublin County, some counties show statistically significant differences in chronic absenteeism at the 5 per cent level. On average, schools in Cavan (-3.7 per cent, ***), Donegal (-2.2 per cent, **), Kilkenny (-3.8 per cent, ***), Meath (-2.1 per cent, *), Monaghan (-5.7 per cent, ***), and Tipperary (-1.7 per cent, *) have significantly lower shares of students with chronic

absenteeism. However, all other county coefficients are not statistically significant. Likewise, the comparison between Dublin North and Dublin South is also not significant at the 5 per cent level. This suggests that, once controlling for other covariates, there is no meaningful or consistent relationship between chronic absenteeism levels and the county in which a school is located.

Interactions with DEIS

The interaction effect between DEIS status and gender mix is significant (Table 4.7). It indicates that the detrimental impact of DEIS status on chronic absenteeism is more pronounced in single-sex schools, with an additional increase of 7.9 percentage points for girls' schools ($p < 0.01$) and 4.8 percentage points for boys' schools ($p < 0.05$). However, the main effects of gender mix are not statistically significant.

TABLE 4.7 PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: INTERACTION GENDER X DEIS

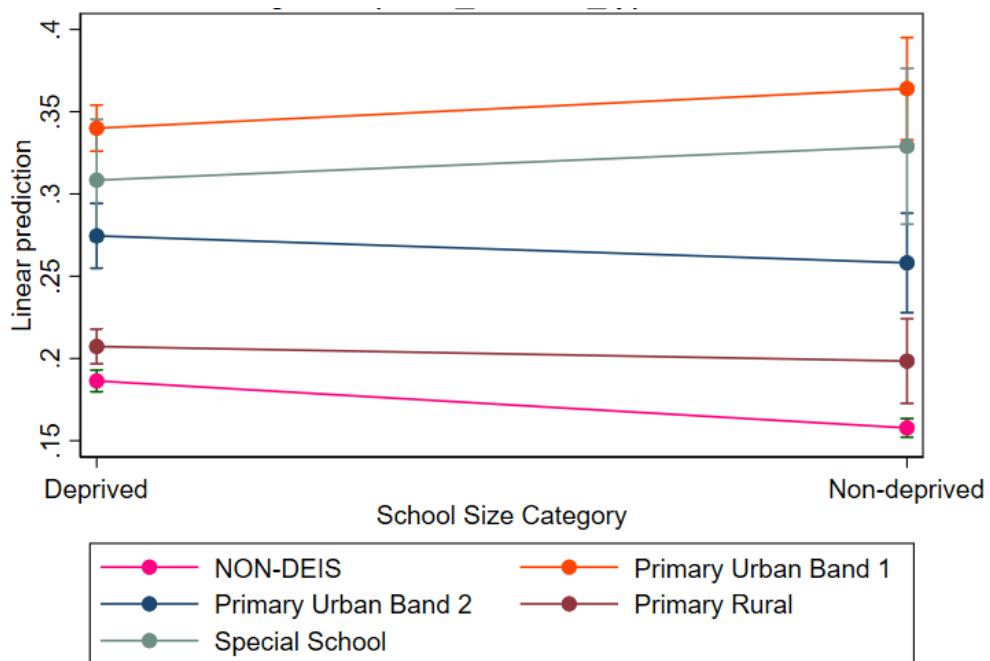

Variable	Coefficient
DEIS	0.079***
Gender mix	
Girls	0.003
Boys	0.017
Base: Mixed	
DEIS x Gender mix	
DEIS x Girls	0.079***
DEIS x Boys	0.048**
Base: DEIS x Mixed	

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***). Controlling for ethos, size and language of instruction. See the complete model output in Table A.4.3 in Appendix 4. Adjusted R-squared = 0.2215.

The interaction between school type and school size (Table A.4.4 in Appendix 4 and Figure 4.15) reveals that the detrimental effect of being a special school is more pronounced in large special schools, with an additional sizeable increase of 9.1 percentage points in chronic absenteeism rates ($p < 0.01$). This suggests that when special schools also fall into the large or largest size categories, absenteeism outcomes are particularly poor, which can be seen in Figure 4.15 as well.

FIGURE 4.15 PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: INTERACTION SIZE X DEIS



Source: Data from TESS.

Notes: The graph plots the predicted probabilities of the proportion of chronically absent students at different values of school size and DEIS / special school status, with the other variables (DEIS status, gender mix, ethos, and language of instruction) held constant.

The interaction between DEIS status and the HP Pobal Index (Table A.4.5 in Appendix 4 and Figure 4.16) shows a significant effect at the 1 per cent level for Primary Urban Band 1 schools. The negative coefficient suggests that being located in a deprived area offsets the effect of Band 1 status on CA rates, specifically, by 5.3 percentage points. As a result, Band 1 schools in deprived areas have 2.4 percentage points lower chronic absenteeism rates than their counterparts in non-deprived areas ($0.029 - 0.053$). However, it is important to note this finding is confined to Band 1 schools and not other DEIS denominations.

FIGURE 4.16 PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: INTERACTION HP POBAL INDEX X DEIS AND SPECIAL SCHOOL

Source: Data from TESS.

Notes: The graph plots the predicted probabilities of the proportion of chronically absent students at different values of HP Pobal Index and DEIS / special school status, with the other variables (DEIS status, gender mix, ethos, size, language of instruction) held constant.

The interaction between DEIS status and language of instruction is not statistically significant at the 10 per cent level, indicating that the effect of DEIS on chronic absenteeism is similar across Irish-medium and English-medium schools (see results in Table A.4.6 in Appendix 4).

4.2.2 Days lost per student

The model is estimated using **OLS regression with robust standard errors**.²³

DEIS, ethos, gender mix, school size and language of instruction

The results of the main model are captured in Table 4.8. Just as with chronic absenteeism (CA) counts, all DEIS school types are statistically significant at the 1 per cent level when using days lost in 2023/24 as the outcome variable. These DEIS categories also show the largest effect sizes in the model, even after controlling for ethos, gender mix, school size and language of instruction. The order of effects remains consistent: Band 1 and special schools show the largest differences, with 5.8 and 5.7 more days lost per student, respectively, compared

²³ A Breusch–Pagan/Cook–Weisberg test for heteroskedasticity, applied to the main model (including DEIS, ethos, school size and language of instruction as explanatory variables) with days lost per student as the dependent variable, rejects the null hypothesis at the 5 per cent significance level (p -value = 0.0123), indicating that the errors cannot be assumed to have constant variance.

to non-DEIS schools. These are followed by Band 2 schools, with 3.4 more days lost, and primary rural DEIS schools, which show a smaller but still significant difference of 1.16 days.

TABLE 4.8 PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT

Variable	Coefficient
DEIS	
Primary Urban Band 1	5.807***
Primary Urban Band 2	3.408***
Primary Rural	1.166***
Special School	5.706***
Base: Non-DEIS	
Ethos	
Catholic	-1.260***
Minority Faith	-1.619
Base: Multi-denominational	
Gender mix	
Mixed	-0.459
Girls	-0.222
Base: Boys	
School size	
Small	-0.249
Large	0.183
Largest	0.723***
Base: Smallest	
Irish	-0.942***
Constant	14.417***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). R-squared = 0.2676.

In comparison with Catholic schools, multi-denominational schools perform worse, with an average of 1.26 more days lost, a difference that is statistically significant at the 1 per cent level. The differences between minority faith schools and either Catholic or multi-denominational schools are not statistically significant, suggesting that, in terms of school ethos, the key distinction lies in the advantage Catholic schools have over multi-denominational schools. This pattern is slightly different from the findings from the CA model, where the difference between multi-denominational and minority faith was also significant.

Consistent with the CA model, the gender mix of schools – whether mixed versus single-sex, or boys versus girls – is not statistically significant, indicating no meaningful association between gender mix and absenteeism levels.

Moving on to school size, and using the smallest schools as the reference category, the differences with small and large schools are not statistically significant. Only the largest schools show a significant difference, with 0.723 more days lost, significant at the 1 per cent level. When using small schools as the reference (see Table 4.9), both the large and the largest schools show a significant difference, with 0.43 and 0.97 more days lost. Additionally, the comparison between large and largest schools (see Table 4.10) is also significant at the 1 per cent level, with the largest schools having 0.54 more days lost. This pattern of larger schools exhibiting worse outcomes is broadly consistent with the chronic absenteeism model, with the only difference being that, in the latter, the difference between the smallest and large schools was also statistically significant.

TABLE 4.9 PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT (SIZE, ALTERNATIVE BASE)

Variable	Coefficient
School size	
Smallest	0.249
Large	0.432**
Largest	0.972***
Base: Small	

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***)¹. Controlling for DEIS, ethos, gender mix and language of instruction (see the complete model output in Table 4.8).

TABLE 4.10 PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT (SIZE, ALTERNATIVE BASE)

Variable	Coefficient
School size	
Smallest	-0.182
Small	-0.432**
Largest	0.540***
Base: Large	

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***)¹. Controlling for DEIS, ethos, gender mix and language of instruction (see the complete model output in Table 4.8).

Finally, consistent with the model using chronic absenteeism counts as the outcome variable, English-medium schools perform worse than Irish-medium schools, with a statistically significant difference, albeit small, of 0.942 more days lost to absenteeism, significant at the 1 per cent level ($p\text{-value}=0.000$).

HP Pobal Index

When using schools located in disadvantaged areas as the reference category (Table 4.11), the differences compared to schools in marginally above average and affluent areas are statistically significant at the 1 per cent level, with these schools recording 1.13 and 2.12 fewer days lost, respectively. When schools in marginally below average areas are used as the reference group (Table 4.12), the differences remain statistically significant, although slightly smaller in magnitude: 0.80 and 1.79 fewer days lost, respectively, for marginally above average and affluent areas (1 per cent significance level).

When comparing the more and less advantaged areas among themselves, schools in disadvantaged areas record 0.33 more days lost than those in marginally below average areas; however, this difference is not statistically significant. However, the difference between marginally above average and affluent areas is significant at the 5 per cent level, with schools in affluent zones losing, on average, 0.98 fewer days.

Overall, the coefficients associated with the HP Pobal Index suggest a gradient, where higher levels of socio-economic deprivation are associated with greater numbers of days lost. The only exception to this gradient is the comparison between disadvantaged and marginally below average areas, where the difference is not statistically significant. These findings are consistent with the model for CA counts.

TABLE 4.11 PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX)

Variable	Coefficient
DEIS	
Primary Urban Band 1	5.296***
Primary Urban Band 2	3.077***
Primary Rural	0.756***
Special School	5.514***
<i>Base: Non-DEIS</i>	
Ethos	
Multi-denominational	1.483***
Minority Faith	-0.335
<i>Base: Catholic</i>	
Gender mix	
Girls	0.291
Boys	0.584**
<i>Base: Mixed</i>	
School size	
Small	-0.221
Large	0.263
Largest	0.909***
<i>Base: Smallest</i>	
Irish	-1.064***
HP Pobal Index	
Marginally Below Average	-0.332
Marginally Above Average	-1.134***
Affluent	-2.123***
<i>Base: Disadvantaged</i>	
Constant	13.439***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). R-squared = 0.2828.

TABLE 4.12 PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	0.332
Marginally Above Average	-0.802***
Affluent	-1.79***
<i>Base: Marginally Below Average</i>	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, size and language of instruction. See the complete model output in Table 4.11.

TABLE 4.13 PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	1.134***
Marginally Below Average	0.802***
Affluent	-0.989**
Base: Marginally Above Average	

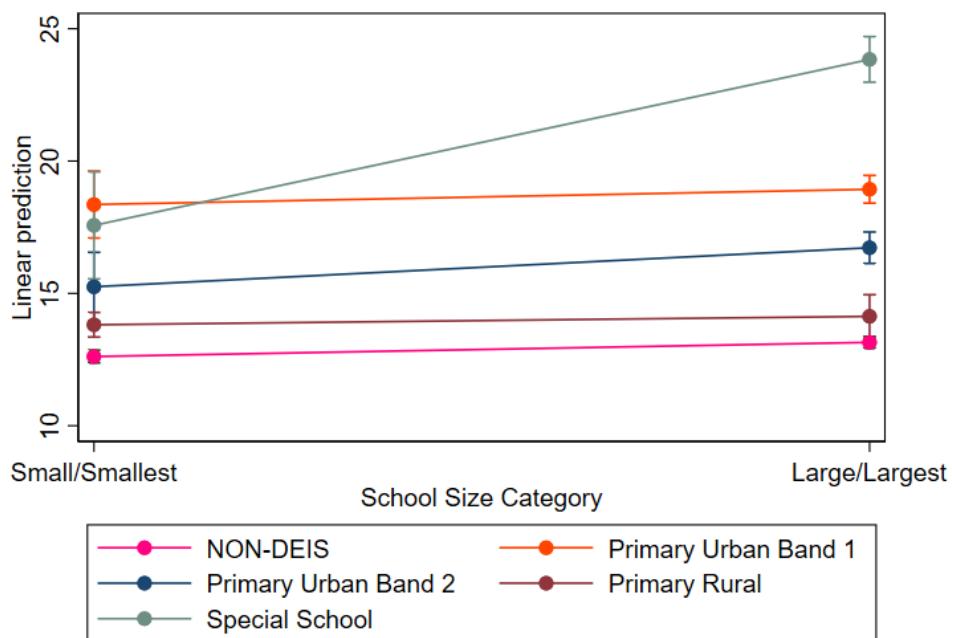
Source: Data from TESS.
Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, size and language of instruction. See the complete model output in Table 4.11

Counties

Examining the model including the counties compared to Dublin (Table A.4.8 in Appendix 4), the vast majority of county coefficients do not show statistically significant coefficients. Likewise, the difference between **Dublin North and Dublin South is not statistically significant** (see Table A.4.9 in Appendix 4). The only exceptions are a few counties: Cavan (-1.345), Monaghan (-2.137), Kilkenny (-1.414), and Kerry (+1.083) at the 5 per cent level or below, with Donegal (-0.815) and Tipperary (-0.712) significant at the 10 per cent level. These counties appear to perform better than Dublin in terms of days lost, with the exception of Kerry. However, given that the remaining counties do not show statistically significant differences, this suggests that **levels of absenteeism do not differ meaningfully by county**.

Interactions with DEIS

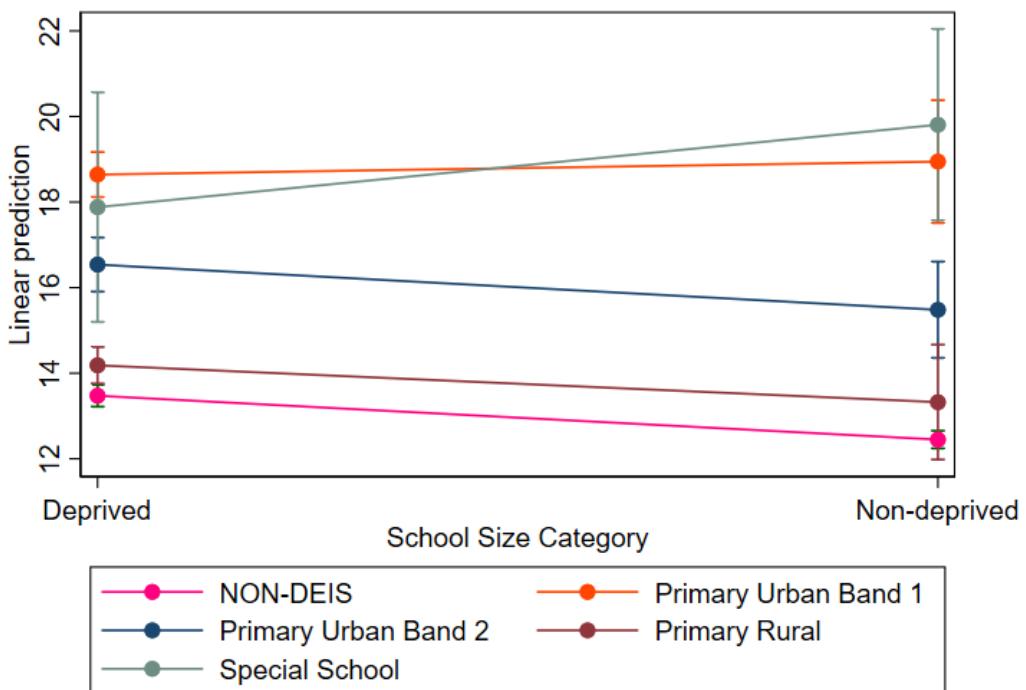
The interaction between DEIS status and school gender mix (see Table 4.14) – specifically girls' schools and boys' schools, compared to non-DEIS mixed schools – is statistically significant at the 1 per cent level. It suggests that the impact of DEIS status on days lost to absenteeism varies by school gender mix, with **single-gender schools** being more affected by the negative effects of DEIS status than **mixed-gender schools, specifically, by 2.7 and 1.94 further additional days lost per student**. The difference between boys' and girls' schools is not statistically significant. Nonetheless, it is important to note that the **main effects** of gender mix were not statistically significant, indicating that gender mix alone does not explain differences in absenteeism in non-DEIS schools. These results are consistent with the CA model.


TABLE 4.14 PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT: INTERACTION GENDER X DEIS

Variable	Coefficient
DEIS	2.60***
Gender mix	
Girls	-0.14
Boys	0.41
Base: Mixed	
DEIS x Gender mix	
DEIS x Girls	2.70***
DEIS x Boys	1.94***
Base: Non-DEIS x Mixed	

Source: Data from TESS.
Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for school size, ethos and language of instruction. See the complete model output in Table A.4.10 in Appendix 4. R-squared = 0.1684.

Regarding school size (Table A.4.11 in Appendix 4 and Figure 4.17), the only statistically significant coefficient is for the interaction between special schools and large schools (compared to non-DEIS small schools), which is significant at the 1 per cent level. This coefficient suggests that the negative effects associated with being both a special school and a large school are **amplified when these characteristics co-occur – which is also found in the CA model**. Specifically, amongst small schools, special schools have 4.96 more days lost per student than mainstream schools. Among large schools, this difference increases to 10.70 days (4.96 + 5.74), indicating a substantial additional burden. However, it is important to note that this effect is observed **only for special schools**.


FIGURE 4.17 PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT: INTERACTION SIZE X DEIS

Source: Data from TESS.

Notes: The graph plots the predicted probabilities of days lost per student at different values of school size and DEIS / special school status, with the other variables (DEIS status, gender mix, ethos, and language of instruction) held constant.

FIGURE 4.18 PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT: INTERACTION HP POBAL INDEX X DEIS AND SPECIAL SCHOOL

Source: Data from TESS.

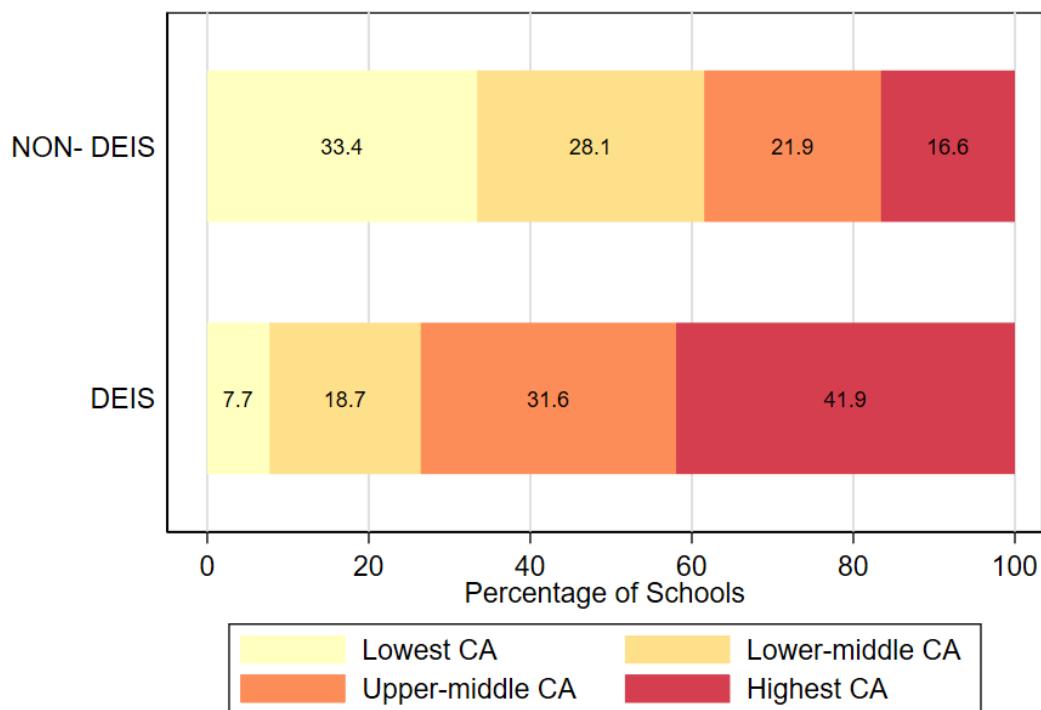
Notes: The graph plots the predicted probabilities of days lost per student at different values of the HP Pobal Index and DEIS / special school status, with the other variables (DEIS status, gender mix, ethos, size, and language of instruction) held constant.

Finally, for the HP Pobal Index variable (Table A.4.12 in Appendix 4 and Figure 4.18), we use a dichotomous measure distinguishing between deprived and non-deprived areas. The only statistically significant coefficient is for **Urban Band 1 schools located in deprived areas**, at the 10 per cent significance level. From this interaction term, we see that the combined effect is not simply additive; rather, being a Band 1 school in a deprived area is associated with better-than-expected attendance outcomes, a finding also present in the CA model. Since the interaction term is slightly larger in absolute value than the main effect of being in a deprived area (-1.33 compared to 1.02), being a primary Urban Band 1 school cancels out the effect associated with geographical deprivation.

Consistent with the CA model, the interaction between DEIS status and language of instruction is not statistically significant at the 10 per cent level (see regression output in Table A.4.13 in Appendix 4).

CHAPTER 5

School absence in post-primary schools, 2023/24

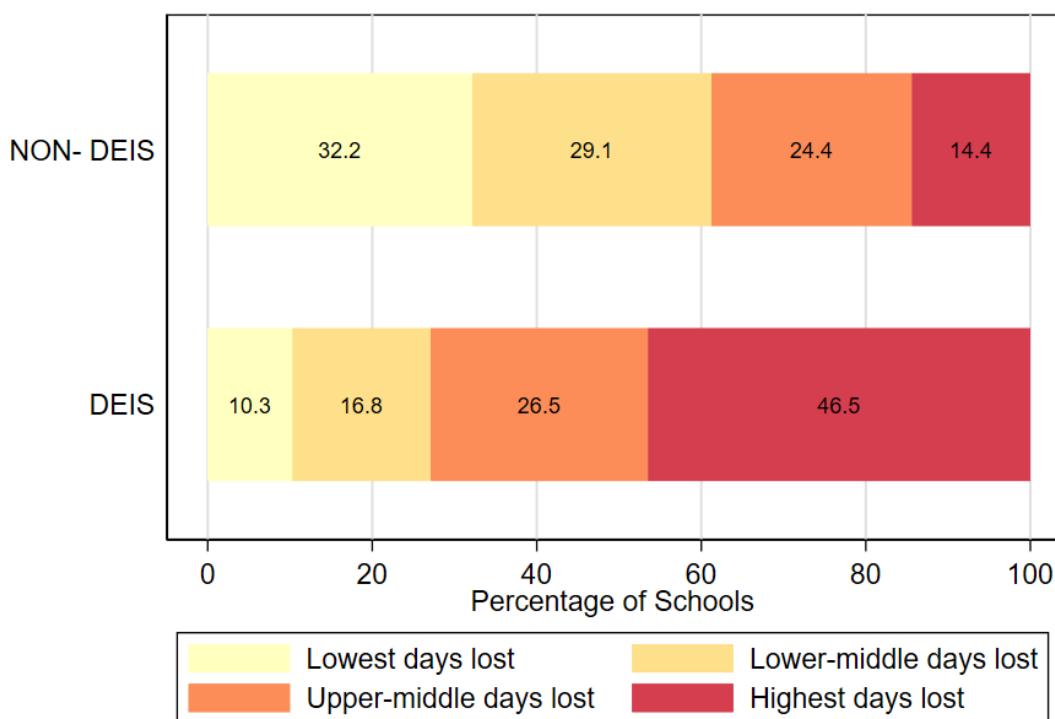

5.1 DESCRIPTIVE PATTERNS

DEIS classification

There are clear differences in chronic absenteeism levels between DEIS and non-DEIS post-primary schools in 2023/24 as in 2022/23. Non-DEIS schools report a chronic absenteeism rate of 19.36 per cent, slightly below the overall average of 22.3 per cent. DEIS schools show a much higher rate of 28.37 per cent – a difference of nearly 9 percentage points.

Looking at the quantiles (Figure 5.1), non-DEIS schools show – by and large – a more favourable distribution, with 33.4 per cent of schools falling into the lowest CA category and a combined 61.5 per cent in the two best-performing quantiles. In contrast, only 16.6 per cent of non-DEIS schools are in the highest CA category. DEIS schools, however, display much more concerning figures. Just 7.7 per cent of DEIS schools are in the lowest CA category, and only 26.4 per cent fall into the two best categories. Meanwhile, a significant 41.9 per cent of DEIS schools are in the highest CA category, with a combined 73.5 per cent in the two worst categories. This distribution points at a substantial disparity in absenteeism outcomes when considering DEIS classification.

FIGURE 5.1 POST-PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY DEIS FOR POST-PRIMARY SCHOOLS, 2023/24



Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

When we switch to looking at days lost per student, the overall picture does not change: DEIS post-primary schools still show much higher levels of chronic absenteeism. Non-DEIS schools report an average of 15.95 days lost per student, which, as with CA rate, is below the overall average (17.51). DEIS schools show a markedly higher average of 20.76 days.

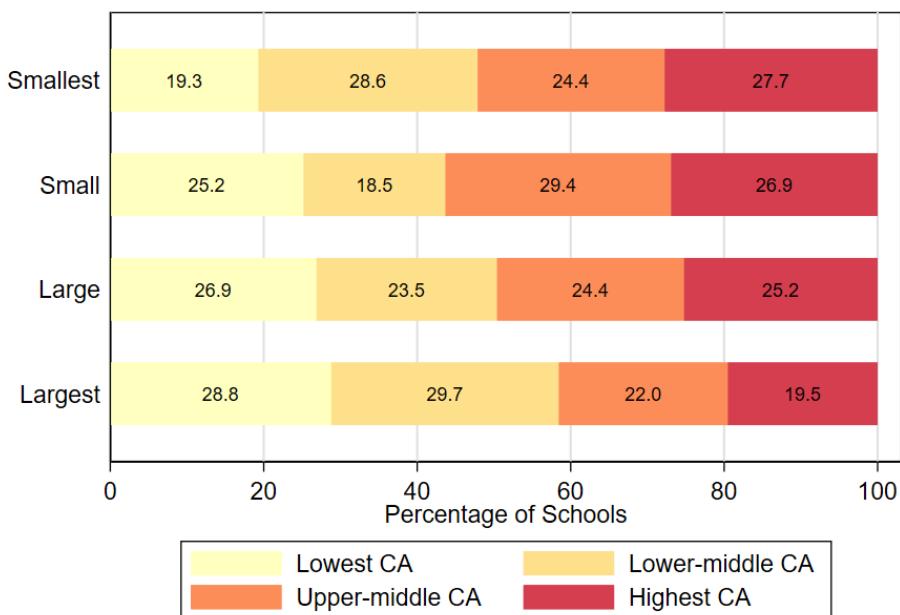
Indeed, as can be seen in Figure 5.2, their share in the worst category has gone up slightly, from 41.9 per cent to 46.5 per cent. There is also a small improvement in the best-performing category, rising from 7.7 per cent to 10.3 per cent, but these shifts are minor. The key takeaway is that the general pattern holds: DEIS schools continue to show worse outcomes with absenteeism compared to non-DEIS schools, both measured by counts of chronically absentee students and days lost per student.

FIGURE 5.2 POST-PRIMARY 2023/24: LEVELS OF DAYS LOST BY DEIS

Source: Data from TESS.

School size

When looking at chronic absenteeism (CA) distributions across school sizes, the differences are relatively modest. The highest rate is observed in the smallest schools, at 23.33 per cent, followed closely by small schools at 23.29 per cent. These are just above the overall average of 22.30 per cent. Large schools report a slightly lower rate of 22.45 per cent, while the lowest rate is found in the largest schools, at 20.12 per cent.


Looking at the quantiles (Figure 5.3) provides more nuanced insights. The largest schools appear to perform slightly better overall, showing the lowest share in the highest CA category (19.5 per cent) and the highest share in the lowest CA category (28.8 per cent). They also register the lowest combined share across the two worst-performing quantiles and the highest combined share across the two best-performing quantiles. However, these differences remain relatively small when compared to other school size groups.

The smallest, small, and large schools have very similar shares in the worst CA category, at 27.7 per cent, 26.9 per cent, and 25.2 per cent respectively, suggesting only a slight and gradual improvement in favour of larger schools. When combining the two worst CA quantiles, the pattern becomes less clear: the smallest schools have a combined share of 52.1 per cent, small schools 56.3 per cent, and large

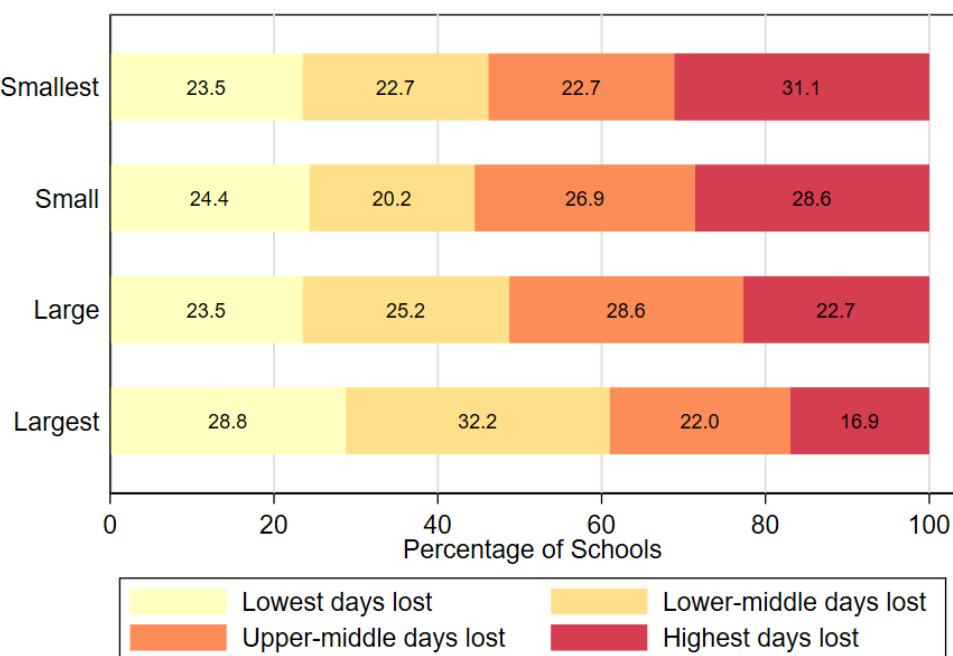
schools again 49.6 per cent. On this basis, small schools fare slightly worse. However, they also have a higher share in the best-performing quantile (25.2 per cent) than the smallest schools (19.3 per cent).

Altogether, while the largest schools show a slight advantage, the differences across size categories are not pronounced enough to suggest a clear trend between school size and levels of chronic absenteeism.

FIGURE 5.3 POST-PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY SCHOOL SIZE

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.


Average days lost per student also show a gradual decline as school size increases, though the differences are relatively small. Students in the smallest schools lose an average of 18.78 days, compared to 17.73 days in small schools and 17.49 days in large schools. The lowest average is observed in the largest schools, at 16.06 days.

The distribution of quantiles (Figure 5.4) reveals a somewhat clearer pattern, particularly when focusing on the worst and best chronic absenteeism (CA) quantiles. There is now a gradual decrease in the share of schools in the worst CA quantile and a corresponding increase in the best quantile as school size increases, indicating a slight advantage for larger schools. However, it is important to note that these differences are modest – only a few percentage points. For example, the share of schools in the worst CA quantile drops from 27.7 per cent among the smallest schools to 19.5 per cent among the largest, a difference of 8.2 percentage

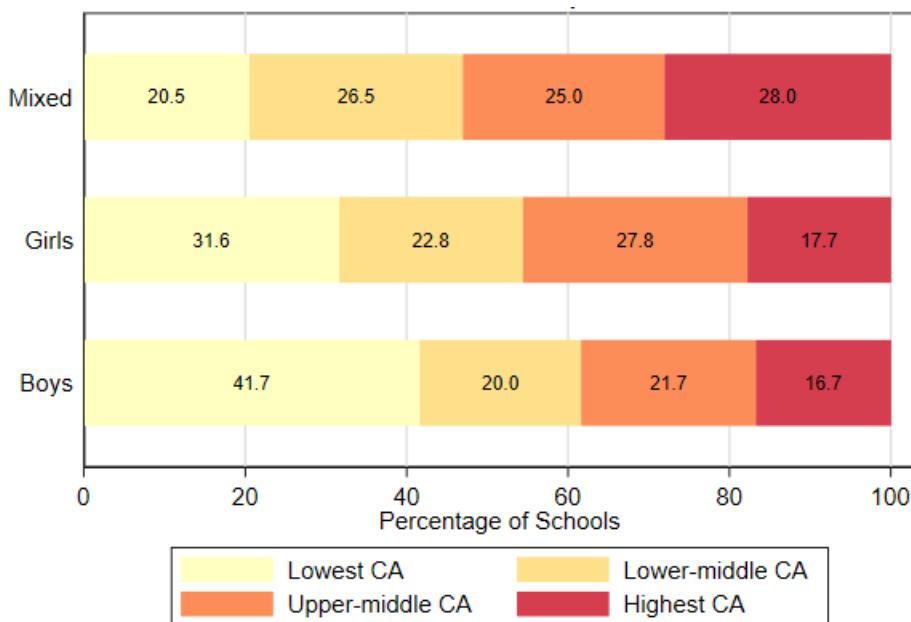
points. In contrast, the difference between small and large schools is much smaller; 26.9 per cent compared to 25.2 per cent, a gap of only 1.7 points.

When considering the distribution across the other quantiles, however, the pattern becomes less clear. While it is true that the largest schools have both the highest combined share in the top two quantiles and the lowest combined share in the bottom two, the remaining school size groups do not display a consistent trend. Although the share of schools in the best quantile does marginally increase with size, small schools have the highest share in the bottom two quantiles combined. Overall, while there is a slight tendency for larger schools to be associated with lower levels of days lost per student, the differences remain small and the pattern is not entirely consistent across all size categories.

FIGURE 5.4 POST-PRIMARY 2023/24: LEVELS OF DAYS LOST BY SCHOOL SIZE

Source: Data from TESS.

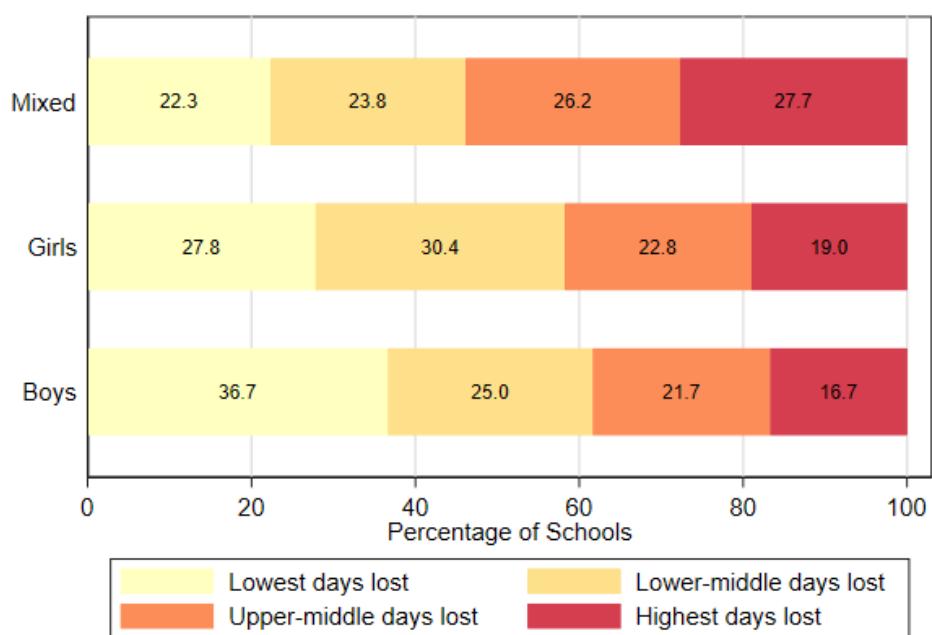
Gender mix


Mixed schools show the weakest outcomes in terms of chronic absenteeism levels. Mixed-gender schools have the highest CA rate, with 23.54 per cent of students chronically absent – above the overall average of 22.30 per cent. In contrast, girls' schools report a lower rate of 20.33 per cent, while boys' schools have the lowest rate at 17.96 per cent.

As illustrated in Figure 5.5, mixed schools have the lowest share of schools in the best-performing quantile (20.5 per cent), compared to 31.6 per cent for girls'

schools and 41.7 per cent for boys' schools. They also have the highest share in the worst quantile at 28.0 per cent, while girls' and boys' schools have significantly lower figures; 17.7 per cent and 16.7 per cent, respectively. That said, while mixed schools perform worse overall, their distribution across quantiles is relatively balanced, and the differences, though notable, are not extreme.

When comparing boys' and girls' schools, boys' schools appear to perform somewhat better. The share of schools in the worst quantile is nearly the same; 17.7 per cent for girls and 16.7 per cent for boys, a small difference of **1 percentage point**. However, girls' schools have a higher combined share in the two worst quantiles (45.5 per cent) compared to boys' schools (38.4 per cent). At the other end of the spectrum, boys' schools also lead, with a **10.1 percentage point** advantage in the best quantile (41.7 per cent vs 31.6 per cent) and a **7.3 percentage point** lead in the combined share of the two best quantiles (61.7 per cent for boys vs 54.4 per cent).

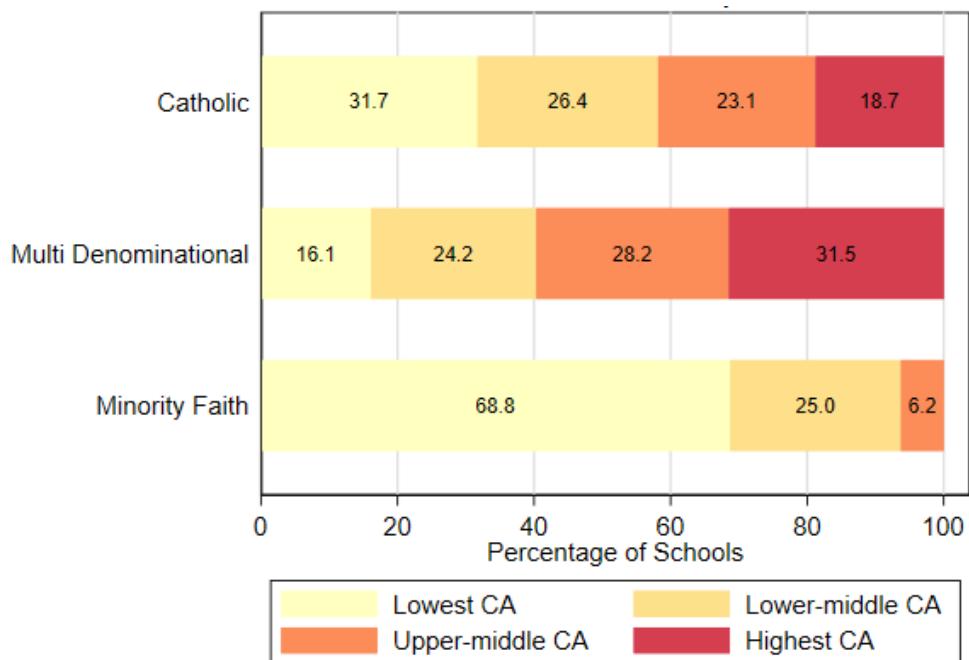

FIGURE 5.5 POST-PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY GENDER MIX

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

When we look at days lost per student as the metric (Figure 5.6), the overall pattern remains consistent, with mixed schools again showing the weakest outcomes. Students in mixed-gender schools lose the most time, with an average of 18.04 days per student, which is above the overall average of 17.52 days. In comparison, students in girls' schools lose an average of 16.45 days, while those in boys' schools lose the least, at 16.01 days.

FIGURE 5.6 POST-PRIMARY 2023/24: LEVELS OF DAYS LOST BY GENDER MIX

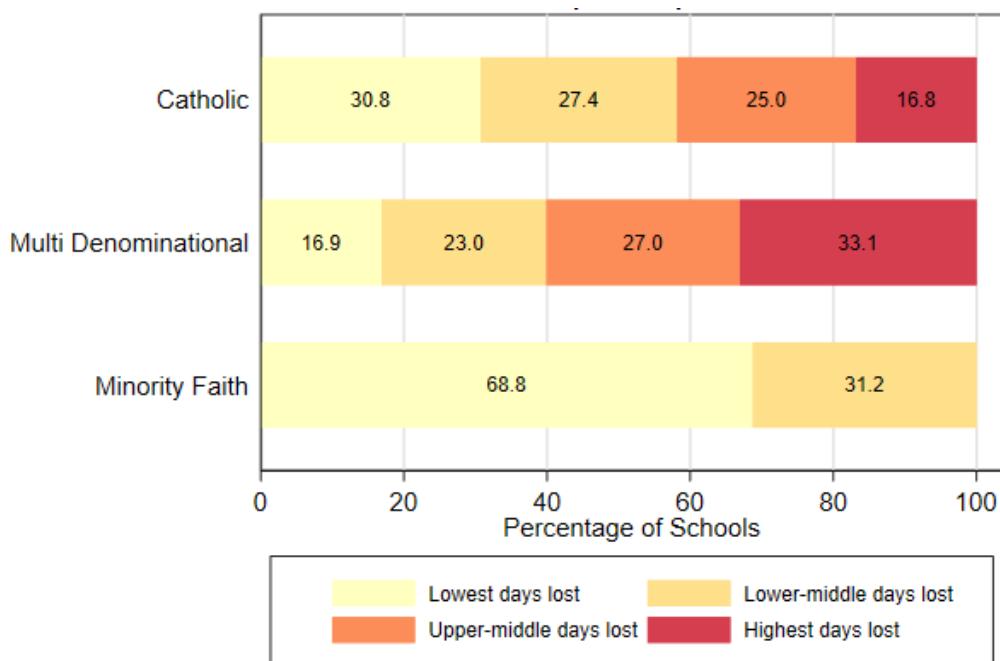

Source: Data from TESS.

Ethos

Chronic absenteeism rates vary considerably by school ethos in 2023/24 as in 2022/23. Multi-denominational schools report the highest rate, with 24.97 per cent of students chronically absent – slightly above the overall average of 22.31 per cent. Catholic schools, which represent the majority of schools, have a lower rate of 19.99 per cent. Minority faith schools show the lowest rate by a notable margin, at just 11.05 per cent.

The quantile graph (Figure 5.7) shows that **multi-denominational schools perform worse** than both Catholic and minority faith schools in terms of chronic absenteeism. They have the **highest share of schools in the worst CA category** (31.5 per cent) and the **lowest share in the best category** (16.1 per cent). In contrast, **Catholic schools** show a more positive distribution, with 31.7 per cent in the lowest CA category and 18.7 per cent in the highest. While Catholic schools are not performing exceptionally, they are more evenly spread across the absenteeism spectrum.

The **16 minority faith schools**, however, stand out with **exceptionally strong results**: 68.8 per cent of these schools fall into the lowest CA category, and none are represented in the highest category. While these figures suggest that minority faith schools are outperforming the others by a wide margin, it is important to interpret this cautiously, as the number of such schools is quite small, and their student profile is more advantaged.


FIGURE 5.7 POST-PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY SCHOOL ETHOS

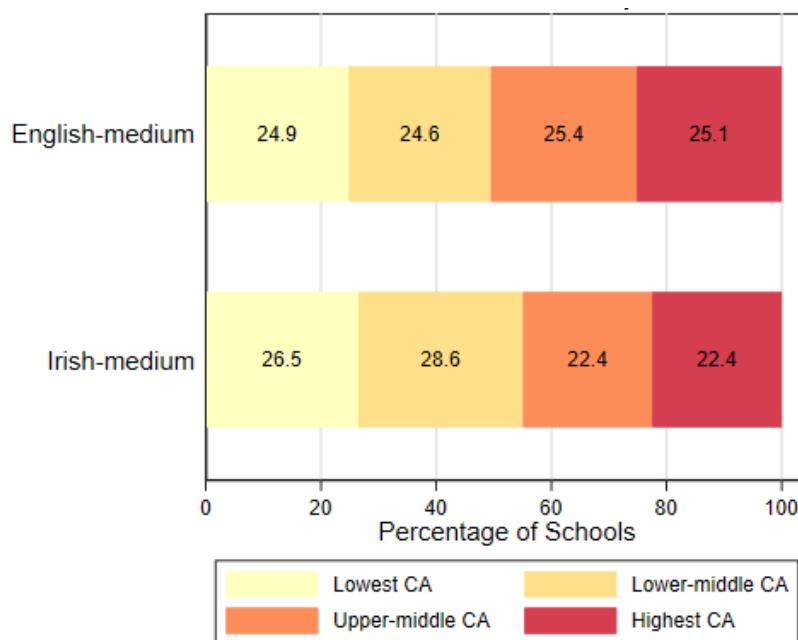
Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

When considering *days lost per student*, the same overall pattern holds. Students in multi-denominational schools lose the most time, averaging 19.02 days per student – above the overall average of 17.52 days. Catholic schools report a lower average of 16.14 days, while minority faith schools have the lowest figure at just 11.99 days.

As indicated in Figure 5.8, Catholic and multi-denominational schools show very similar distributions of the absenteeism quantiles, with only minor percentage points difference. The most noticeable change is seen among **minority faith schools**, which now perform even better than before. All 16 schools in this category fall into either the lowest or second-lowest quantile, meaning none are represented in the higher absenteeism categories.

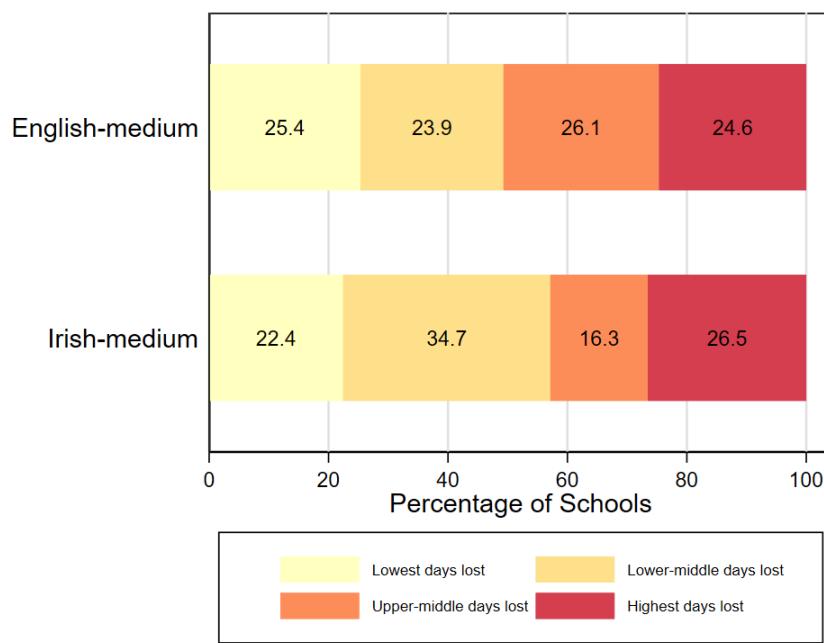
FIGURE 5.8 POST-PRIMARY 2023/24: LEVELS OF DAYS LOST BY SCHOOL ETHOS


Source: Data from TESS.

Irish-medium schools

Chronic absenteeism rates show very little variation between English-medium and Irish-medium schools. English-medium schools have a rate of 22.36 per cent, while Irish-medium schools report a slightly lower rate of 21.76 per cent. Both figures are very close to the overall average of 22.30 per cent.

Likewise Figure 5.9 shows that both English-medium and Irish-medium schools have a relatively even distribution across the four chronic absenteeism categories, with percentages ranging from approximately 22 per cent to 26 per cent. English-medium schools are almost evenly split, with each category representing around a quarter of schools (24.6 per cent to 25.4 per cent). Irish-medium schools follow a similar pattern, with 22.4 per cent of schools in the highest absenteeism category compared to 25.1 per cent in English-medium schools – a difference of 2.7 percentage points. Likewise, 26.5 per cent of Irish-medium schools fall into the lowest absenteeism category versus 24.9 per cent of English-medium schools, a 1.6 percentage point difference. These differences are minimal and suggest broadly similar absenteeism profiles across both school types.


FIGURE 5.9 POST-PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY LANGUAGE OF INSTRUCTION

Source: Data from TESS.

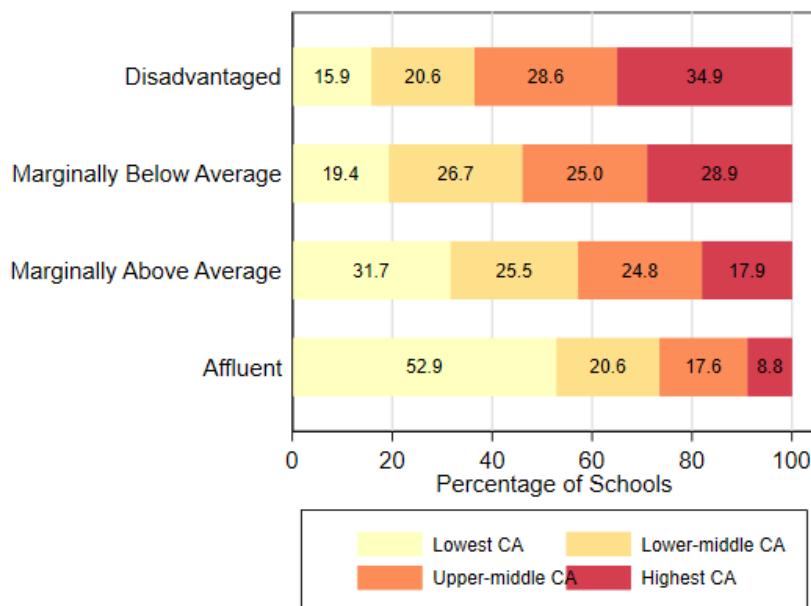
Notes: CA = chronic absenteeism quantile.

FIGURE 5.10 POST-PRIMARY 2023/24: LEVELS OF DAYS LOST BY LANGUAGE OF INSTRUCTION

Source: Data from TESS.

Average days lost per student are also very similar between English-medium and Irish-medium schools. Students in Irish-medium schools lose an average of 17.87 days, compared to 17.48 days in English-medium schools. Both figures are very close to the overall average of 17.52 days.

Now, English-medium schools continue to show a balanced distribution across the four quantiles (Figure 5.10), with shares ranging from 24.6 per cent to 26 per cent. However, the distribution for Irish-medium schools shifts slightly compared to the CA count metric. Their share in the worst quantile increases from 22.4 per cent to 26.5 per cent, while their representation in the best and upper-middle quantiles decreases, with a corresponding rise in the lower-middle quantile. However, it is still difficult to determine which school type performs better overall. Although Irish-medium schools now have a slightly larger share in the worst quantile and a smaller share in the best, they still hold a higher combined share in the two best quantiles (57.1 per cent) compared to English-medium schools (49.3 per cent). Nonetheless, as in CA counts, the differences remain small and should be interpreted with caution.

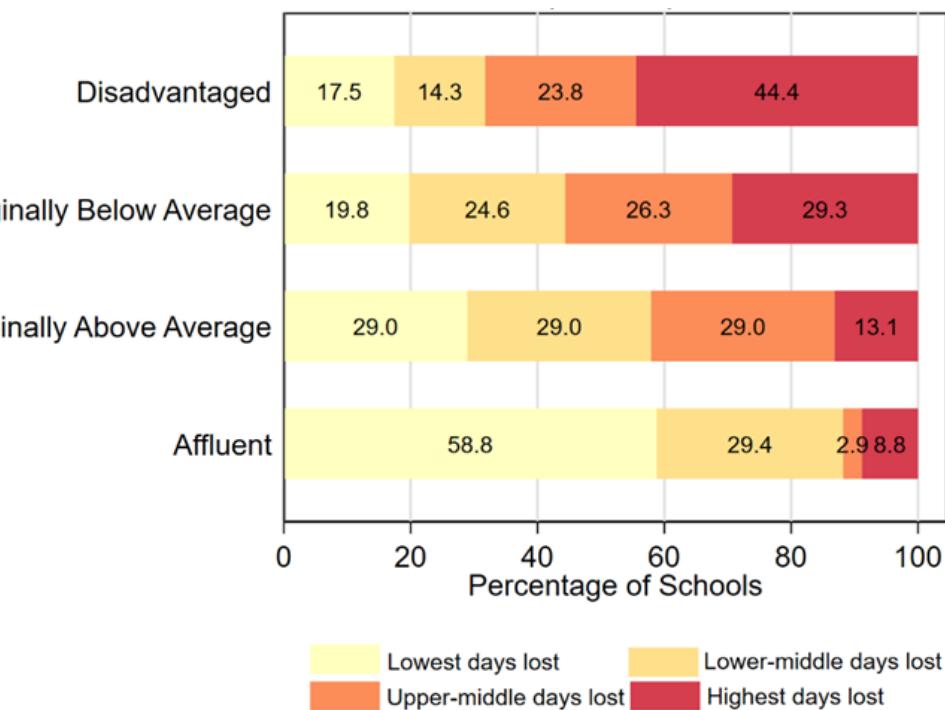

HP Pobal Index

Both the CA average rates and the quantile distribution (Figure 5.11) reveal a clear gradient in chronic absenteeism levels based on the socio-economic deprivation of the areas in which schools are located.

Schools in disadvantaged areas have the highest rate, with 26.33 per cent of students chronically absent – above the overall average of 22.30 per cent. This rate decreases progressively as affluence increases: 23.90 per cent in marginally below average areas, 19.66 per cent in marginally above average areas, and just 15.13 per cent in affluent areas. Schools in disadvantaged areas have the highest concentration in the worst two chronic absenteeism quantiles, with 34.9 per cent in the highest and 28.6 per cent in the upper-middle, totalling 63.5 per cent. Only 15.9 per cent of these schools fall into the lowest absenteeism quantile.

Schools in marginally below average areas present a more balanced distribution of quantiles but still show worse outcomes than schools in more advantaged areas. Here, 53.9 per cent of schools are in the two worst quantiles (25.0 per cent upper-middle and 28.9 per cent highest), while 19.4 per cent are in the lowest CA quantile. Schools in marginally above average areas perform better, with 42.7 per cent in the two worst quantiles (24.8 per cent upper-middle and 17.9 per cent highest), and 31.7 per cent in the lowest CA quantile, indicating a shift toward better attendance outcomes.

Finally, schools in affluent areas have the most favourable absenteeism profile by far. Only 26.4 per cent fall into the two worst quantiles (17.6 per cent upper-middle and 8.8 per cent highest), while a striking 52.9 per cent are in the lowest CA quantile.


FIGURE 5.11 POST-PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY HP POBAL INDEX

Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

Looking at days lost per student as the metric reveals a similar gradient, where higher levels of socio-economic deprivation in the areas where schools are located are associated with worse outcomes. Students in disadvantaged areas lose the most time, averaging 20.07 days per student, above the overall average of 17.52 days. This figure declines steadily with increasing affluence: 18.48 days in marginally below average areas, 16.03 days in marginally above average areas, and just 12.62 days in affluent areas.

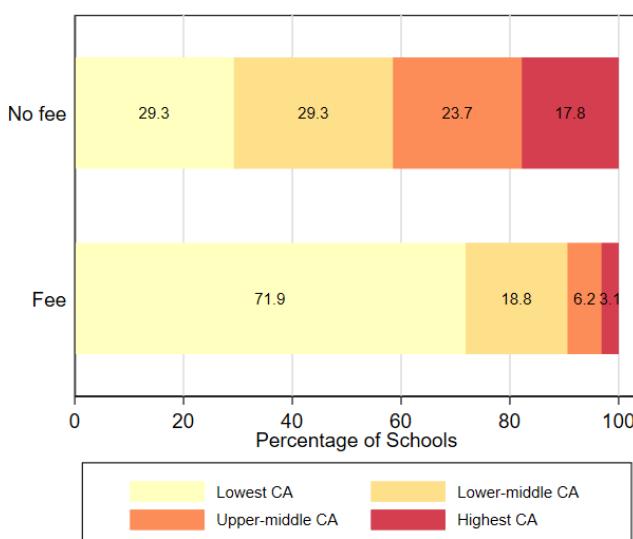

When looking at the quantiles of days lost (Figure 5.12), one notable difference is that schools in disadvantaged areas fare worse, with their share in the highest chronic absenteeism quantile increasing from 34.9 per cent to 44.4 per cent, a 9.5 percentage point rise. Meanwhile, schools in affluent areas improve, with the combined share in the two best quantiles increasing from 73.5 per cent to 88.2 per cent, a 14.7 percentage point gain.

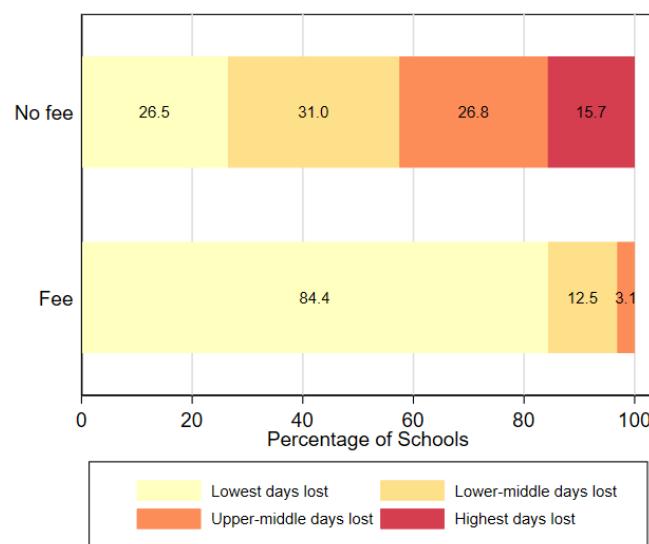
FIGURE 5.12 POST-PRIMARY 2023/24: LEVELS OF DAYS LOST BY HP POBAL INDEX

Source: Data from TESS.

Fee-paying status

This subsection compares fee-paying and non-fee-paying schools among the non-DEIS group (as DEIS schools do not charge fees). Within this group, there are 287 non-fee-paying schools and 32 fee-paying schools.

FIGURE 5.13 POST-PRIMARY 2023/24: LEVELS OF CHRONIC ABSENTEEISM BY FEE-PAYING STATUS


Source: Data from TESS.

Notes: CA = chronic absenteeism quantile.

The proportion of students with chronic absenteeism (CA) is 23.15 per cent in non-fee-paying schools, compared to a notably lower 9.75 per cent in fee-paying schools. The distribution of CA quantiles (Figure 5.13) further shows these disparities. Among fee-paying schools, a very high 71.9 per cent fall into the lowest quantile of chronic absenteeism, with only 3.1 per cent in the highest category. In contrast, non-fee-paying schools show a more even distribution across all levels of absenteeism: 29.3 per cent each in the lowest and lower-middle categories, 23.7 per cent in the upper-middle, and 17.8 per cent in the highest.

When looking at days lost per student, non-fee-paying schools report an average of 18.02 days lost per student, compared to 10.15 days in fee-paying schools. Examining the distribution of quantiles for days lost per student (Figure 5.14) further shows this disparity. Among fee-paying schools, 84.4 per cent fall into the best-performing quantile, with none in the worst. In contrast, only 26.5 per cent of non-fee-paying schools are in the best quantile, while 15.7 per cent fall into the worst. This indicates that the attendance advantage for fee-paying schools is even more pronounced when considering the distribution of days lost.

FIGURE 5.14 POST-PRIMARY 2023/24: LEVELS OF DAYS LOST BY FEE-PAYING STATUS

Source: Data from TESS.

5.2 REGRESSION MODELS

5.2.1 Chronic absenteeism counts

The model is estimated using standard OLS regression.^{24, 25},

DEIS, ethos, gender mix, size and language of instruction

The regression results of the main model are presented in Table 5.1. Taking account of other school characteristics, being a post-primary DEIS school is significantly associated with higher counts of students experiencing chronic absenteeism, with the effect significant at the 1 per cent level. On average, DEIS schools have 7.1 percentage points higher share of students registered as chronically absent compared to non-DEIS schools.

TABLE 5.1 POST-PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS IN POST-PRIMARY SCHOOLS, 2023/24

Variable	Coefficient
DEIS	0.071***
School ethos	
Catholic	0.093***
Multi-denominational	0.115***
Base: Minority Faith	
Gender mix	
Mixed	0.035*
Girls	0.023
Base: Boys	
School size	
Smallest	-0.011
Small	0.004
Largest	-0.019
Base: Large	
Irish-medium	-0.030*
Constant	0.079**

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Adjusted R-squared = 0.1500.

With regard to **school ethos**, minority faith schools are associated with significantly lower levels of chronic absenteeism compared to both Catholic and multi-denominational schools, with the differences significant at the 1 per cent level.

²⁴ The number of observations is 472.

²⁵ A Breusch–Pagan/Cook–Weisberg test for heteroskedasticity, applied to the main model (including DEIS, ethos, school size and language of instruction as explanatory variables) with the proportion of students with chronic absenteeism as the dependent variable, accepts the null hypothesis at the 10 per cent significance level (p-value = 0.247), indicating that the errors can be assumed to have constant variance.

Specifically, and controlling for other covariates, minority faith schools have on average **9.3 per cent fewer students** registered as chronically absent **than Catholic schools**, and **11.45 per cent fewer than multi-denominational schools**. This also suggests that, relative to minority faith schools, multi-denominational schools perform slightly worse than Catholic schools in terms of chronic absenteeism. However, the difference between Catholic and multi-denominational schools is not statistically significant. It is also important to note that the number of minority faith post-primary schools in the sample is small, with only 16 schools. This limited sample size may affect the robustness and generalisability of the estimated effect.

Moving on to the school's gender mix, only the coefficient for boys' schools against mixed schools is statistically significant, at the 10 per cent level. Specifically, **boys' schools** have on average, **3.55 fewer percentage points share** of students registered as chronically absent. The difference between boys' and girls' schools is not statistically significant, suggesting that the **key distinction** in terms of chronic **absenteeism lies between mixed and boys' schools**, rather than between the two single-gender school types.

When considering **school size**, none of the coefficients are significant at the 10 per cent level. This finding indicates that school size is **not meaningfully associated** with varying levels of chronic absenteeism when controlling for DEIS classification, ethos, gender mix and language of instruction.

Finally, the **language of instruction** – whether Irish-medium or English-medium – **is significantly associated** with differences in chronic absenteeism outcomes, although only at the 10 per cent level. Irish-medium schools have, on average, 2.98 percentage points lower share of students experiencing chronic absenteeism.

HP Pobal Index

As can be seen in Table 5.2, schools located in disadvantaged areas have 2.95 percentage points more chronically absent (CA) students than those in marginally above average areas ($p < 0.10$), and 6.4 percentage points more than those in affluent areas ($p < 0.01$). Similarly, as presented in Table 5.3, schools in marginally below average areas have 2.01 percentage points more CA students than those in marginally above average areas ($p < 0.10$), and 5.41 percentage points more than those in affluent areas ($p < 0.01$). However, the difference between disadvantaged and marginally below average areas, and between marginally above and affluent, are not statistically significant. This suggests that the **association between chronic absenteeism and the socio-economic area of the school's location is meaningful when comparing the most deprived areas to the most affluent**.

TABLE 5.2 POST-PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (HP POBAL INDEX)

Variable	Coefficient
DEIS	0.063***
School ethos	
Multi-denominational	0.024
Minority Faith	-0.081***
Base: Catholic	
Gender mix	
Girls	-0.009
Boys	-0.032*
Base: Mixed	
School size	
Small	0.016
Large	0.012
Largest	-0.005
Base: Smallest	
Irish-medium	-0.030*
HP Pobal Index	
Marginally Below Average	-0.010
Marginally Above Average	-0.030*
Affluent	-0.064***
Base: Disadvantaged	
Constant	0.214***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Adjusted R-squared = 0.1616.

TABLE 5.3 POST-PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	0.010
Marginally Above Average	-0.020*
Affluent	-0.054**
Base: Marginally Below Average	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, size and language of instruction. See the complete model output in Table 5.2.

Counties

The only county coefficients that are statistically significant at the 5 per cent level compared to Dublin are Galway, with a 5.8 percentage points higher rate of students with CA, and Mayo with 7.1 percentage points more (see Table A.5.1 in Appendix 5). However, the overwhelming majority of other counties show no significant differences, and the difference between Dublin North and South is also

not significant (Table A.5.2 in Appendix 5). This suggests that county of residence does not have a substantial effect on CA levels.

Fee-paying status

This regression focuses on non-DEIS schools, with 287 non-fee-paying schools and 32 fee-paying schools (see full output in Table A.5.3 in Appendix 5). **Fee-paying schools have significantly lower CA rates**, with the difference being statistically significant at the 1 per cent level. On average, they have **9.6 fewer percentage points of the share of chronic absentee students**, a very large figure. However, caution should be used when interpreting this result due to the limited number of fee-paying schools in the sample.

Interaction terms

The interactions between DEIS status and gender mix, HP Pobal Index, and language of instruction are **not statistically significant at the 10 per cent level or below** (as can be seen in Tables A.5.4, A.5.6 and A.5.7 in Appendix 5). This suggests that the effect of being a DEIS school on the proportion of CA students is **consistent across schools with different characteristics**.

One exception is **school size** (Table 5.4). Specifically, while small or smallest schools show a 5.5 percentage point higher CA rate for DEIS schools, this effect is magnified by an additional 4.4 percentage points in large or largest schools. This indicates that **larger schools are especially affected by DEIS status**. However, it is important to note that the **main effect of school size is not statistically significant**, and the **interaction is only significant at the 10 per cent level**, so these findings should be interpreted with caution.

TABLE 5.4 POST-PRIMARY 2023/24: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: INTERACTION SIZE X DEIS

Variable	Coefficient
DEIS	0.055***
Large or Largest	-0.019
DEIS x Large or Largest	0.044*

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***) $. Controlling for ethos, gender mix and language of instruction. See the complete model output in Table A.5.5 in Appendix 5. Adjusted R-squared = 0.1535.$

5.2.2 Days lost

The model is estimated using standard OLS regression.²⁶

DEIS, ethos, gender mix, size and language of instruction

The main model with days lost per student as the outcome variable is presented in Table 5.5. Now, **DEIS classification remains highly significant** at the 1 per cent level. Being a DEIS post-primary school, as opposed to a non-DEIS school, is associated with an additional **3.68 days lost per student per year**, on average.

TABLE 5.5 POST-PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT IN POST-PRIMARY SCHOOLS, 2023/24

Variable	Coefficient
DEIS	3.683***
Ethos	
Catholic	3.338**
Multi-denominational	5.571***
Base: Minority Faith	
Gender Mix	
Mixed	-0.173
Girls	0.369
Base: Boys	
School Size	
Small	-0.362
Large	-0.284
Largest	-1.387*
Base: Smallest	
Irish	-0.969
Constant	12.583***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Adjusted R-squared = 0.1410.

With regard to **school ethos**, minority faith schools appear to have the most favourable outcomes. At the 1 per cent significance level, they are associated with significantly lower levels of days lost compared to both Catholic and multi-denominational schools, specifically **3.34 and 5.57 fewer days lost per student**, respectively. The comparison between Catholic and multi-denominational schools (Table 5.6) is also statistically significant at the 5 per cent level, with multi-denominational schools experiencing **2.23 more days lost per student** than

²⁶ A Breusch–Pagan/Cook–Weisberg test for heteroskedasticity, applied to the main model (including DEIS, ethos, school size and language of instruction as explanatory variables) with days lost per student as the dependent variable, accepts the null hypothesis at the 10 per cent significance level (p-value = 0.4359), indicating that the errors can be assumed to have constant variance.

Catholic schools. These results suggest a ranking in outcomes related to absenteeism: **minority faith schools perform best, followed by Catholic schools, with multi-denominational schools showing the highest levels of days lost**. In the model using CA counts, minority faith schools also exhibit the most favourable outcomes. However, the difference between multi-denominational and Catholic schools is not statistically significant.

TABLE 5.6 POST-PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT (ETHOS, ALTERNATIVE BASE)

Variable	Coefficient
Ethos	
Catholic	-2.233***
Minority Faith	-5.571***

Base: Multi-denominational

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***)¹. Controlling for DEIS, school size, gender mix and language of instruction (see the complete model output in Table 5.5).

Regarding **school size**, the only statistically significant coefficient is for the comparison between the smallest and largest schools: students in the largest schools lose on average 1.387 fewer days per student, significant at the 10 per cent level. Other school sizes also show negative coefficients relative to the smallest category – suggesting better outcomes – but these differences are not statistically significant at the 10 per cent threshold. This finding should be interpreted with caution, as only one size-related coefficient is statistically significant, and only at the 10 per cent level. Moreover, this association was not significant in the model with CA counts.

When considering **gender mix** and **language of instruction**, none of the coefficients are statistically significant at the 10 per cent level. This finding suggests that **these factors are not meaningfully associated with variations in days lost**. In the CA model, boys-only schools showed an advantage over mixed-gender schools, and Irish-medium schools over English-medium ones.

HP Pobal Index

The regression results for the HP Pobal Index are gathered in Tables 5.7 to 5.9. Compared to schools in disadvantaged areas, students in marginally above average areas lose 1.93 fewer days per year, a difference that is statistically significant at the 5 per cent level, while students in affluent areas lose 5.24 fewer days, which is highly significant at the 1 per cent level. Using marginally below average areas as the reference, students in marginally above average areas lose 1.27 fewer days

(significant at 5 per cent), and those in affluent areas lose 4.58 fewer days (significant at 1 per cent). The difference between the more deprived areas is not statistically significant, but the contrast between more advantaged areas is: specifically, students in affluent schools lose 3.30 fewer days than those in marginally above average areas, a difference that is statistically significant at the 1 per cent level. Overall, these results reveal a clear gradient, consistent with the CA counts model, where absenteeism decreases as socio-economic conditions improve (with the only difference being that, in the CA model, the difference between the most advantaged areas was not significant).

TABLE 5.7 POST-PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX)

Variable	Coefficient
DEIS	3.048***
Ethos	
Multi-denominational	2.453***
Minority Faith	-2.337
Base: Catholic	
Gender Mix	
Girls	0.858
Boys	0.480
Base: Mixed	
School Size	
Small	-0.397
Large	-0.302
Largest	-1.255
Base: Smallest	
Irish	-1.013
Pobal	
Marginally Below Average	-0.664
Marginally Above Average	-1.932**
Affluent	-5.239***
Base: Disadvantaged	
Constant	16.990***

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***) $. Adjusted R-squared = 0.1726.$

TABLE 5.8 POST-PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
Pobal	
Disadvantaged	0.664
Marginally Above Average	-1.269**
Affluent	-4.575***
Base: Marginally Below Average	

Source: Data from TESS.
Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, size and language of instruction. See the complete model output in Table 5.7.

TABLE 5.9 POST-PRIMARY 2023/24: REGRESSION OF DAYS LOST PER STUDENT (HP POBAL INDEX, ALTERNATIVE BASE)

Variable	Coefficient
Pobal	
Disadvantaged	1.932**
Marginally Below Average	-1.269**
Affluent	-3.307***
Base: Marginally Above Average	

Source: Data from TESS.
Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, size and language of instruction. See the complete model output in Table 5.7.

Counties

In comparison with Dublin, most county coefficients are not statistically significant at the 10 per cent level (see Table A.5.8 in Appendix 5). Exceptions include Galway, with 2.66 more days lost per student (p < 0.05); Mayo, with 3.48 more days (p < 0.05); Meath, with 2.57 fewer days (p < 0.10); and Westmeath, with 4.07 more days (p < 0.10). The difference between Dublin North and Dublin South is not significant (Table A.5.9 in Appendix 5). These findings suggest that county-level location is not meaningfully associated with variation in days lost, consistent with the results observed for chronic absenteeism counts.

Fee-paying status

As explained, we modelled a regression which includes only non-DEIS schools (Table A.5.10 in Appendix 5). The fee-paying dummy is statistically significant at the 1 per cent level and indicates **that fee-paying schools have on average, 6.31 fewer days lost per student**. This is a very large figure, but it should be interpreted with caution due to the small number of fee-paying schools in the sample, which may affect the robustness and generalisability of the result. This result aligns with the findings from the CA model, providing further support for the attendance advantage observed in fee-paying schools.

Interactions with DEIS

As with chronic absenteeism counts as the outcome, **gender mix**, **school size** (classified as either small or large), the language of instruction and the **HP Pobal Index** (binary: deprived vs non-deprived) **do not significantly moderate the effect of DEIS status**, with none of the interaction terms reaching statistical significance at the 10 per cent level. The regression output can be found in Tables A.5.11 to A.5.14 in Appendix 5. The interaction terms were also not statistically significant in the CA model, except for the comparison between the smallest and largest school sizes.

CHAPTER 6

Trends in school absence 2022/23 – 2023/24

To descriptively examine potential changes in chronic absenteeism and days lost across the two years, we derive the **year-on-year point changes** in the proportion of students with chronic absenteeism and in the number of days lost per student at each school. To visualise the results, we create a **categorical variable distinguishing between ‘small decrease’, ‘large decrease’, and ‘increase’**, based on the change observed at the individual school level in chronic absenteeism and days lost. The cut-off between large and small decreases is set at the 25th percentile of the distribution. We opted for the 25th percentile of the overall distribution as the cut-off for a large decrease because this allows us to capture the top 25 per cent of schools performing best in the time comparison. This cut-off creates a more limited group of schools in absolute terms than setting it at the median of decreases. It is also true that the difference compared with using the median is not huge: since around 69.8 per cent of schools experienced a decrease, setting the cut-off at the median would classify roughly 35 per cent of all schools. Ultimately, cut-offs always have an element of arbitrariness, and we preferred a more selective group that captures schools performing particularly well. We then analyse the distribution of schools within each category across various school characteristics using graphs.

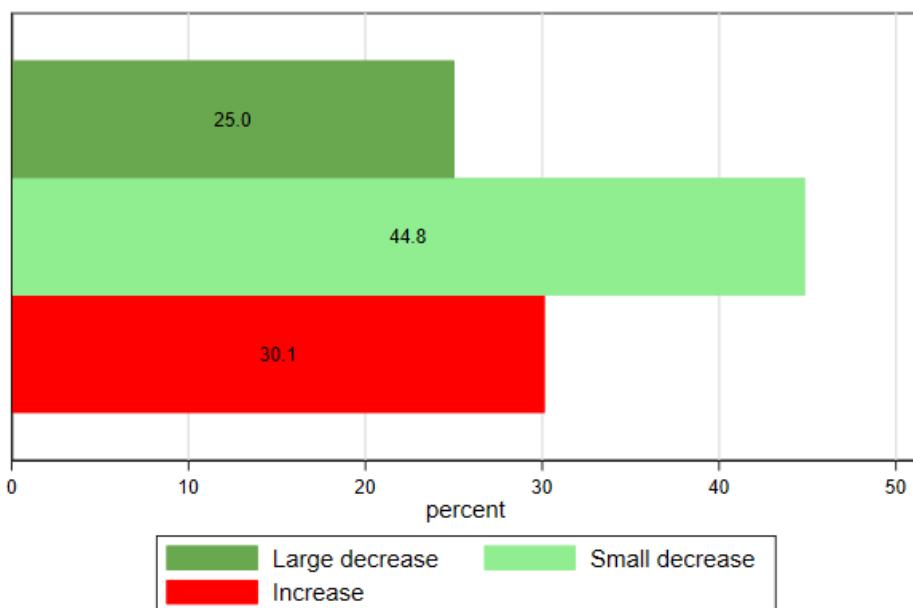
In addition to the graphs, we estimate **two different models**. The first one is a model that has as the outcome the share of CA students and days lost per student and includes **year as a dummy variable**. We then introduce interaction terms between year and other school characteristics of interest to assess whether any changes are particularly pronounced in certain types of schools. We test whether the observed decrease in chronic absenteeism is associated with specific school characteristics by including **interaction terms** in the model. These interactions involve DEIS type, gender mix, school ethos, school size, language of instruction, HP Pobal Index and county.

The second model follows the **‘regressor variable method’**, outlined by **Allison (1990)**, where the outcome in 2024 (Y_2) is regressed on both the baseline outcome in 2023 (Y_1) and the explanatory variables. This approach is preferred over modelling change scores when, amongst others, Y_1 is likely to have a causal influence on Y_2 . Because attendance is a time-persistent measure rather than a one-off event, the regressor variable method is an appropriate choice.

The difference between the two models lies in how they handle baseline absenteeism. **In the regressor variable method, controlling for absenteeism in**

2023 allows us to assess relative changes between schools. By contrast, a model that includes year as a dummy variable and interacts it with school-level characteristics does not account for baseline differences; rather, it captures absolute changes over time. Since certain types of schools began with higher levels of absenteeism (specially DEIS schools), they had more room for absolute improvement. As a result, absolute changes can be somewhat misleading, as they may give the impression of better outcomes, even if the gap between schools remains or has widened in relative terms.

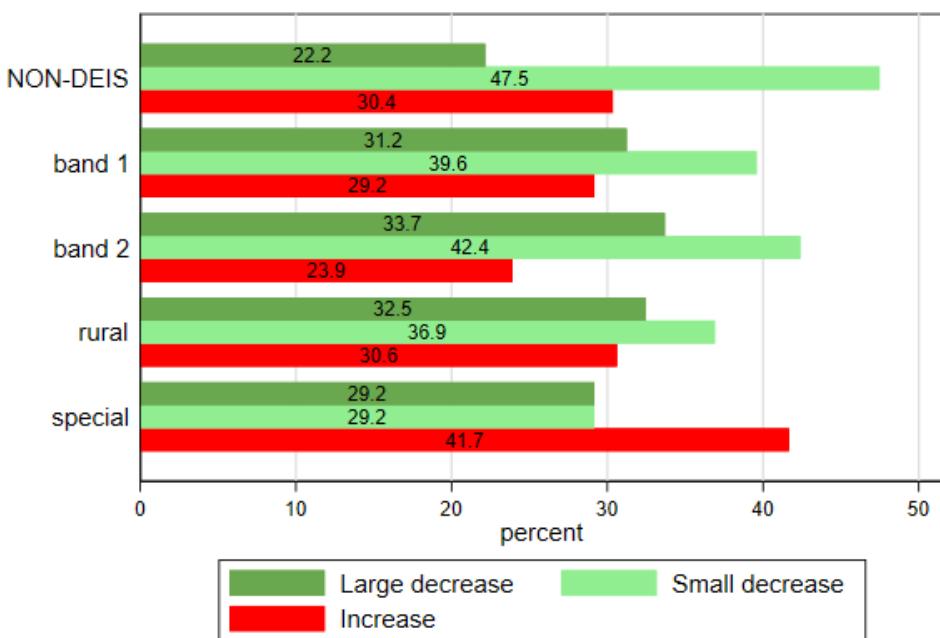
6.1 PRIMARY SCHOOLS


6.1.1 Changes in CA counts in primary schools

Descriptive graphs

Let us now examine the distribution of change by school type. For the change in the proportion of chronically absent students, the cut-off for a small and large decrease is -0.0677 (equivalent to 6.77 percentage points).

The first graph (Figure 6.1) presents the overall distribution of change across schools. A majority – totalling 69.8 per cent – have experienced a reduction in the proportion of chronically absent students. The remaining 30.1 per cent of schools have seen an increase in chronic absenteeism, with changes reaching up to 0.36, corresponding to a 36 percentage point rise in the 2023/24 academic year.


FIGURE 6.1 PRIMARY TIME CHANGE: OVERALL CHANGE IN CHRONIC ABSENTEEISM

Looking at the quantiles by DEIS and special school status (Figure 6.2), we see that all school types have a higher combined share of decreases than increases, though there are some differences. Special schools seem to fare worse, with the highest share of schools experiencing an increase, at 41.7 per cent. Non-DEIS, Band 1, and rural schools show a similar share of schools with an increase – around 30 per cent – while Band 2 has the lowest share, at 23.9 per cent.

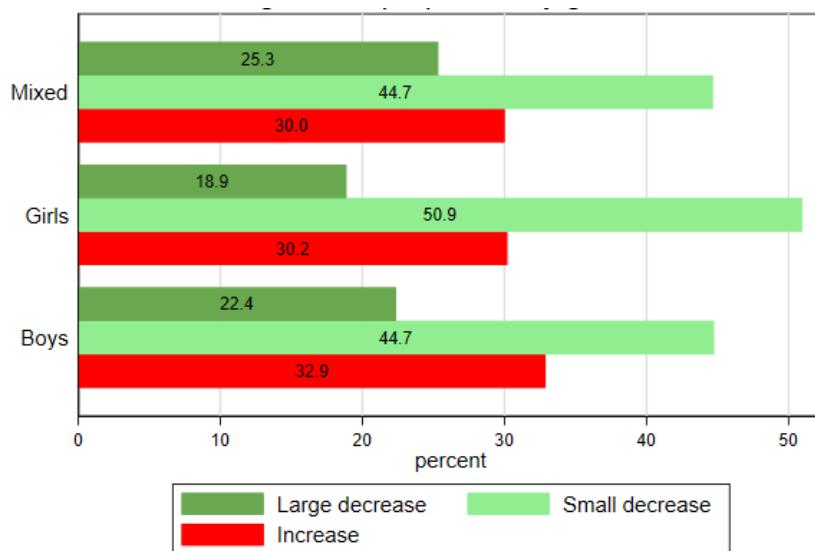
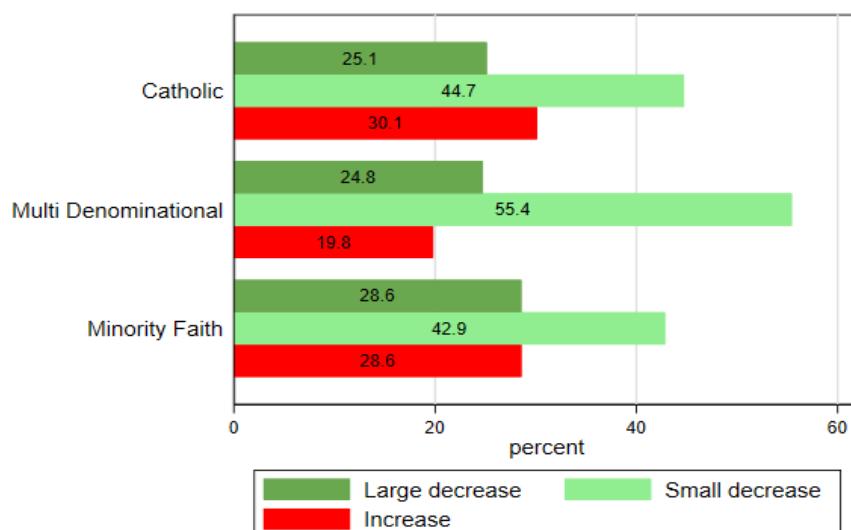

When comparing small versus large decreases, DEIS schools seem to have a higher share of large decreases relative to small ones. Band 1, Band 2 and Rural schools each have 32.5 per cent of schools in the large decrease category, compared to 22.2 per cent for non-DEIS schools.

FIGURE 6.2 PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY DEIS TYPE


Source: Data from TESS.

Now moving on to gender mix (Figure 6.3), we again see a predominance of decreases rather than increases across all school types. The figures are fairly similar, with the share of schools experiencing a decrease ranging from 30 per cent to 32.9 per cent. The share of schools with a large decrease varies from 18.9 per cent in girls' schools to 25.3 per cent in mixed schools, with boys' schools in between. We could say that mixed schools show slightly better outcomes, as they have the highest share of large decreases and the lowest share of increases, but overall the differences are quite small.

FIGURE 6.3 PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY GENDER MIX

Source: Data from TESS.

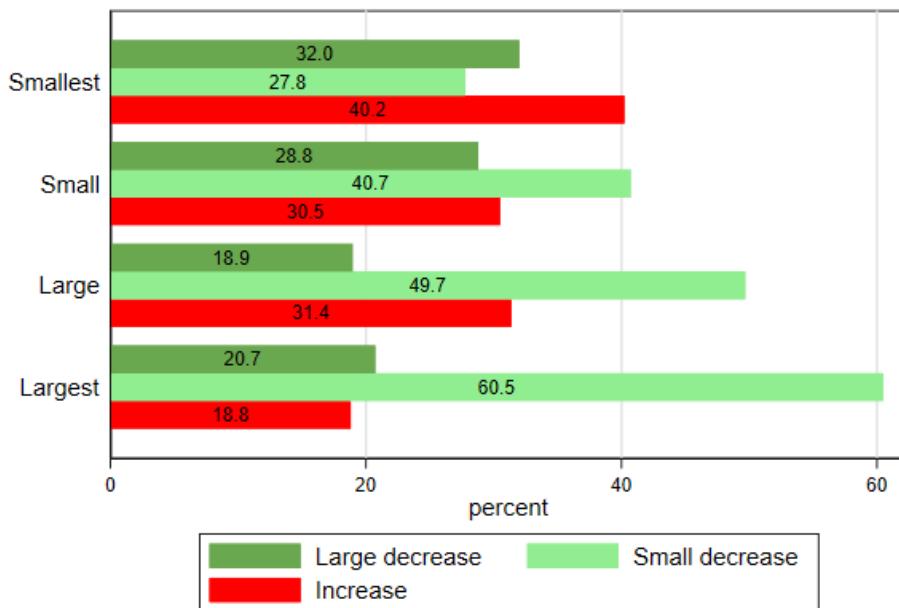
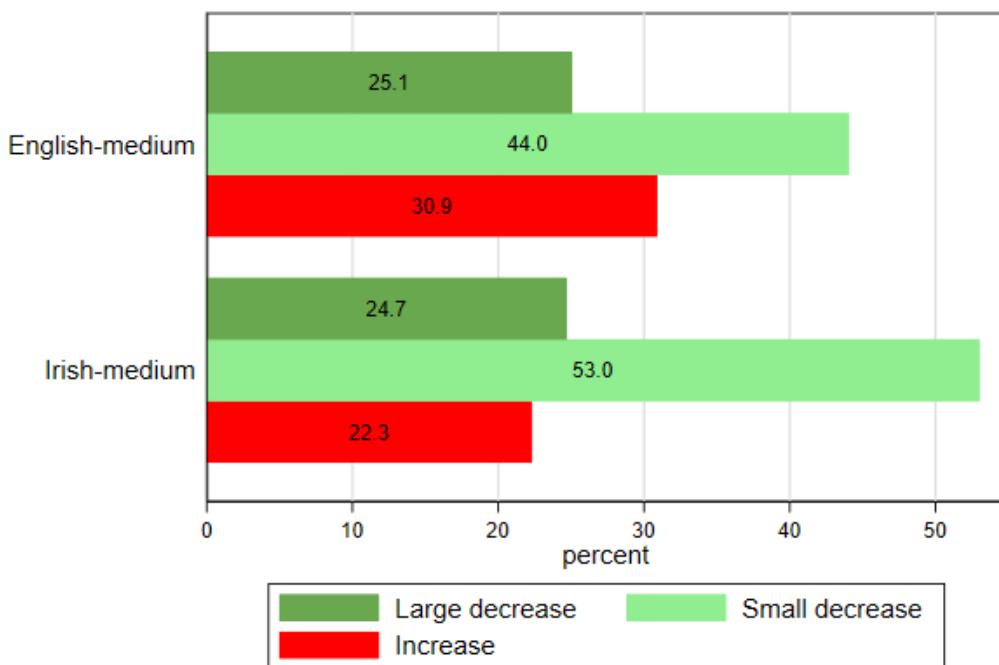

As shown in Figure 6.4, **multi-denominational schools** show a somewhat more favourable trend, with a total of 80.2 per cent of schools experiencing a decrease in absenteeism, 24.8 per cent reporting a large decrease and 55.4 per cent a small decrease, while only 19.8 per cent saw an increase. **Minority faith schools** follow with 71.5 per cent of schools showing a decrease (28.6 per cent large, 42.9 per cent small), and 28.6 per cent experiencing an increase. **Catholic schools** have the lowest proportion of improvement, although their figures are close to those of minority faith schools: 69.8 per cent reported a decrease (25.1 per cent large, 44.7 per cent small), while 30.1 per cent experienced an increase.

FIGURE 6.4 PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY ETHOS

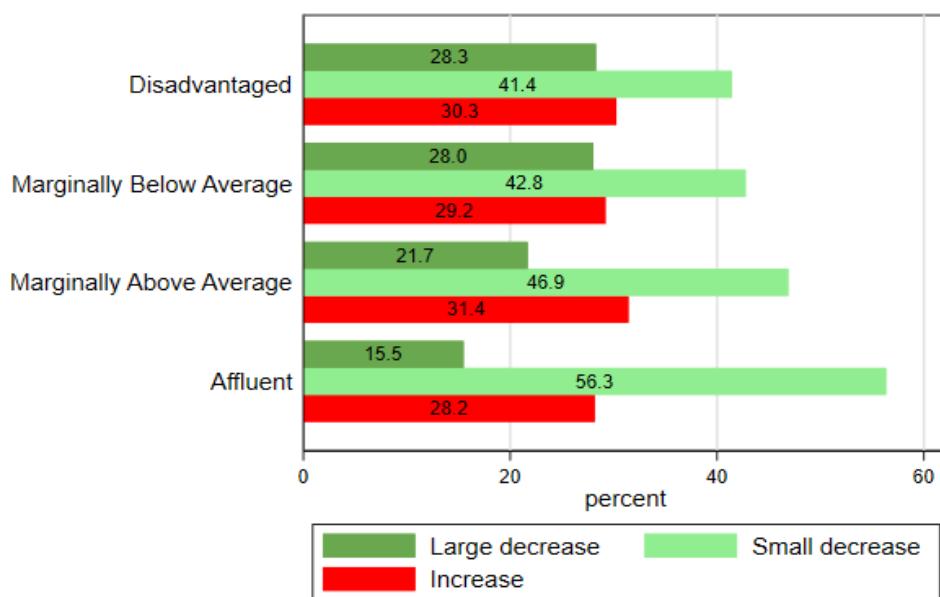
Source: Data from TESS.

Regarding school size (Figure 6.5), the largest schools stand out with a particularly positive trend: 81.2 per cent of them experienced a decrease in absenteeism, 20.7 per cent large and 60.5 per cent small, while only 18.8 per cent reported an increase. This is a remarkably better outcome compared to the other size categories.


FIGURE 6.5 PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY SCHOOL SIZE

Source: Data from TESS.

As shown in Figure 6.6, while both English-medium and Irish-medium schools show positive trends in the reduction of chronic absenteeism, **Irish-medium schools** stand out with a somewhat more favourable overall trend. A combined **77.7 per cent** of Irish-medium schools experienced a decrease in absenteeism, **24.7 per cent** reporting a large decrease and **53.0 per cent** a small decrease, while only **22.3 per cent** saw an increase. In comparison, **English-medium schools** had **69.1 per cent** reporting a decrease (25.1 per cent large, 44.0 per cent small), and a somewhat higher **30.9 per cent** experiencing an increase.


FIGURE 6.6 PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY LANGUAGE OF INSTRUCTION

Source: Data from TESS.

Regarding the HP Pobal Index of the areas where schools are located (Figure 6.7), all school groups show a similar share of schools experiencing an increase in absenteeism, at around 30 per cent (ranging from 28.2 per cent to 31.4 per cent). However, there are some differences in the distribution of the decreases. Schools in the disadvantaged and marginally below average groups show the strongest overall improvements, with 69.7 per cent and 70.8 per cent of schools respectively reporting decreases in absenteeism. These include relatively high proportions of large decreases, 28.3 per cent and 28.0 per cent.

Marginally above average schools show a slightly weaker trend, with 68.6 per cent reporting decreases (21.7 per cent large, 46.9 per cent small) and 31.4 per cent reporting increases. In contrast, affluent schools report the lowest proportion of large decreases (15.5 per cent) and the highest share of small decreases (56.3 per cent), resulting in a total of 71.8 per cent reporting decreases.

FIGURE 6.7 PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY HP POBAL INDEX

Source: Data from TESS.

Regression models of change in CA counts in primary schools

Model with year as a dummy variable

First, we begin with the model where the outcome is the **chronic absenteeism (CA) rate**, including **year** as a dummy variable, followed by a specification with **interactions between year and school characteristics**.²⁷

In the model without interactions – controlling for DEIS status, school ethos, gender mix, school size, and language of instruction – the year variable is statistically significant at the 1 per cent level (p-value = 0.000). Specifically, in the year 2024, on average, the **predicted share of chronically absent students in 2024** is **3.2 percentage points** lower than in 2023 (full regression model in Table A.6.1 in Appendix 6).

We test whether the observed decrease in chronic absenteeism is associated with specific school characteristics by including interaction terms in the model (DEIS type, gender mix, school ethos, school size, language of instruction, HP Pobal Index and county). Here, it is important to note that, as previously introduced, we are considering absolute year-on-year changes, without adjusting for the fact that schools with higher baseline values may have more scope for change. **The interaction terms for gender mix, ethos, size and language of instruction are not statistically significant** (see Tables A.6.2 to A.6.8 in Appendix 6), suggesting that

²⁷ A Breusch–Pagan/Cook–Weisberg test for heteroskedasticity rejects the null hypothesis at the 1% significance level, indicating the presence of heteroskedasticity. This is addressed by estimating the model using robust standard errors.

the (absolute) reduction in chronic absenteeism is not concentrated within any particular subgroup of schools based on these characteristics.

There are only two exceptions. The first is **primary Band 1 schools compared to non-DEIS schools** (see Table A.6.2 in Appendix 6). While non-DEIS schools saw a decline in the CA rate of 2.83 percentage points, the decline for Band 1 schools was of 4.62 percentage points, indicating a **slightly better overall outcome**.

The second exception is the interaction with the disadvantaged category of the area in which schools are located (see Table 6.1), compared to schools in marginally above average and affluent areas. In 2024, schools in disadvantaged areas experienced a 5.2 percentage point reduction in the proportion of chronically absent students relative to 2023. The positive and significant interaction term for schools in marginally above average areas indicates that they saw a 2.53 percentage point smaller reduction, resulting in a net reduction of 2.67 percentage points (significant at the 5 per cent level). Similarly, affluent schools experienced a 3.22 percentage point smaller reduction, leading to a net reduction of 1.98 percentage points (significant at the 10 per cent level). This means **that schools in disadvantaged areas fare marginally better in 2024 compared with schools located in more socio-economically advantaged areas**, at least in absolute terms.

TABLE 6.1 PRIMARY TIME CHANGE: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (YEAR AS DUMMY)

Variable	Coefficient
2024	-0.0521 ***
Pobal	
Marginally Below Average	-0.0233 ***
Marginally Above Average	-0.0505 ***
Affluent	-0.0902 ***
Base: Disadvantaged	
Year × Pobal	
2024 × Marginally Below	0.0177
2024 × Marginally Above	0.0252 **
2024 × Affluent	0.0322 *
Base: 2024 × Disadvantaged	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, size and language of instruction. See the complete model output in Table A.6.7 in Appendix 6.

Regressor variable method

We now turn to relative changes, using the previously introduced regressor-variable method.²⁸ The regression results are presented in Table 6.2.

We observe statistically significant differences in levels of CA in 2024, controlling for baseline levels in 2023. Among schools with similar levels of absenteeism in 2023, **DEIS and special schools had higher rates of chronic absenteeism in 2024 compared to non-DEIS schools**. The largest difference is observed for special schools, with a 7.5 percentage point higher share of students with CA, followed by DEIS Band 1 schools at 5.6 percentage points, and DEIS Band 2 schools at 3.0 percentage points. All of these differences are statistically significant at the 1 per cent level. The difference for DEIS rural schools is not statistically significant at the 10 per cent level. These findings seem to contradict the results from the absolute change model, which suggested that Band 1 schools fare marginally better than DEIS schools, indicating that the opposite is true when controlling for baseline levels, with the size effects now also being marginally larger. The differences across school ethos types are not statistically significant at the 10 per cent level or below.

Single-gender schools, compared to mixed schools with similar levels of chronic absenteeism in 2023, **experienced higher rates of chronic absenteeism** in 2024. Girls' schools had a 1.9 percentage point higher CA rate than mixed schools (statistically significant at the 5 per cent level), while boys' schools had a 1.1 percentage point higher rate (significant at the 10 per cent level). The difference between boys' and girls' schools is not statistically significant.

Regarding school size, a few pairwise comparisons reveal statistically significant differences in outcomes after adjusting for 2023 levels (see Tables 6.2 and 6.3). Smallest schools had a 1.1 percentage point lower chronic absenteeism rate than small schools, although the differences between smallest and both large and largest schools are not statistically significant. In contrast, small schools appear to have performed better than both large and largest schools, with differences of 1.4 and 1.5 percentage points respectively, both significant at the 1 per cent level. This suggests that **small schools tended to experience more favourable outcomes** than larger ones in 2024, though the relationship between school size and chronic absenteeism is not entirely linear.

The language of instruction variable is also statistically significant at the 1 per cent level, indicating that **schools using Irish, as opposed to English, had marginally**

²⁸ The model is estimated with robust standard errors, as a heteroskedasticity test confirms significance at the 1 per cent level.

lower chronic absenteeism rates in 2024 among schools with similar baseline levels in 2023. Specifically, Irish-medium schools had a 1.4 percentage point lower CA rate.

TABLE 6.2 PRIMARY TIME CHANGE: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS (REGRESSOR VARIABLE)

Variable	Coefficient
CA 2023	0.633***
DEIS type	
Band 1	0.056***
Band 2	0.030***
Rural	0.007
Special	0.075***
Base: Non-DEIS	
Ethos	
Multi-denominational	0.006
Minority Faith	-0.004
Base: Catholic	
Gender Mix	
Girls	0.019**
Boys	0.011*
Base: Mixed	
School Size	
Small	-0.012**
Large	0.002
Largest	0.003
Base: Smallest	
Irish	-0.014***
Constant	0.046***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***).

TABLE 6.3 PRIMARY TIME CHANGE: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: SIZE (REGRESSOR VARIABLE)

Variable	Coefficient
School Size	
Smallest	0.012**
Large	0.014***
Largest	0.015***
Base: Small	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos gender mix and language of instruction (see the complete model output in Table 6.2).

A model including the HP Pobal Index is now estimated, and the results are presented in Tables 6.4, 6.5 and 6.6. Compared to schools in disadvantaged areas, those located in more socio-economically advantaged areas exhibited lower levels of chronic absenteeism in 2024, controlling for schools' 2023 levels of chronic absenteeism. Specifically, schools in marginally below average deprivation areas had a 1.2 percentage point lower CA rate, those in marginally above average areas had 1.5 percentage points lower, and schools in affluent areas had 2.5 percentage points lower. Compared to schools in marginally below average areas, those in affluent areas showed a 1.3 percentage point reduction in CA. Within the more advantaged categories, schools in affluent areas had a 1.0 percentage point lower rate of chronic absenteeism than those in marginally above average areas. Overall, this suggests that the evolution of outcomes between 2023 and 2024 was more favourable for schools in socio-economically advantaged areas. Again, as with the DEIS findings, these results contradict those from the absolute change models, which are somewhat misleading because schools in disadvantaged areas have higher baseline absenteeism and therefore more scope to reduce it.

TABLE 6.4 PRIMARY TIME CHANGE: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: HP POBAL INDEX (REGRESSOR VARIABLE)

Variable	Coefficient
HP Pobal Index	
Marginally Below Average	-0.012*
Marginally Above Average	-0.015**
Affluent	-0.025***
Base: Disadvantaged	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, school size and language of instruction. See the complete model output in Table A.6.19 in Appendix 6.

TABLE 6.5 PRIMARY TIME CHANGE: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: HP POBAL INDEX (REGRESSOR VARIABLE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	0.012*
Marginally Above Average	-0.002
Affluent	-0.013**
Base: Marginally Below Average	

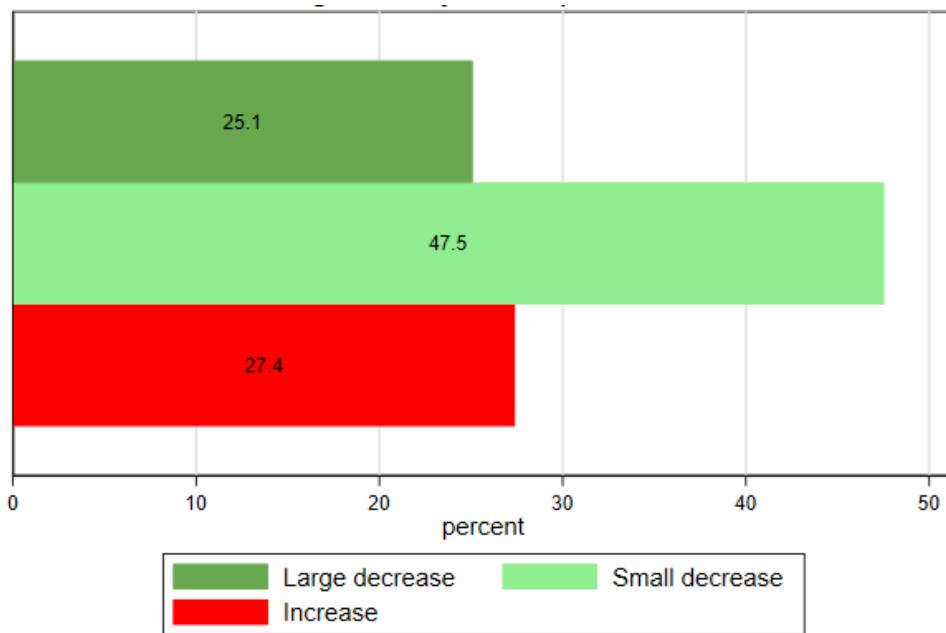
Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, school size and language of instruction. See the complete model output in Table A.6.19 in Appendix 6.

TABLE 6.6 PRIMARY TIME CHANGE: REGRESSION OF THE PROPORTION OF CHRONICALLY ABSENT STUDENTS: HP POBAL INDEX (REGRESSOR VARIABLE)

Variable	Coefficient
HP Pobal Index	
Disadvantaged	0.015**
Marginally Below Average	0.002
Affluent	-0.0108*
Base: Marginally Above Average	

Source: Data from TESS.


Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, school size and language of instruction. See the complete model output in Table A.6.19 in Appendix 6.

Finally, we estimate a model to examine potential differences amongst counties (see full output in Table A.6.20 in Appendix 6). A few counties show statistically significant differences in chronic absenteeism relative to Dublin, after controlling for 2023 levels. Specifically, Donegal had a 3.02 percentage point lower CA rate (significant at the 1 per cent level), Galway 1.07 percentage points lower (10 per cent), Longford 3.24 percentage points lower (10 per cent), Meath 1.94 percentage points lower (1 per cent), and Monaghan 2.65 percentage points lower (1 per cent). These results suggest that the evolution of chronic absenteeism between 2023 and 2024 was less favourable in Dublin compared to some other counties. However, it is important to note that the majority of county coefficients are not statistically significant. Moreover, as shown in Table A.6.21 in Appendix 6, the difference between Dublin North and Dublin South is also not statistically significant at the 10 per cent level.

6.1.2 Changes in days lost in primary schools

Descriptive graphs

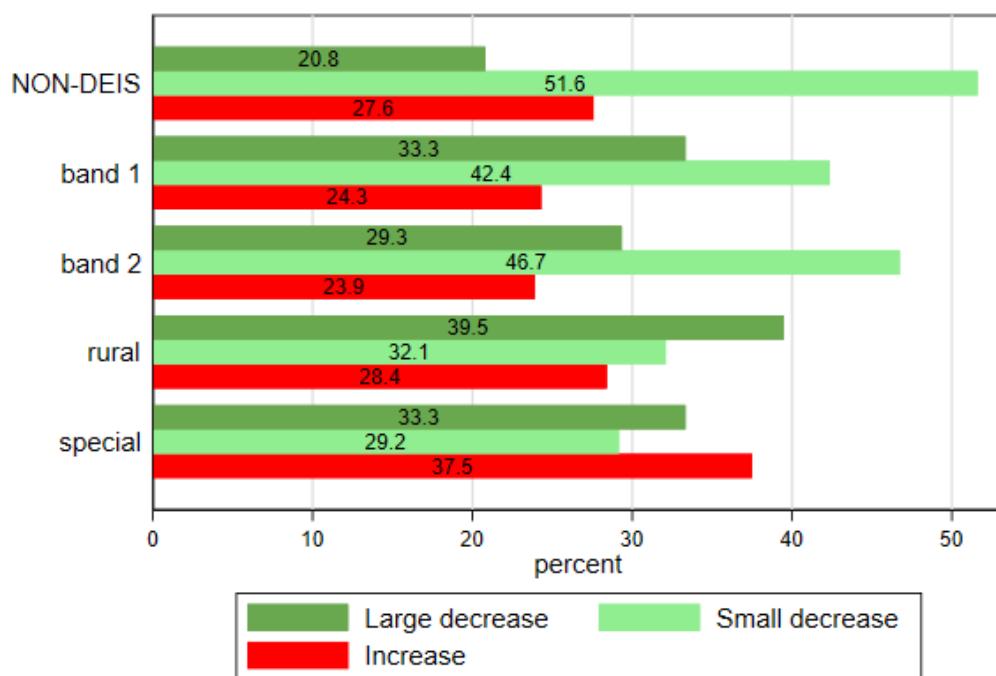
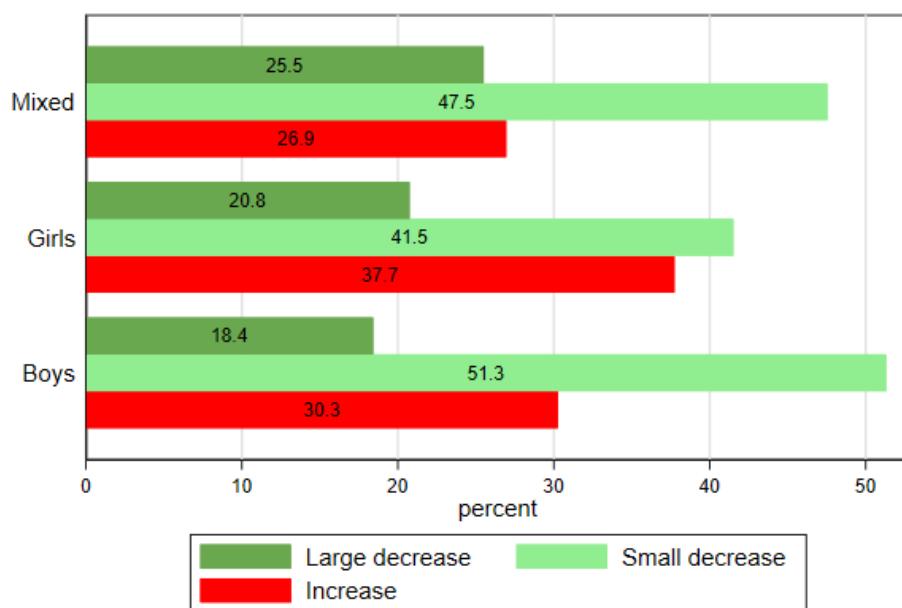

Starting with an analysis of the graphs illustrating the change in days lost per student across schools, we observe an **overall reduction from one year to the next in Figure 6.8**. A total of 72.5 per cent of schools (47.5 per cent with a small decrease and 25 per cent with a large decrease) experienced a reduction in days lost per student. Schools in the bottom 25th percentile are categorised as having experienced a large decrease, which corresponds to a reduction of more than 2.25 days lost per student.

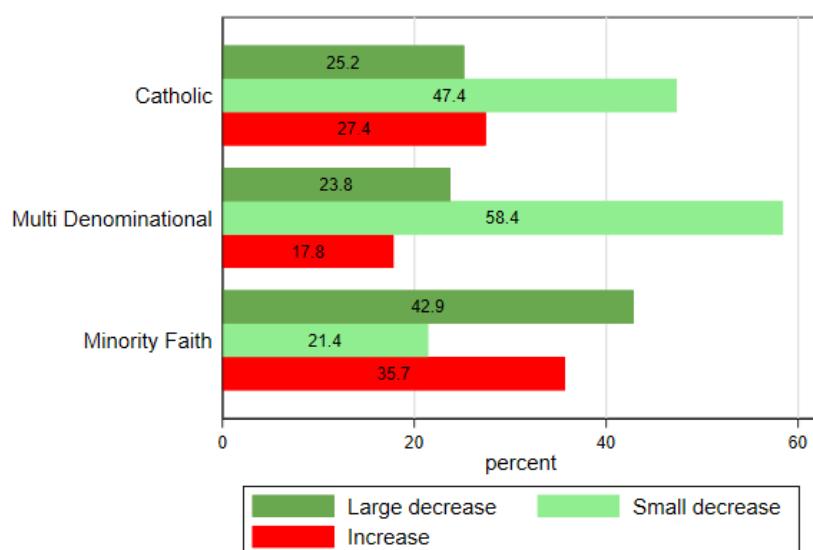
FIGURE 6.8 PRIMARY TIME CHANGE: OVERALL CHANGE IN DAYS LOST PER STUDENT

Source: Data from TESS.


As shown in Figure 6.9 non-DEIS and DEIS schools show similar shares of schools that experienced an increase in days lost per student. These range from 23.9 per cent for Band 2, 24.3 per cent for Band 1, 27.6 per cent for non-DEIS, and 28.4 per cent for rural schools. Special schools stand out with a notably higher share of schools experiencing an increase, at 37.5 per cent.

In terms of the type of decrease, DEIS schools appear to have a higher share of schools with a large decrease compared to non-DEIS schools. While only 20.8 per cent of non-DEIS schools experienced a large decrease, this figure rises to 29.3 per cent for Band 2, 33.3 per cent for Band 1, and 39.5 per cent for rural schools. Interestingly, although special schools report the highest share of increases, they also show a relatively high share of schools with a large decrease compared to non-DEIS, at 33.3 per cent.

FIGURE 6.9 PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY DEIS TYPE


Source: Data from TESS.

Concerning the gender mix of schools (Figure 6.10), the distribution of changes in **days lost per student** is relatively similar across categories, but **mixed schools** show a somewhat more favourable pattern. They have the highest share of schools experiencing a decrease – **73.0 per cent** in total (25.5 per cent large, 47.5 per cent small) – with only **26.9 per cent** reporting an increase. **Boys' schools** follow closely, with **69.7 per cent** showing a decrease (18.4 per cent large, 51.3 per cent small), although they have the lowest proportion of large decreases. **Girls' schools** show the least improvement, with **62.3 per cent** reporting a decrease (20.8 per cent large, 41.5 per cent small), and the highest proportion – **37.7 per cent** – experiencing an increase.

FIGURE 6.10 PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY GENDER MIX

Source: Data from TESS.

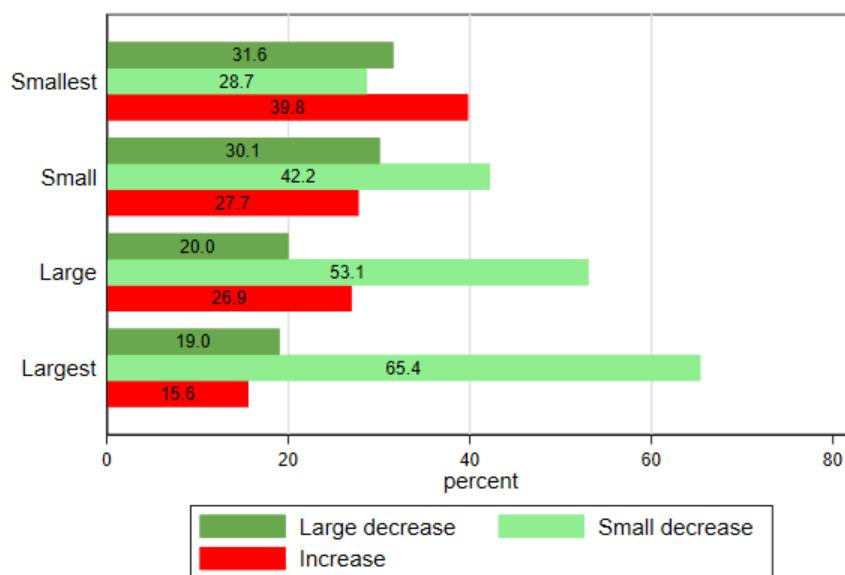
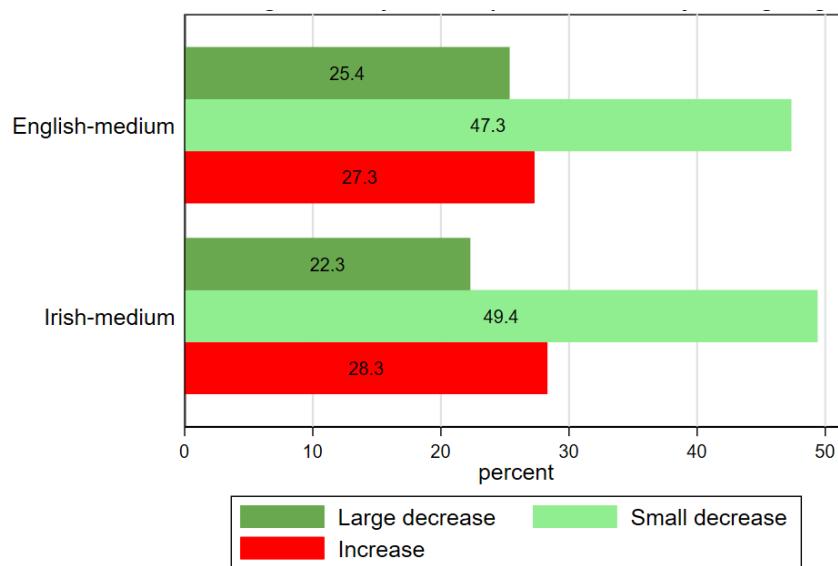

As indicated by Figure 6.11, while multi-denominational schools show the most favourable overall pattern – with 82.2 per cent of schools reporting a decrease (23.8 per cent large, 58.4 per cent small) and only 17.8 per cent seeing an increase – minority faith schools stand out for having the highest proportion of large decreases at 42.9 per cent, despite a less favourable overall profile. In total, 64.3 per cent of minority faith schools reported a decrease, while 35.7 per cent experienced an increase – the highest among the three groups. Catholic schools fall in between, with 72.6 per cent showing a decrease (25.2 per cent large, 47.4 per cent small) and 27.4 per cent an increase.

FIGURE 6.11 PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY SCHOOL ETHOS

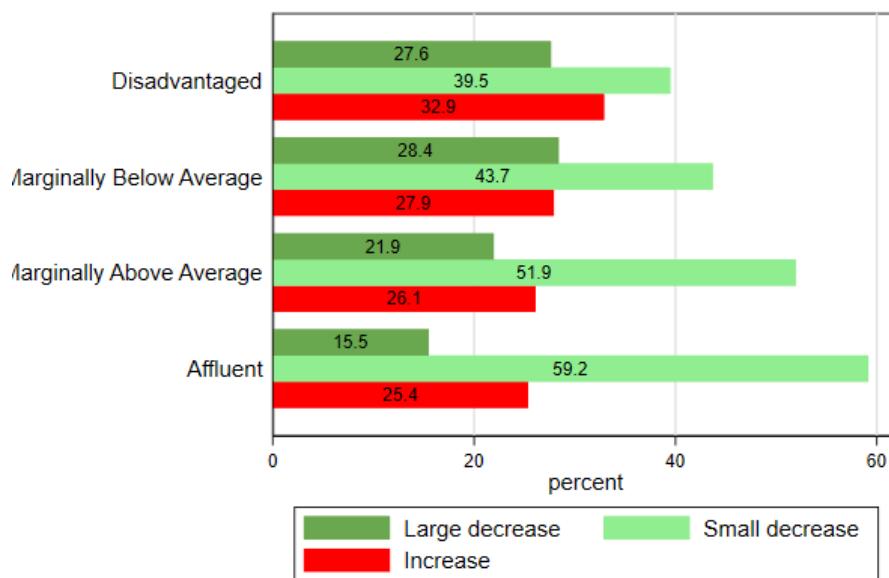
Source: Data from TESS.

As shown by Figure 6.12, largest schools show the most favourable results: 84.4 per cent of them reported a decrease in days lost (19.0 per cent large, 65.4 per cent small), and only 15.6 per cent saw an increase – the lowest among all groups. Large schools follow with 73.1 per cent reporting a decrease (20.0 per cent large, 53.1 per cent small). Small schools also perform well, with 72.3 per cent showing a decrease, including a relatively high 30.1 per cent experiencing a large decrease. In contrast, the smallest schools show the most polarised outcomes: while they have the highest share of large decreases (31.6 per cent), they also have the highest proportion of increases at 39.8 per cent.


FIGURE 6.12 PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY SCHOOL SIZE

Source: Data from TESS.

Now, considering language of instruction (Figure 6.13), we see that the patterns are quite similar, with only a few percentage points of difference. Among English-medium schools, 25.4 per cent show a large decrease and 47.3 per cent a small decrease, totalling 72.7 per cent. For Irish-medium schools, the figures are very similar, with 71.7 per cent showing a decrease (22.3 per cent large, 49.4 per cent small).


FIGURE 6.13 PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY LANGUAGE OF INSTRUCTION

Source: Data from TESS.

Finally, looking at the HP Pobal Index (Figure 6.14), the pattern is somewhat mixed. Schools in affluent areas have the lowest share of schools experiencing an increase in days lost per student (25.4 per cent), followed by 26.1 per cent for schools in marginally above average areas, 27.9 per cent for marginally below average, and 32.9 per cent for disadvantaged areas. However, both disadvantaged and marginally below average schools show a higher share of schools experiencing a large decrease.

FIGURE 6.14 PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY HP POBAL INDEX

Source: Data from TESS.

Regression models of changes in days lost in primary schools

Model with year as a dummy variable

First, we begin with the model where the outcome is the **CA rate**, including **year** as a dummy variable, followed by a specification with **interactions between year and school characteristics**.²⁹

Controlling for DEIS type, school ethos, gender mix, school size, and language of instruction, there is a **statistically significant decrease in days lost in the 2023/24 school year compared to 2022/23**. Specifically, schools recorded an average of 1.124 fewer days lost per student, significant at the 1 per cent level (see regression output in Table A.6.10 in Appendix 6).

When interacting year with the school-related variables (DEIS, ethos, gender mix, school size, language of instruction, counties and HP Pobal Index), we observe no statistically significant interaction effects at the 10 per cent level or lower, suggesting that the absolute change over time is relatively consistent across school types (see Tables A.6.11 to A.6.18 in Appendix 6). However, there are two exceptions.

The first one is related to the HP Pobal Index comparison. Specifically, as shown in Table 6.7, the comparison between schools in disadvantaged areas and those in affluent areas is significant at the 10 per cent level, with schools in affluent areas experiencing a smaller decrease in days lost. While the reduction for disadvantaged schools is 1.64 days, the reduction for affluent schools is 1.64 minus 1.13 days, meaning 0.51 reduction. This is a similar result to the findings from the CA model, where schools in disadvantaged areas, compared to those in marginally above and affluent areas, experienced marginally larger decreases in CA. Nonetheless, it is important to note that this effect is only significant at the 10 per cent level and only for this specific pairwise comparison within the HP Pobal Index.

The second exception concerns the coefficient for the county of Donegal compared to Dublin, which is significant at the 10 per cent level. Specifically, Donegal experienced an additional reduction of 1.062 days lost per student relative to Dublin (for regression output, see Table A.6.17 in Appendix 6). However, it is important to note that Donegal is the only county showing a statistically significant difference from Dublin, and only at the 10 per cent level. Moreover, this effect was not observed in the CA model. Therefore, this finding should be interpreted with

²⁹ A Breusch–Pagan/Cook–Weisberg test for heteroskedasticity rejects the null hypothesis at the 1% significance level, indicating the presence of heteroskedasticity. This is addressed by estimating the model using robust standard errors.

caution, and no conclusions should be drawn regarding absenteeism patterns in Dublin compared to other counties.

TABLE 6.7 PRIMARY TIME CHANGE: REGRESSION OF DAYS LOST PER STUDENT (YEAR AS DUMMY)

Variable	Coefficient
2024	-1.6544 ***
Pobal	
Marginally Below Average	-0.7467 **
Marginally Above Average	-1.5548 ***
Affluent	-3.1479 ***
Base: Marg. Below Average	
Year × Pobal	
2024 × Marginally Below	0.5246
2024 × Marginally Above	0.5706
2024 × Affluent	1.1267 *
Base: 2024 × Marg. Below Average	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***). Controlling for DEIS, ethos, gender mix, school size and language of instruction. See the complete model output in Table A.6.16 in Appendix 6.

Regressor variable method

The results of the regression model using the regressor variable method are presented in Table 6.8.³⁰

Controlling for days lost per student in 2023, significant differences emerge across DEIS school types and special schools relative to non-DEIS schools. In 2024, students in DEIS Band 1 and Band 2 schools lost, on average, 1.533 and 0.946 more days respectively than those in non-DEIS schools, both significant at the 1 per cent level. Special schools had the highest increase, with 1.640 more days lost per student (10 per cent level). In contrast, DEIS Rural schools did not differ significantly from non-DEIS schools. These results indicate that, after adjusting for 2023 levels, **chronic absenteeism increased more in DEIS Band 1, Band 2, and special schools than in non-DEIS schools in 2024.**

Changes across schools with different ethos types are not statistically significant at the 10 per cent level or below, consistent with the findings from the model using chronic absenteeism rates.

³⁰ The model is estimated with robust standard errors, as the heteroskedasticity test is significant at the 1% level.

Similar to the model with CA, both girls' and boys' schools experienced significantly higher days lost per student in 2024 compared to mixed schools with similar CA 2023 levels. Girls' schools recorded an average of 0.535 additional days lost per student, significant at the 10 per cent level, while boys' schools had 0.423 more days lost, significant at the 5 per cent level.

Regarding school size, several coefficients are statistically significant (see Table 6.8 and Table 6.9). Using smallest schools as the reference category, small schools lost 0.482 fewer days per student on average in 2024, a difference significant at the 1 per cent level. In contrast, large and largest schools did not differ significantly from smallest schools. When using small schools as the reference, both large and largest schools recorded significantly higher absenteeism: large schools had 0.341 more days lost per student, and largest schools 0.355 more, both significant at the 1 per cent level. These findings indicate that small schools experienced more favourable changes in absenteeism in 2024 compared to larger schools. This pattern is consistent with the model using chronic absenteeism rates, although, as in that model, the relationship between school size and absenteeism is not strictly linear.

The difference between Irish-medium and English-medium schools is not statistically significant, suggesting that both types of school experienced similar changes in days lost per student from 2023 to 2024.

TABLE 6.8 PRIMARY TIME CHANGE: REGRESSION OF DAYS LOST PER STUDENT (REGRESSOR VARIABLE)

Variable	Coefficient
Days Lost 2023	0.681***
DEIS type	
Band 1	1.533***
Band 2	0.946***
Rural	-0.024
Special	1.640*
<i>Base: No DEIS</i>	
Ethos	
Multi-denominational	0.113
Minority Faith	-1.140
<i>Base: Catholic</i>	
Gender Mix	
Girls	0.535*
Boys	0.423**
<i>Base: Mixed</i>	
School Size	
Small	-0.482***
Large	-0.140
Largest	-0.126
<i>Base: Smallest</i>	
Irish	0.011
Constant	3.598***

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***)�.

TABLE 6.9 PRIMARY TIME CHANGE: REGRESSION OF DAYS LOST PER STUDENT: SIZE (REGRESSOR VARIABLE)

Variable	Coefficient
School Size	
Smallest	0.482***
Large	0.341***
Largest	0.355***
<i>Base: Small</i>	

Source: Data from TESS.

Note: Significance levels: p < 0.10 (*), p < 0.05 (**), p < 0.01 (***)�. Controlling for DEIS, ethos, gender mix and language of instruction (see the complete model output in Table 6.8).

We estimate a model including the HP Pobal Index as well (see Tables 6.10 and 6.11). Among schools with similar days lost per student in 2023, those in marginally below average areas lost 0.628 fewer days per student in 2024 than schools in disadvantaged areas; schools in marginally above average and affluent areas lost 0.820 and 1.171 fewer days, respectively (all significant at the 1 per cent level).

Compared to marginally below average areas, schools in affluent areas lost 0.543 fewer days (5 per cent level). Other differences are not statistically significant. Overall, the results indicate an area-level socio-economic gradient, with more advantaged schools seeing greater improvements in absenteeism. In the model with interaction terms, we saw that, in absolute terms, schools in disadvantaged areas had greater reductions in absenteeism than affluent schools; however, in relative terms to where they started, we now see the opposite, a trend also replicated in the CA models.

TABLE 6.10 PRIMARY TIME CHANGE: REGRESSION OF DAYS LOST PER STUDENT: HP POBAL INDEX (REGRESSOR VARIABLE)

Variable	Coefficient
Pobal	
Marginally Below Average	-0.628***
Marginally Above Average	-0.820***
Affluent	-1.171***
Base: Disadvantaged	

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***). Controlling for DEIS, ethos, gender mix, school size and language of instruction. See the complete model output in Table A.6.22 in Appendix 6.

TABLE 6.11 PRIMARY TIME CHANGE: REGRESSION OF DAYS LOST PER STUDENT: HP POBAL INDEX (REGRESSOR VARIABLE)

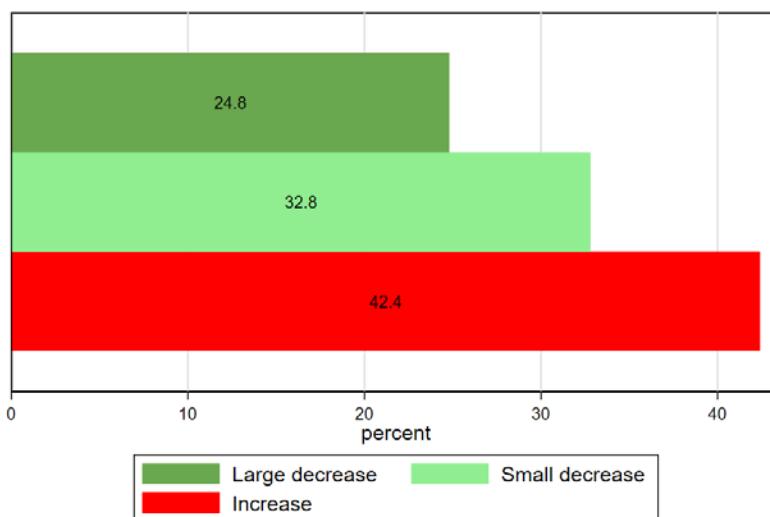
Variable	Coefficient
Pobal	
Disadvantaged	0.628***
Marginally Above Average	-0.192
Affluent	-0.543**
Base: Marginally Below Average	

Source: Data from TESS.

Note: Significance levels: $p < 0.10$ (*), $p < 0.05$ (**), $p < 0.01$ (***). Controlling for DEIS, ethos, gender mix, school size and language of instruction. See the complete model output in Table A.6.22 in Appendix 6.

Finally, we estimate a model with counties (see Table A.6.23 in Appendix 6). Among schools with similar levels of days lost per student in 2023, a few counties show significantly better outcomes in 2024 compared to Dublin. These are Donegal (0.81 fewer days, 1 per cent level), Cavan (0.64, 5 per cent), Clare (0.58, 5 per cent), Longford (1.01, 5 per cent), Monaghan (0.98, 5 per cent), Mayo (0.60 fewer days, 10 per cent) and Meath (0.46, 10 per cent). The difference between Dublin North and South is not significant at the 10 per cent level (see Table A.6.24 in Appendix 6).

6.2 POST-PRIMARY SCHOOLS


6.2.1 Changes in CA counts in post-primary schools

Descriptive graphs

For post-primary schools, the distinction between large and small decreases in the CA rate (which, as previously introduced, is based on the 25th percentile cut-off) corresponds to a year-on-year change of less than -0.0553, that is a reduction of more than 5.53 percentage points.

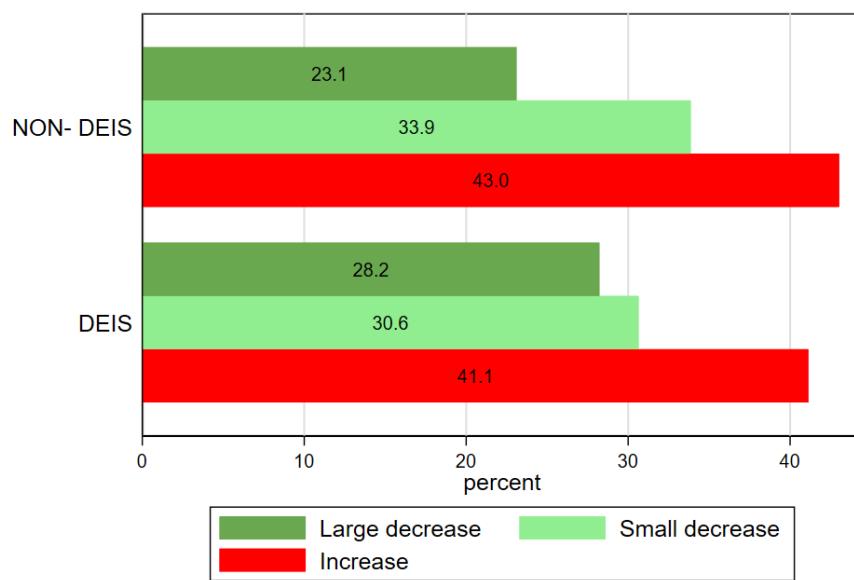
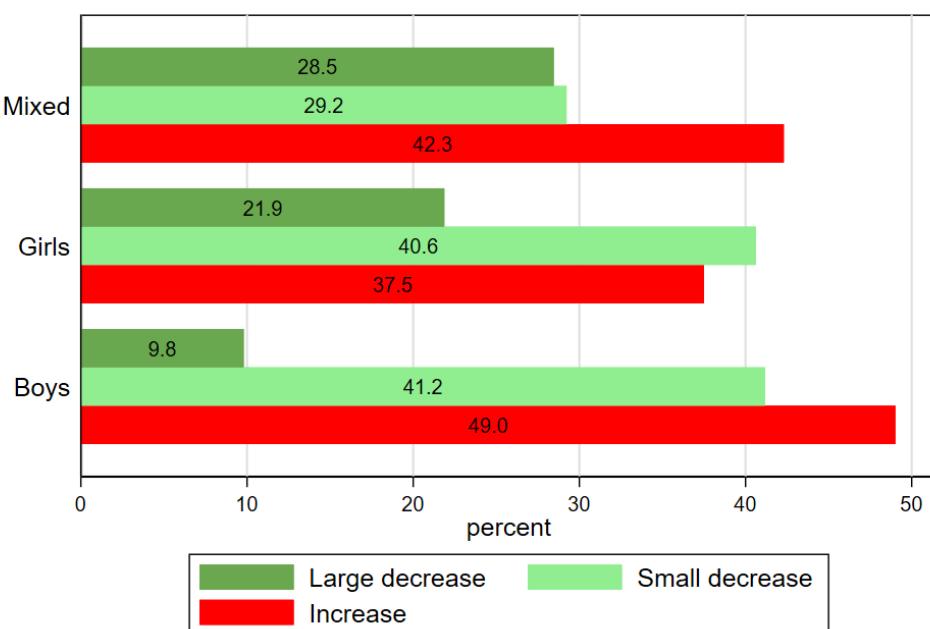

In the graph showing the overall distribution of schools (Figure 6.15), we see that a majority – 57.6 per cent (32.8 per cent with a small decrease and 24.8 per cent with a large decrease) – have experienced a decrease.

FIGURE 6.15 POST-PRIMARY TIME CHANGE: OVERALL CHANGE IN CHRONIC ABSENTEEISM


Source: Data from TESS.

Looking at the distribution of schools across quantiles by DEIS status (Figure 6.16), we see that the figures are not very different. Among non-DEIS schools, 57.0 per cent (23.1 per cent with a large decrease and 33.9 per cent with a small decrease) experienced a reduction in chronic absenteeism, compared to 58.8 per cent of DEIS schools (28.2 per cent large decrease and 30.6 per cent small decrease). The overall figures for the decrease are very similar, though it is true that DEIS schools have a marginally higher share of schools experiencing a *large* decrease.

FIGURE 6.16 POST-PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY DEIS TYPE

Source: Data from TESS.


As Figure 6.17 indicates, boys' schools stand out for their low share of large decreases, at just 9.8 per cent, which falls below the 25th percentile, and for having the highest proportion of increases at 49.0 per cent. Girls' schools present a more balanced profile, with 62.5 per cent of schools experiencing a decrease (21.9 per cent large, 40.6 per cent small) and 37.5 per cent reporting an increase – slightly below the overall average of 42.4 per cent. Mixed schools report the largest share of large decreases. Overall, 57.7 per cent of mixed schools experienced a decrease, a figure that is very close to the overall average and similar to that of girls' schools.

FIGURE 6.17 POST-PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY GENDER MIX

Source: Data from TESS.

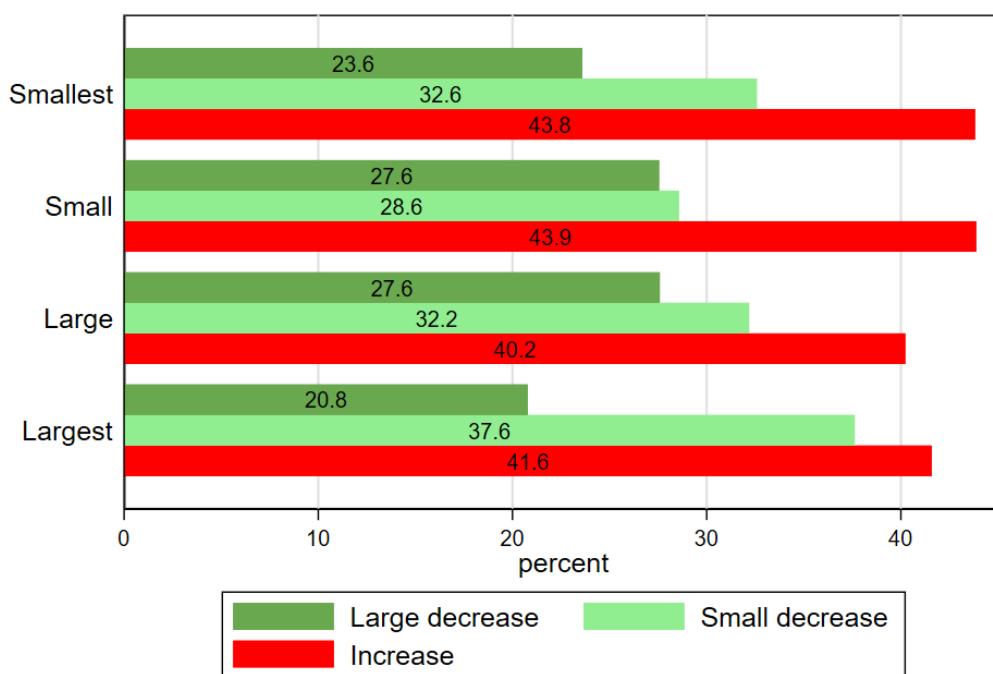
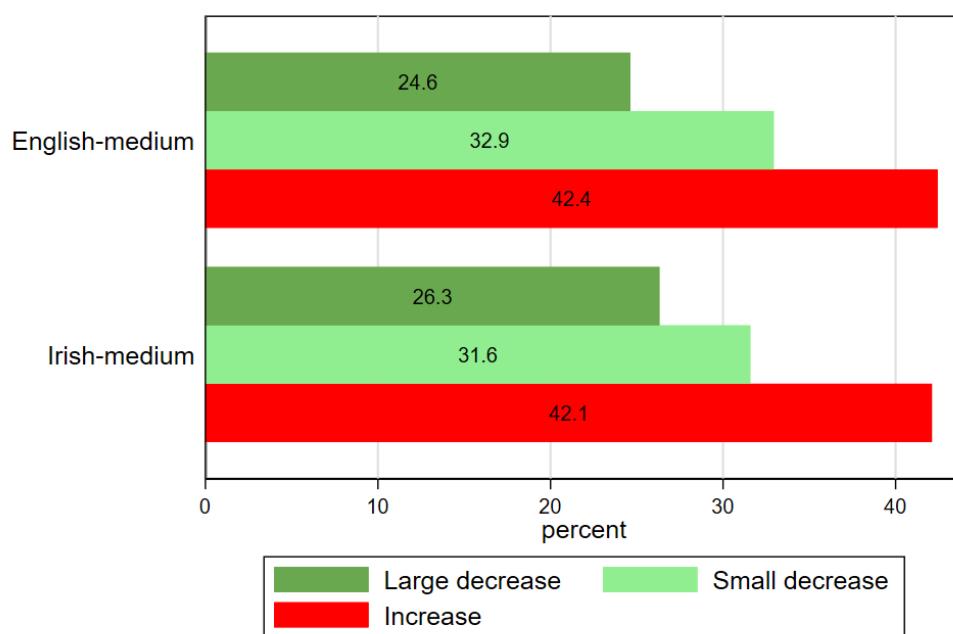

Moving on to school ethos (Figure 6.18), we observe a similar proportion of decreases and increases across schools with different ethos. Specifically, 39.9 per cent of multi-denominational schools experienced an increase, compared to 45.4 per cent for both Catholic and minority faith schools. However, there are some differences in the distribution between large and small decreases. Notably, none of the 11 matched minority faith post-primary schools experienced a large decrease over the years, compared to 18.8 per cent of Catholic schools and 30.8 per cent of multi-denominational schools. It is important to keep in mind, however, the limited number of minority faith schools in the sample.

FIGURE 6.18 POST-PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY SCHOOL ETHOS


Source: Data from TESS.

Regarding school size (Figure 6.19), all categories show a very similar proportion of increases and decreases. The share of decreases is particularly close across school sizes, ranging from 40.2 per cent to 43.8 per cent, with the corresponding shares of increases ranging from 56.2 per cent to 59.8 per cent. When examining the type of decreases, it is notable that the largest schools have a slightly lower proportion of large decreases compared to other schools, particularly when contrasted with the figure of 27.6 per cent among small and medium-sized schools.

FIGURE 6.19 POST-PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY SCHOOL SIZE

Source: Data from TESS.

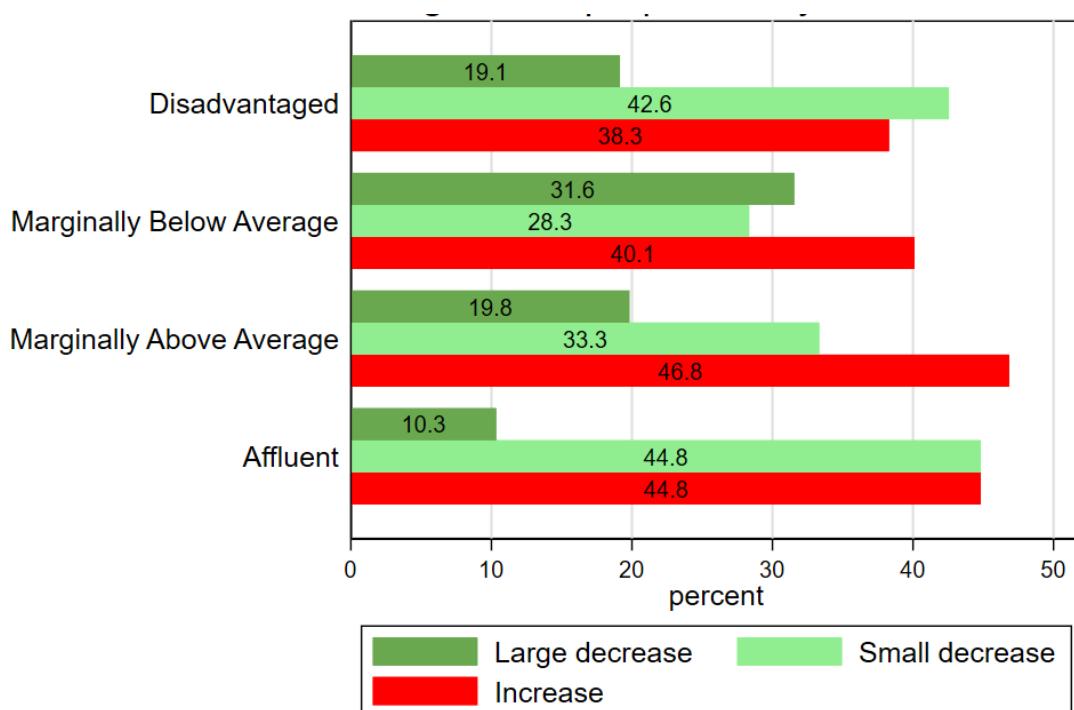

As Figure 6.20 shows, looking at the language of instruction of schools yields very similar patterns of change, with only a few percentage points of difference.

FIGURE 6.20 POST-PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY LANGUAGE OF INSTRUCTION

Source: Data from TESS.

As can be seen in Figure 6.21, schools located in disadvantaged areas have the highest combined share of decreases in chronic absenteeism at 61.7 per cent (19.1 per cent large decreases and 42.6 per cent small decreases), followed closely by schools in marginally below average areas at 59.9 per cent (31.6 per cent large, 28.3 per cent small). Schools in affluent areas report a slightly higher combined decrease (55.1 per cent) than those in marginally above average areas (53.1 per cent), despite having the lowest share of large decreases, at just 10.3 per cent. These figures suggest that schools in disadvantaged and marginally below average areas have seen greater improvements in chronic absenteeism than schools in more advantaged areas.

FIGURE 6.21 POST-PRIMARY TIME CHANGE: CHANGE IN CHRONIC ABSENTEEISM BY HP POBAL INDEX

Source: Data from TESS.

Regression models of change in CA counts in post-primary schools

Year as a dummy variable

We start with a model including the main school variables (DEIS status, ethos, gender mix, size, and language) and a dummy variable for 2024 compared to 2023 (see Table A.6.25 in Appendix 6).³¹

³¹ Following a Breusch–Pagan/Cook–Weisberg test for heteroskedasticity that indicates heteroskedasticity at the 5% significance level, we use robust standard errors.

The coefficient for 2024 is statistically significant at the 5 per cent level, indicating that the **CA rate** (students with chronic absenteeism as a share of the total population) was **1.7 percentage points lower in 2024**. This confirms a marginal decline in chronic absenteeism, consistent with the findings for primary schools.

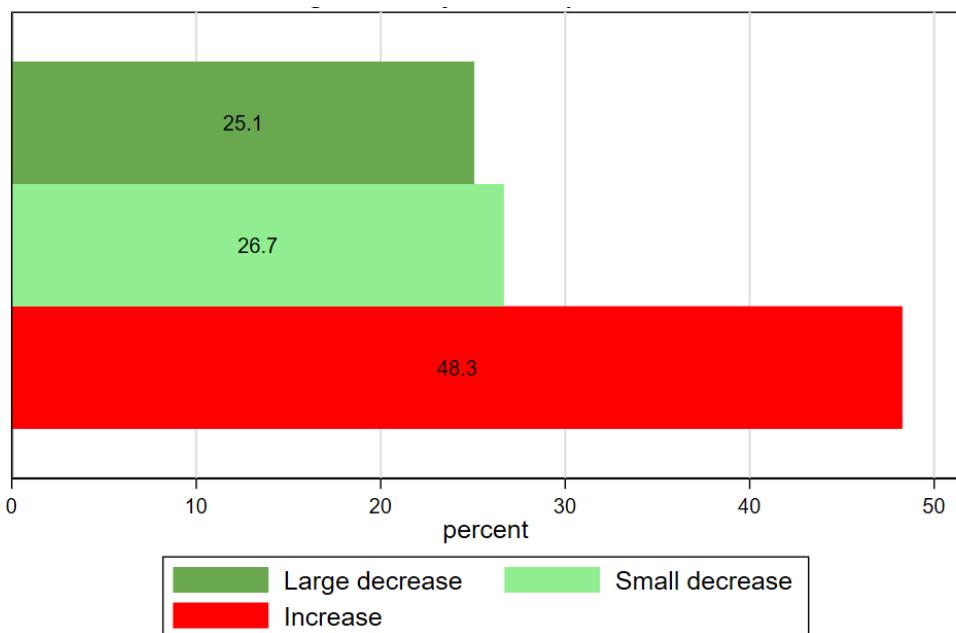
For the models interacting year with school characteristics, **no significant effects at the 10 per cent significance level or lower are observed for any variables**, including DEIS status, ethos, gender mix, size, and language, as well as in a further model interacting year with the HP Pobal Index (see Tables A.6.26 to A.6.33 in Appendix 6).

The only exception is in relation to counties. The difference between Laois and Dublin is significant at the 5 per cent level, with Laois showing a 20.5 percentage point greater decline in the CA rate compared to Dublin (see Table A.6.32 in Appendix 6). However, as this is the only significant coefficient, it is not appropriate to draw any conclusions about a trend between Dublin and the rest of the country.

Regressor variable method

We estimate a model with the main school characteristics (DEIS status, ethos, gender mix, size, and language) controlling for baseline CA in 2023 to assess whether year-to-year changes are concentrated among certain groups of schools, focusing on relative rather than absolute changes. The results can be seen in Table A.6.43 in Appendix 6. No coefficients are significant at the 10 per cent level or lower, except for **DEIS status**, which is significant at the 10 per cent level. Similar to primary schools, DEIS post-primary schools, compared to non-DEIS ones with similar CA levels in 2023, had a 2.11 percentage point higher CA rate in 2024.

We also estimate a model including the HP Pobal Index, in which no coefficients are significant at the 10 per cent level (Table A.6.44 in Appendix 6). This may be surprising given the earlier descriptive figures where schools located in disadvantaged areas have the higher combined share of decreases, but this advantage disappears when accounting for the fact that, given their initial worse situation, they can improve more. In a model with counties compared to Dublin (Table A.6.45 in Appendix 6), only two coefficients are statistically significant: Galway, with a CA rate 6.31 percentage points higher than Dublin (1 per cent level), and Roscommon, with a rate 8.79 percentage points higher (10 per cent level). However, these are the only significant differences observed, overall indicating no meaningful geographical differences.


Given these results, which are also consistent with the model using year as an interaction term, we can say that the change in chronic absenteeism from one year to the next – both in absolute and relative terms – is consistent across post-primary schools of different ethos, gender mix, size, language, affluence of the area, and county.

6.2.2 Changes in days lost in post-primary schools

Descriptive graphs

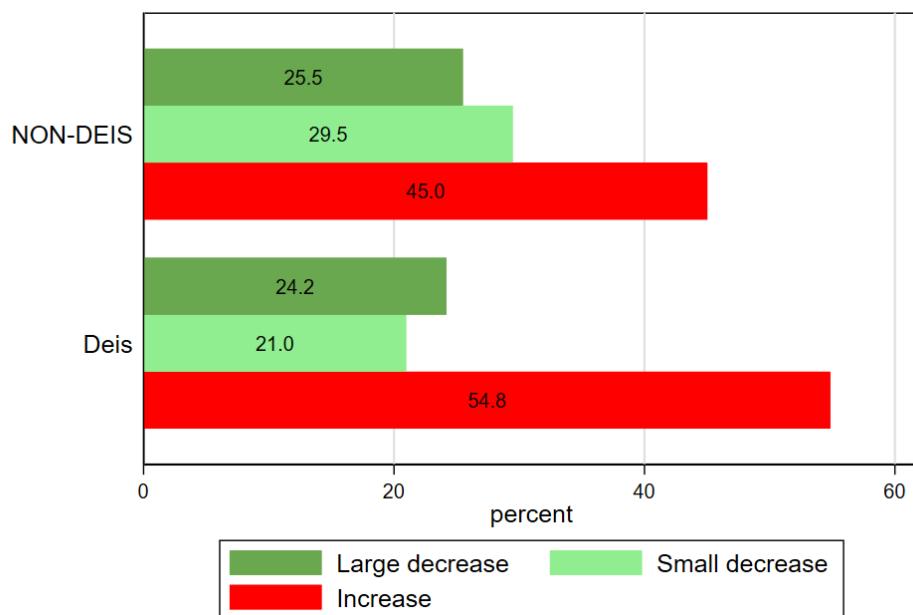
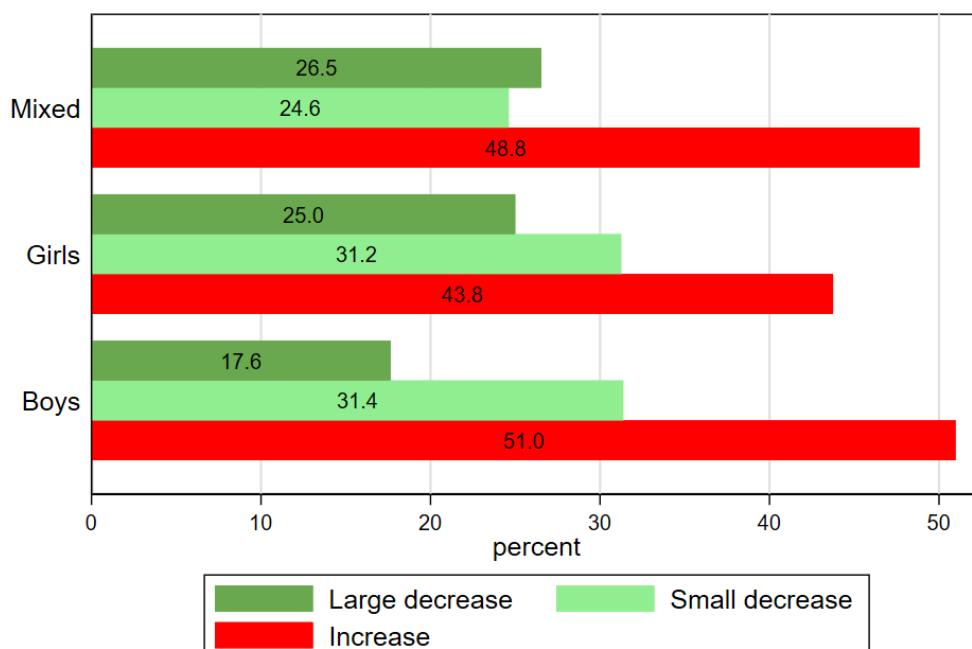

We now turn to the graphs showing the distribution of quantiles of the change. Overall, as captured in Figure 6.22, 51.8 per cent of schools experienced a decrease in days lost per student, while 48.3 per cent saw an increase. This indicates a fairly balanced distribution between decreases and increases in days lost per student. Here, the cut-off at the 25th percentile for large decreases corresponds to a reduction of 2.23 days lost per student.

FIGURE 6.22 POST-PRIMARY TIME CHANGE: OVERALL CHANGE IN DAYS LOST PER STUDENT


Source: Data from TESS.

As shown in Figure 6.23, non-DEIS schools have a slightly higher combined share of decreases in days lost per student, at 55.0 per cent (25.5 per cent large decreases, 29.5 per cent small), compared to DEIS schools, which show a combined decrease of 45.2 per cent (24.2 per cent large, 21.0 per cent small). The share of large decreases is very similar across the two groups, with DEIS schools showing a slightly lower figure; 24.2 per cent compared to 25.5 per cent in non-DEIS schools.

FIGURE 6.23 POST-PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY DEIS

Source: Data from TESS.

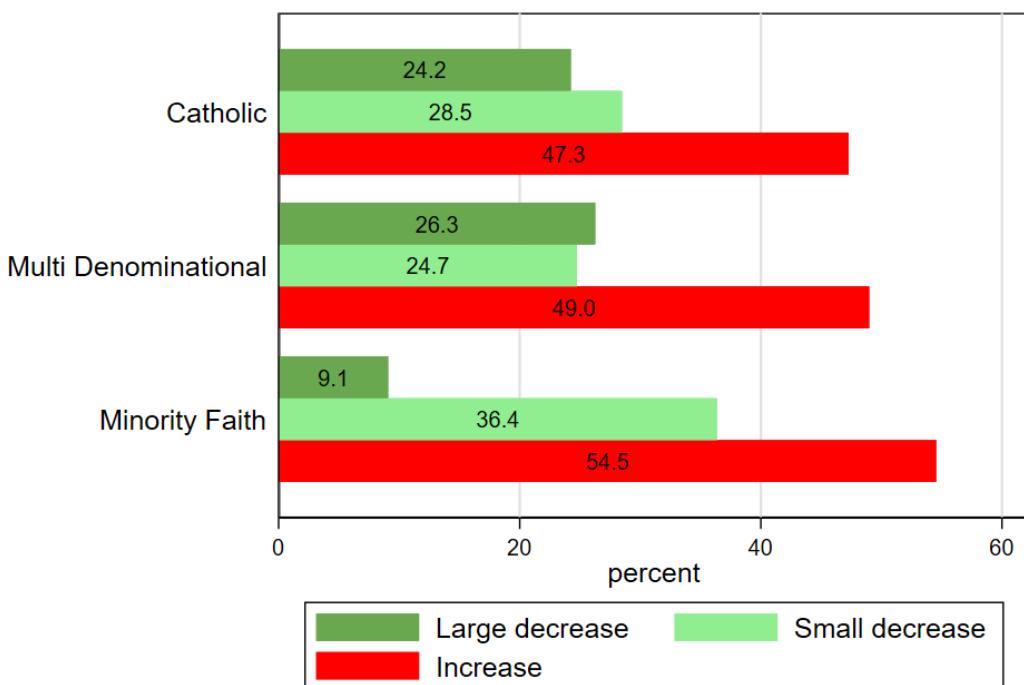
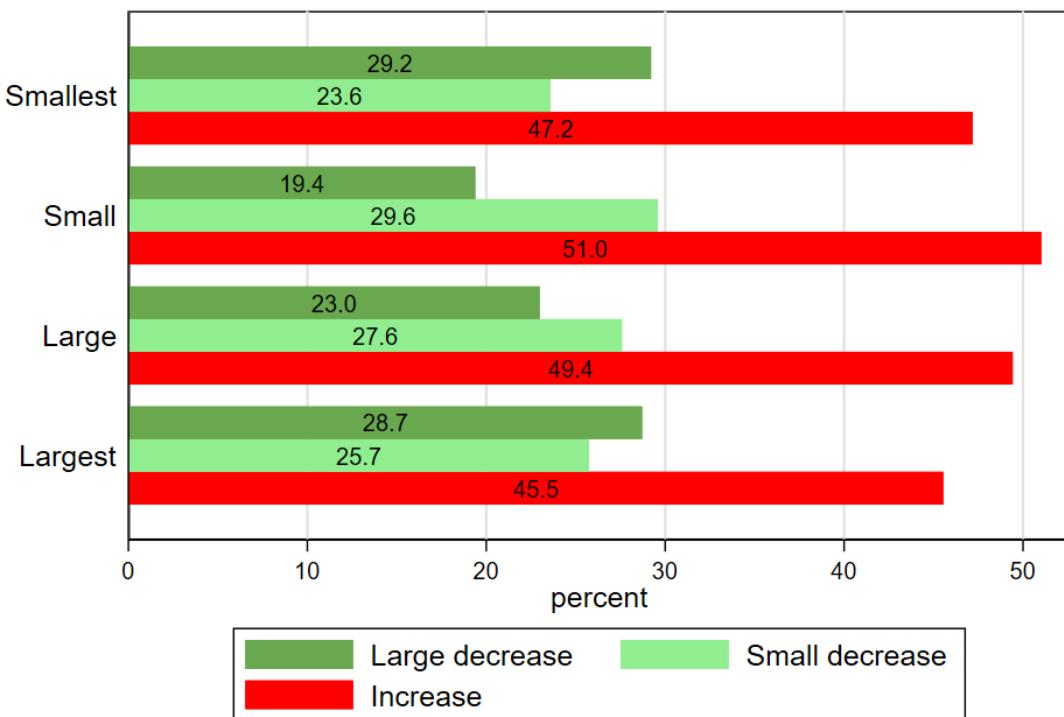

Moving on to gender mix (Figure 6.24), girls' schools have the highest combined share of decreases in days lost per student, at 56.2 per cent, comprising 25.0 per cent large decreases and 31.2 per cent small decreases. Mixed schools follow with a combined decrease of 51.1 per cent (26.5 per cent large, 24.6 per cent small), while boys' schools report a similar overall figure of 49.0 per cent (17.6 per cent large, 31.4 per cent small). The share of large decreases is fairly similar between girls' and mixed schools but is notably lower in boys' schools.

FIGURE 6.24 POST-PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY GENDER MIX

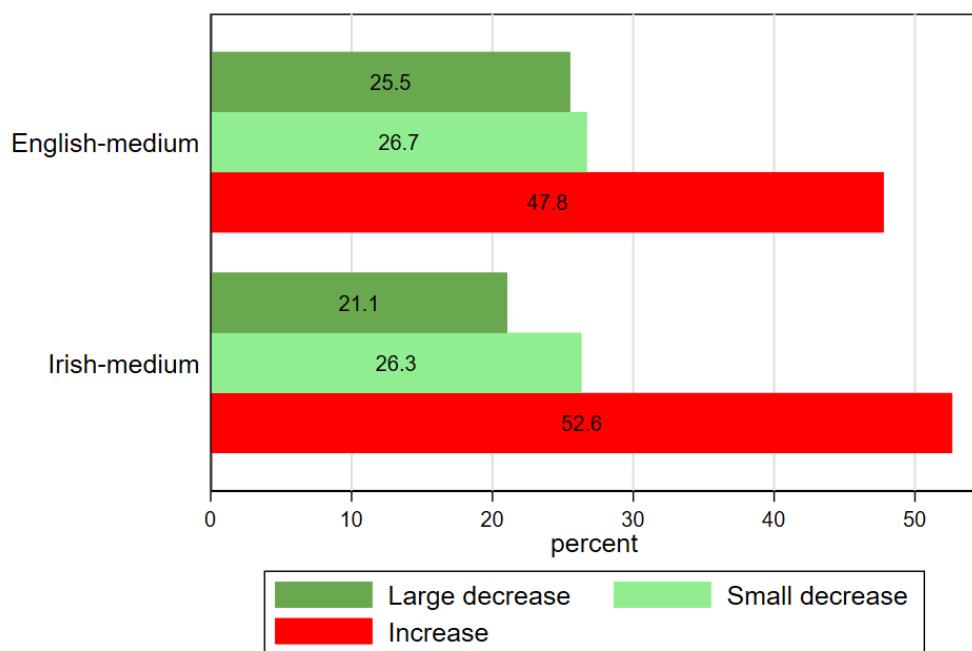
Source: Data from TESS.

Regarding school ethos (Figure 6.25), **Catholic schools** have a combined decrease in days lost per student of **52.7 per cent** (24.2 per cent large, 28.5 per cent small), slightly ahead of **multi-denominational schools**, which report a combined decrease of **51.0 per cent** (26.3 per cent large, 24.7 per cent small). **Minority faith schools**, however, show a lower combined decrease at **45.5 per cent**, with only **9.1 per cent** experiencing a large decrease – the lowest among all groups.


FIGURE 6.25 POST-PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY SCHOOL ETHOS

Source: Data from TESS.

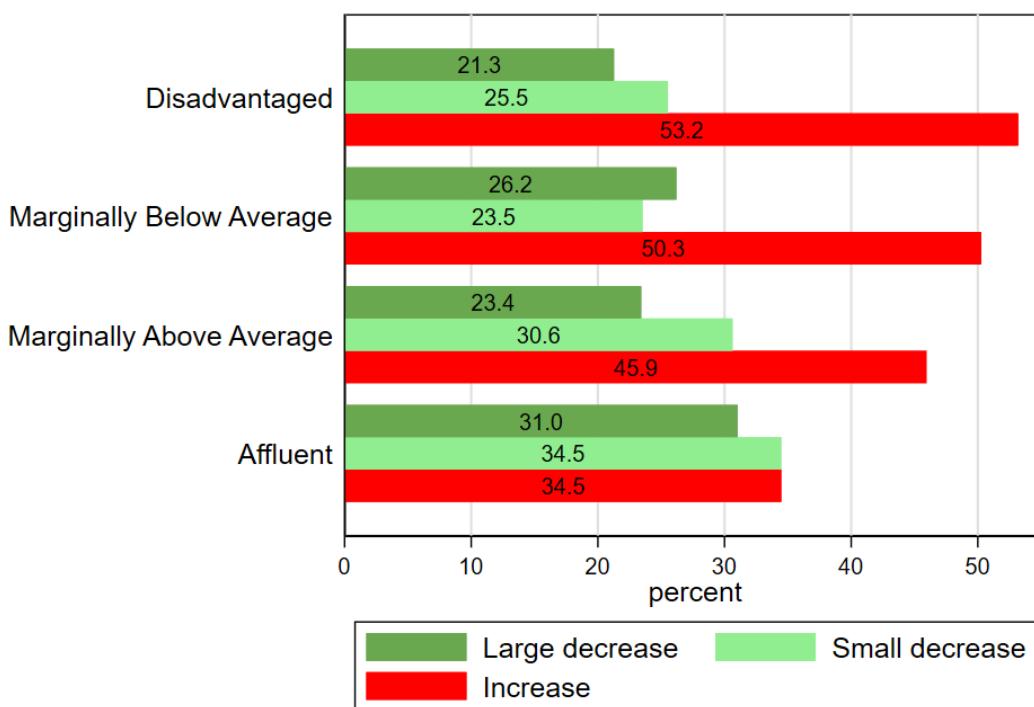
Considering the size of school (Figure 6.26), the graph shows relatively modest differences in the change in days lost per student across school size categories. **The largest schools** report the highest combined share of decreases at **54.4 per cent** (28.7 per cent large, 25.7 per cent small), closely followed by **the smallest schools** at **52.8 per cent** (29.2 per cent large, 23.6 per cent small). **Large schools** come next with **50.6 per cent** (23.0 per cent large, 27.6 per cent small), while **small schools** have the lowest combined decrease at **49.0 per cent** (19.4 per cent large, 29.6 per cent small). The differences between groups range from about 1.6 to 5.4 percentage points, indicating only limited variation. Still, the largest schools and smallest schools also have the largest **share of large decreases**, suggesting slightly more favourable attendance trends overall.


FIGURE 6.26 POST-PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY SCHOOL SIZE

Source: Data from TESS.

The distribution of changes in days lost per student across schools with different languages of instruction is fairly similar. Both English-medium and Irish-medium schools show a balanced mix of decreases and increases, aligning closely with the overall pattern of 48.3 per cent of schools reporting an increase, and 51.7 per cent a decrease. English-medium schools perform marginally better, with a slightly lower share of increases (47.7 per cent) and a higher share of large decreases (25.5 per cent) compared to Irish-medium schools, which report 49 per cent increases and 21.1 per cent large decreases. These differences are modest – just a few percentage points – indicating broadly trends in days lost per student.

FIGURE 6.27 POST-PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY LANGUAGE OF INSTRUCTION



Source: Data from TESS.

The graph reveals a gradient in the trend in days lost per student based on the level of deprivation in the areas where schools are located. Affluent schools report the most favourable outcomes, with 65.5 per cent showing an overall decrease, followed by marginally above average schools at 54.0 per cent. Marginally below average schools are nearly evenly split, with 49.7 per cent showing a decrease and 50.3 per cent an increase. At the other end of the spectrum, schools in disadvantaged areas have the lowest share of decreases, at 46.8 per cent.

When looking at the share of large decreases, the figures are relatively similar across disadvantaged, marginally below average, and marginally above average schools, and do not follow a clear linear gradient. However, affluent schools stand out with a higher proportion of large decreases, at 31 per cent.

FIGURE 6.28 POST-PRIMARY TIME CHANGE: CHANGE IN DAYS LOST PER STUDENT BY HP POBAL INDEX

Source: Data from TESS.

Regression models of changes in days lost in post-primary schools

Year as a dummy variable

The regression model with year as a dummy variable shows the year coefficient to be statistically significant at the 10 per cent level, indicating that, on average, there were 0.71 fewer days lost per student in 2024 than in 2023, among schools with similar characteristics (see Table A.6.34 in Appendix 6). Overall, consistent with the CA results, there appears to be a slight improvement, although as the graphs indicate there is also a sizeable proportion of schools with increases.

We then estimate models interacting year with the school characteristics, as well as three additional models including the HP Pobal Index, counties versus Dublin, and Dublin North versus South. Such models can be found in Table A.6.35 through Table A.6.42 in Appendix 6. None of these interactions are significant at the 10 per cent level or lower, suggesting that the absolute decline in days lost per student is broadly consistent across schools with different characteristics and across areas.

Variable regressor method

Now we turn to the model with the main school characteristics (DEIS status, ethos, gender mix, size, and language) controlling for baseline CA in 2023 to assess whether relative changes are experienced differently by groups of schools. The

vast majority of variables – ethos, gender mix, size and language of instruction – are not significant at the 10 per cent level or lower (see Table A.6.47 in Appendix 6).

There are some noteworthy exceptions. **DEIS schools**, compared to non-DEIS schools with similar 2023 levels, had **2.15 more days lost per student in 2024**, significant at the 1 per cent level. This may be surprising given that non-DEIS schools had a lower share of schools reporting an increase, but it is important to keep in mind that we are now talking about relative changes that adjust for the fact that schools with worse absenteeism initial levels have more ‘room’ to improve.

Moreover, in a model with the **HP Pobal Index**, we observe a gradient whereby **schools in more socio-economically privileged areas had slightly better trajectories** (see Table A.6.48 in Appendix 6). This is not necessarily surprising given the descriptive overall figures seen earlier, where there is a clear gradient where higher levels of area-level deprivation are related with higher share of schools reporting an increase in days lost per student. Compared to schools in disadvantaged areas, those in marginally above average areas had 1.45 fewer days lost per student (10 per cent level) and those in affluent areas had 4.09 fewer days lost (1 per cent level). Compared to marginally below average areas, affluent schools had 3.40 fewer days lost (1 per cent); and compared to marginally above average areas, affluent schools had 2.63 fewer days lost (1 per cent). While this is not the case in the model examining absolute changes, we do see that the changes in days lost per student are significant when considering how schools – by DEIS status and the HP Pobal Index – fare relative to their starting point. It is interesting to note that this was not significant when looking at chronic absenteeism, suggesting a degree of divergence between the two measures in this case.

Finally, in a model including counties in comparison to Dublin (Table A.6.49 in Appendix 6), Waterford had 3.45 more days lost per student (5 per cent level) and Galway had 1.99 more days lost (10 per cent level). However, these are the only significant differences, making it difficult to draw broader conclusions about county-level patterns relative to Dublin.

CHAPTER 7

Conclusions

7.1 INTRODUCTION

As in several other countries (see, for example, Anders et al., 2024), Ireland has seen a dramatic increase in school absence rates in the wake of the pandemic, giving renewed policy attention to the need to promote school attendance. Under the Education (Welfare) Act, 2000, schools maintain and submit records of attendance among their students. There are two sets of returns to TESS: the school Annual Attendance Report (AAR), which includes total days lost to absence and number of chronic absentees, that is, those absent for 20 or more days over the school year; and the School Absence Report (SAR), which collects information at the student level on absences and the reasons for absence among those aged 6 to 16 years of age.

This study draws on AAR data to look at days lost and chronic absence by school characteristics for 2022/23 and 2023/24. Information on the average level of absences by DEIS status, county, whether the school is a mainstream or special school (at primary) and school sector (at post-primary level) has been routinely published for many years (see, for example, Tusla, 2024). This report builds upon this work by looking not only at average levels of non-attendance but at how they are distributed across schools, by looking at a range of school characteristics (including size, language medium and gender mix) separately and simultaneously, and by examining the extent to which non-attendance varies by the socio-economic profile of the area in which schools are located.

An important limitation of the existing administrative data is the absence of information on the social background characteristics of students and their families. Previous research has shown that attendance varies by aspects of family background, including social class, parental education and income, as well as by characteristics like long-term illness and disability (Thornton et al., 2013). We would therefore expect that schools with a high concentration of children from families with low levels of education and income would have higher absence rates. However, without individual-level information, we cannot separate out the effects of school composition – that is, the profile of students in the school – from the effects of school context – that is, the ethos, policies and practices of the school. Analyses of Growing Up in Ireland data show important differences in the socio-economic profile of the student population by DEIS status, ethos, gender mix (at post-primary level) and, to some extent, language medium; patterns that might be expected to influence absenteeism. Despite this limitation, the analyses provide useful insights into variation across schools in absence rates as a basis for targeting

supports to enhance attendance. Another limitation relates to the removal of extreme cases, which we decided to do because, given the dataset's quality issues, including inconsistencies, data entry errors and missing values, there was strong reason to believe that these observations were errors rather than true values. Retaining such 'error outliers' could have distorted the analysis and produced misleading results. However, we also acknowledge that some of the removed extreme observations may have been genuine values, a risk that is always present when dealing with outliers.

7.2 VARIATION IN NON-ATTENDANCE BY SCHOOL TYPE

We examined two forms of absenteeism: **the number of chronically absent students** and the total **number of days lost due to absenteeism**. These were also analysed in **relative terms**, as the proportion of chronically absent students relative to the total student population, and the average number of days lost per student.

Following an initial descriptive analysis using graphical representations, we employed regression models, focusing on both absenteeism outcomes. While the two sets of measures are closely related, schools can vary in the extent to which they have a cohort of students with very protracted absences and/or whether some level of non-attendance is common across the student body. This can mean some differences in the variation of the two sets of outcomes by school characteristics.

We find that, at both the primary and post-primary levels, **DEIS and special schools have significantly higher levels of chronic absenteeism and days lost**, compared to non-DEIS schools, at the 1 per cent significance level. At the primary level, the largest effect sizes are observed in Urban Band 1 as well as special schools, followed by Band 2 and Rural DEIS schools. These differences are substantial: DEIS Band 1 primary schools and special schools report approximately 14.5 to 19.6 higher percentage share of chronically absent students (depending on the year); DEIS post-primary schools report around 7 to 8.8 points more. In terms of days lost due to absenteeism, DEIS Band 1 primary and special schools experience approximately 5.8 to 7.08 additional days lost per year, and DEIS post-primary schools around 3.7 to 4.5 more days, compared to their non-DEIS counterparts. While the relationship between DEIS status and patterns of non-attendance is very strong, it is worth noting that a small number of DEIS schools, even in urban areas, have relatively low levels of absence.

Another indicator of socio-economic advantage is **fee-paying status** at post-primary level (among non-DEIS schools).³² Fee-paying schools are associated with significantly better attendance outcomes at the 1 per cent significance level, with large size effects: approximately 9.3 to 9.6 fewer percentage points share of chronically absent students and 5.8 to 6.3 fewer days lost per student compared to non-fee-paying schools. However, it is important to interpret these results with caution, as the sample size for fee-paying schools is relatively small.

Gender mix of schools is not found to be a significant factor at the primary level in either year, for either of the absenteeism outcomes. **At the post-primary level**, in both the school years, **boys' schools are associated with significantly lower counts** of chronically absent students compared to mixed-gender schools. However, for days lost due to absenteeism, no statistically significant differences are observed by school gender mix. These findings suggest that gender mix plays a **limited role** in influencing absenteeism pattern, particularly at primary level.

With respect to **school ethos**, at primary level, multi-denominational schools tend to have significantly higher levels of absenteeism – both in terms of chronically absent students and days lost – than Catholic schools. At the post-primary level, schools with a minority religious ethos have significantly lower levels of chronic absenteeism and fewer days lost than other schools, a pattern that may be due to the socio-economic profile of their student population. These results suggest that **multi-denominational schools may face greater challenges**³³ related to student attendance, although the extent to which this reflects the profile of students cannot be determined.

In terms of **school size at primary level**, **smaller schools tend to exhibit better attendance outcomes**; however, the relationship is not entirely linear. Moreover, it is important to consider that, as previously mentioned, DEIS Band 1 and Band 2 primary schools are underrepresented in the 'small' and 'very small' school categories (even though school size is statistically controlled for in the model). **At the post-primary level, school size is not, overall, significantly associated with either chronic absenteeism counts or days lost in either of the years examined.** One explanation for the relationship between attendance and school size could perhaps be that, in smaller schools, teachers and parents are more likely to know each other, creating a social pressure on parents to ensure their children attend school. This may be why this size effect matters only at primary level, where

³² The small number of fee-paying schools at primary level are not recognised schools for these purposes and so are not included in attendance returns.

³³ The pattern at post-primary level could be explained by the more disadvantaged profile of students attending multi-denominational schools (Appendix Table A.1.2). However, this does not account for the difference at primary level where GUI data show these schools have a more advantaged profile than Catholic schools.

parent-teacher contact is greater and parents have a stronger influence on children's attendance.

Regarding language of instruction, **Irish-medium schools at primary level are associated with significantly better attendance outcomes** – both in terms of chronic absenteeism and days lost – at the 1 per cent significance level in both years analysed. **At the post-primary level, Irish-medium schools are also associated with better outcomes in terms of CA rates**, but no meaningful differences are observed for days lost per student. These results suggest that the language of instruction may indeed play a role in shaping attendance outcomes, especially at the primary level, though the extent to which this pattern reflects differences in the profile of students cannot be determined.³⁴

With respect to the HP Pobal Index, for both educational stages and across the two years examined, the coefficients indicate a clear gradient: **higher levels of socio-economic deprivation are consistently associated with greater absenteeism as measured by both outcomes**, over and above the effects of school DEIS status. The only exception to this gradient is the comparison between disadvantaged areas and those classified as marginally below average, where the difference is generally not statistically significant (except in the case of the primary 2022/23 data for both outcomes). This suggests that the key distinction lies between disadvantaged areas and all other categories, rather than among finer gradations of deprivation.

Overall, **county-level effects** across the various models were not found to be generally statistically meaningful, indicating that geographical location at the county level **does not explain variation** in absenteeism outcomes. Instead, other geographical measures – particularly the socio-economic characteristics of the areas in which schools are located – seem to provide a more fruitful explanation.

The analyses looked at whether the effect of **DEIS status varied by other school-level characteristics** – namely gender mix, school size, language of instruction, and the HP Pobal Index. At the primary level there are some noteworthy findings in this regard. One of the main findings is that, for primary schools across both years, the increase in absenteeism as measured by the two outcomes associated with being located in a deprived area is less pronounced for DEIS Urban Band 1 schools than for non-DEIS schools, suggesting that targeted resources or interventions in these

³⁴ In this particular case, as previously mentioned, Irish-medium schools tend to disproportionately include families from advantaged SES backgrounds, which could explain their better attendance outcomes beyond specific characteristics or functioning of Irish-medium schools. An alternative explanation is that there may be something unique about Irish-medium schools that promotes and sustains better attendance, perhaps related to the fact that, given the common (minority) language, they may foster a more intense sense of community and shared identity that, in turn, creates greater school engagement or a social penalty for parents to withdraw their children from school.

schools may somewhat offset the effects of area-level disadvantage. Moreover, for both years, the detrimental effects of being a DEIS school are exacerbated in the context of single-gender schools (although the main effects of gender mix are not significant). The interaction terms for the remaining variables do not yield very consistent results, especially at the post-primary level.

7.3 VARIATION OVER TIME

We then turn to a temporal comparison by examining variation in both absenteeism outcomes across the two years, 2022/23 and 2023/24, with a view to determining whether there is a 'recovery' in attendance with the gap in time since the pandemic and whether any changes found are concentrated in specific types of schools. This is done using two approaches. The first model includes a year dummy variable and interacts it with selected school characteristics. The second model is based on the 'Regressor Variable method', which uses as the outcome variable the two outcomes of interest in 2023/24 and includes, as an explanatory variable, the baseline level in 2022/23. This approach examines relative changes (i.e. how did performance vary among schools with similar baseline levels?).

Primary and post-primary schools saw a moderate overall decrease in both the share of chronically absent students and the average number of days lost across the two years. For primary schools, the overall average change in the CA rate is a decline of 2.83 percentage points and 1.09 fewer days lost per student (indicating overall improvements in attendance). For post-primary schools, the decline is much smaller, at 0.964 percentage points in the CA rate and 0.1 fewer days lost per student. This is confirmed by the model with year as a dummy variable, controlling for the main school characteristics (DEIS status, ethos, gender mix, size and language). For primary schools, in 2024 the predicted share of chronically absent students is, on average, 3.2 percentage points lower and the number of days lost per student is 1.124 lower than in 2023, both at the 1 per cent significance level. For post-primary schools, the figures are lower but remain statistically significant at the 5 per cent and 10 per cent levels: a 1.7 percentage point lower CA rate and 0.71 fewer days lost per student in 2024 compared with 2023.

However, the average patterns by school type conceal important differences across individual schools. Thirty per cent of primary schools actually experienced an increase in chronic absence between 2022/23 and 2023/24 while over a quarter (27 per cent) had an increase in days lost per student. For post-primary schools, 42 per cent had an increase in chronic absence while 48 per cent had an increase in days lost per student.

When we examine whether time changes are concentrated among specific groups, it is important to distinguish between absolute and relative changes. At primary

level, DEIS Urban Band 1 schools have a larger increase in chronic absence between 2022/23 and 2023/24 as do schools in disadvantaged areas. However, this is somewhat misleading: given their higher initial CA rates, they actually experience a lower relative decrease than other school types. Thus, DEIS schools generally had higher rates of chronic absenteeism and days lost per student in 2024 compared to non-DEIS schools among schools with similar levels of absenteeism in 2023. Other patterns also emerge: mixed-gender schools, as opposed to single-gender schools, and smaller schools, as opposed to larger ones, seem to perform better in both days lost and CA. Schools in more socio-economically advantaged areas also appear to do better when looking at relative changes, contradicting the absolute change results (likely because these schools had worse outcomes to begin with and therefore more room for improvement).

For post-primary schools, in both the absolute and relative change models, the time trend does not appear to differ substantially by school type, with only a few minor exceptions. The most notable finding is that, as in primary schools, DEIS schools – compared to non-DEIS schools – performed worse in terms of both days lost and CA.

7.4 IMPLICATIONS FOR DATA ON ATTENDANCE

It is important to acknowledge several key limitations of the available data on student attendance. First, the **dataset does not contain information on students' socio-demographic profiles** (e.g. social class, migrant background, parental education, etc.), which **limits our ability to determine whether the observed differences are compositional or contextual**. We recommend that such data be collected in future, or that datasets from different sources (such as pupil records from the Department of Education and Youth) be linked to facilitate more in-depth analysis. Moreover, school records were missing for a substantial proportion of schools (as previously mentioned in Section 1.2 Methodology, 23.25 per cent of primary and 26.83 per cent of post-primary schools were missing entries), which limits the generalisability of the findings. Another limitation is that the dataset only provides counts of chronic absenteeism (defined as 20 or more days absence) but does not gather information on regular patterns of absenteeism, which may be influenced by different school-level characteristics.

There are a number of small changes which would enhance the quality of the data for monitoring purposes. The current system for collecting attendance records would benefit from built-in validation checks to minimise inconsistencies and errors. Some records contained discrepancies where the number of days lost to absences was recorded as zero though the number of chronically absent students was positive; in other cases, the number of chronically absent students was recorded as zero, which is highly unlikely. In some cases, schools reported a

number of chronically absent students that exceeded their total student enrolment. Additional issues included duplicate entries and school roll numbers that had not been updated following school amalgamations or closures.

7.5 IMPLICATIONS FOR POLICY AND PRACTICE

Analyses of patterns of non-attendance across schools have important implications for national policy and school practice to enhance attendance. The study adds to the body of evidence which **highlights very significant differences between DEIS and non-DEIS schools** in their non-attendance levels, patterns that will contribute to a substantial learning and qualification gap, influencing later life-chances. The analyses offer new insights into the role of both school-level and area-level disadvantage in shaping engagement and attendance. At the primary level, Urban Band 1 schools and schools located in socio-economically disadvantaged areas have particularly high absence levels. However, there is also an interaction effect at play: Band 1 schools appear to largely offset the detrimental effects associated with being in a deprived area. This points to the need to address both the attendance problems of Band 1 schools and of schools in deprived areas that are not DEIS.

Previous research (see, for example, OECD, 2024) has highlighted the diversity of need in the DEIS sector. At post-primary level, where there is a simple dichotomy between DEIS and non-DEIS, the findings point to important differences by area-level deprivation, providing support for the planned introduction of a ‘DEIS plus’ model to support schools with particularly acute levels of disadvantage.

Absence levels are particularly high in special schools. Further research could usefully look at the detailed reason for absence, particularly the role of illness as opposed to attending medical or therapeutic appointments. An evaluation of the ongoing pilot programme for the delivery of in-school therapy supports for a number of special schools could yield useful insights into any impact on attendance patterns.

Some of the other main findings are that, in primary schools, small schools generally perform better than large schools, and Irish-medium schools perform better than English-medium schools. Attendance at both primary and post-primary levels is also lower in multi-denominational schools. Further research would be valuable to determine how much of this is due to differences in the socio-economic composition of the student body (which, again, would require linking data) and how much is attributable to factors specifically related to the functioning of schools, as well as to identify what those factors are. Both quantitative and qualitative research would be useful to work towards these directions. A

hypothesis to be explored, as previously mentioned, is that small primary schools may have an advantage by creating a form of social pressure or penalty for parents.

There is no evidence that the passage of time since the pandemic is likely to solve attendance issues. Between 2022/23 and 2023/24, there has been a modest improvement in attendance in primary schools, but a significant group of schools has seen an increase over this timeframe. Of concern is also a large minority of post-primary schools actually seeing a worsening situation. Moreover, it is concerning that, although absolute figures suggest that DEIS schools and those in disadvantaged areas appear to have improved more, in relative terms (accounting for the fact that they started from a worse position) they are experiencing a poorer trend. This means that schools with the worst outcomes are also not recovering as well, potentially indicating that inequalities in attendance at the school level could even widen in the future. Moreover, as previously mentioned, some evidence suggests that Ireland is experiencing a particularly heightened increase in truancy post-pandemic (Anders et al., 2024), which, alongside the patterns presented in this report, further supports the need for large-scale interventions to support attendance.

Research on the School Completion Programme has shown the importance of staff developing strong and supportive relationships with children, providing one good adult in their lives to whom they can turn for help, and providing different types of interventions and supports on a one-to-one or group basis in promoting school engagement, including attendance, among vulnerable children and young people (Smyth et al., 2025). Previous research focused more specifically on attendance suggests that multi-tiered interventions involving multidisciplinary teams and promoting interaction between children, parents and schools may be especially successful in addressing non-attendance (Arbour et al., 2023; Lehr et al., 2004; Reid, 2013; Kearney, 2016; Kearney and Graczyk, 2020). It is also important to consider that interventions should involve analysing the situation – both qualitatively and quantitatively – of each school to understand the nature of its attendance problems and, based on that, develop tailored, context-specific solutions (Balu and Erlich, 2018; Kearney and Graczyk, 2020).

Working for a healthy, stimulating school climate where children feel at ease, as well as attention to mental health, have proven successful (Alaimo and Kelly, 2025; Arbour et al., 2023). Individualised attention to foster academic engagement, improve well-being and strengthen relationships within school among those most at risk has also shown positive results (Lehr et al., 2004; Arbour et al., 2023; Sinclair et al., 2005; Villares et al., 2024). School-based mental health services – both for the student body as a whole and targeted to those with high levels of non-attendance – have also shown promising results (Cooper et al., 2020; Lambie et al.,

2019; Jennings et al., 2000). In addition, well-designed incentive schemes, such as recognition (e.g. stars on lockers) and prizes (e.g. pizza parties), can be effective in promoting attendance (Balu and Erlich, 2018). Keeping parents informed of their child's attendance through low-cost messages has also been shown to work (Musaddiq et al., 2024), as has informing them of the value of attendance (Robinson et al., 2018) or combining both approaches (Diaz et al., 2021). It is also important to note that school interventions alone may be limited in their ability to address the financial, social and emotional difficulties faced by parents contributing to non-attendance (e.g. transportation costs, caregiving gaps, etc.) (see Smyth et al., 2025). While schools can collaborate with community or governmental actors to support families in this regard (Ford and Sutphen, 1996), broader policy measures are needed to tackle these issues.

The results also point to the importance of school and its role in enhancing attendance. Even among certain school types, there is considerable variation in the level of chronic absences and days lost. Further research could usefully identify the factors associated with improving (or declining) attendance at school level. Data on school absence can form the basis for developing appropriate interventions and supports at school level. The planned pilot Anseo programme is designed to leverage information on patterns of absence at school level to help schools develop strategies to target non-attendance.

REFERENCES

Alaimo, G. and Kelly, C. (2025, June). 'Exploring the Implementation of Relational Practice in a Primary School to Support School Attendance', *Frontiers in Education*, Vol. 10, p. 1602057. Frontiers.

Allensworth, E.M. and Easton, J.Q. (2007). *What matters for staying on-track and graduating in Chicago public high schools: A close look at course grades, failures, and attendance in the freshman year* (Research Report). Consortium on Chicago School Research.

Allison, P.D. (1990). 'Change scores as dependent variables in regression analysis', *Sociological methodology*, 93-114.

Anders, J., Jerrim, J., Ladrón de Guevara Rodríguez, M. and Marcenaro-Gutiérrez, O.D. (2024). 'The rise in teenagers skipping school across English-speaking countries: Evidence from PISA'. CEPEO Working Paper 24-10, UCL.

Ansari, A., Hofkens, T.L. and Pianta, R.C. (2020). 'Absenteeism in the first decade of education forecasts civic engagement and educational and socioeconomic prospects in young adulthood', *Journal of Youth and Adolescence*, 49(9), 1835-1848. <https://doi.org/10.1007/s10964-020-01272-4>.

Arbour, M., Soto, C., Alée, Y., Atwood, S., Muñoz, P. and Marzolo, M. (2023, January). 'Absenteeism prevention in preschools in Chile: impact from a quasi-experimental evaluation of 2011–2017 Ministry of Education data', *Frontiers in Education*, Vol. 7, p. 975092. Frontiers Media SA.

Attwood, G. and Croll, P. (2017). 'Truancy and well-being among secondary school pupils in England', *Managing and improving school attendance and behaviour*, pp. 26-40. Routledge.

Aucejo, E.M. and Romano, T.F. (2016). 'Assessing the effect of school days and absences on test score performance', *Economics of Education Review*, 55, 70-87. <https://doi.org/10.1016/j.econedurev.2016.08.007>.

Balu, R. and Ehrlich, S.B. (2018). 'Making sense out of incentives: A framework for considering the design, use, and implementation of incentives to improve attendance', *Journal of Education for Students Placed at Risk (JESPAR)*, 23(1-2), 93-106.

Cooper, J., Brown, T. and Yu, M.-I. (2020). 'A pilot study of school-based Filial Therapy (SBFT) with a group of Australian children attending rural primary schools: The impact on academic engagement, school attendance and behaviour', *International Journal of Play*, 9(3), 283-301. <https://doi.org/10.1080/21594937.2020.1806495>.

Dee, T.S. (2024). 'Higher chronic absenteeism threatens academic recovery from the COVID-19 pandemic', *Proceedings of the National Academy of Sciences*, 121(3), e2312249121.

Department for Education (2023, 16 March). 'Pupil absence in schools in England: 2021 to 2022' [Statistics]. GOV.UK. <https://explore-education-statistics.service.gov.uk/find-statistics/pupil-absence-in-schools-in-england/2021-22>.

Department for Education (2024, March 21). 'Pupil absence in schools in England: 2022 to 2023' [Statistics]. GOV.UK. <https://explore-education-statistics.service.gov.uk/find-statistics/pupil-absence-in-schools-in-england/2022-23>.

Ford, J. and Sutphen, R.D. (1996). 'Early intervention to improve attendance in elementary school for at-risk children: A pilot program', *Children & Schools*, 18(2), 95-102.

Fuller, S.C., Swiderski, T., Mikkelsen, C. and Bastian, K.C. (2024). 'In school, engaged, on track? The effect of the pandemic on student attendance, course grades, and grade retention in North Carolina', *Educational Researcher*. <https://doi.org/10.3102/0013189X241299397>.

Gottfried, M.A. (2010). 'Evaluating the relationship between student attendance and achievement in urban elementary and middle schools: An instrumental variables approach', *American Educational Research Journal*, 47(2), 434-465. <https://doi.org/10.3102/0002831209350494>.

Gottfried, M.A. (2011). 'The detrimental effects of missing school: Evidence from urban siblings', *American Journal of Education*, 117(2), 147-182. <https://doi.org/10.1086/657886>.

Gottfried, M.A. and Kirksey, J.J. (2017). "When" students miss school: The role of timing of absenteeism on students' test performance', *Educational Researcher*, 46(3), 119-130. <https://doi.org/10.3102/0013189X17703945>.

Jennings, J., Pearson, G. and Harris, M. (2000). 'Implementing and maintaining school-based mental health services in a large, urban school district', *Journal of School Health*, 70(5), 201-205. <https://doi.org/10.1111/j.1746-1561.2000.tb06473.x>.

Kearney, C.A. (2016). 'Managing school absenteeism at multiple tiers: An evidence-based and practical guide for professionals', *Oxford University Press*. <https://doi.org/10.1093/med:psy/ch/9780199985296.001.0001>.

Kearney, C.A. and Graczyk, P.A. (2020). 'A multidimensional, multi-tiered system of supports model to promote school attendance and address school absenteeism', *Clinical Child and Family Psychology Review*, 23(3), 316-337. <https://doi.org/10.1007/s10567-020-00317->.

Klein, M. and Sosu, E. (2024). 'School absences, academic achievement, and adolescents' post-school destinations', *Oxford Review of Education*, 1-18. <https://doi.org/10.1080/03054985.2024.2308520>.

Klein, M., Sosu, E., Dräger, J. and Perinetti Casoni, V. (2024). *Understanding school attendance, educational attainment, and labour market outcomes*.

Lambie, G.W., Solomon, C., Joe, J., Kelchner, V.P. and Perleoni, M.K. (2019). 'A school-based mental health counseling intervention with students in Title I elementary schools', *Children Schools*, 41(3), 161-168. <https://doi.org/10.1093/cs/cdz01>.

Lehr, C.A., Sinclair, M.F. and Christenson, S.L. (2004). 'Addressing student engagement and truancy prevention during the elementary school years: A replication study of the check & connect model', *Journal of education for students placed at risk*, 9(3), 279-301.

Lichand, G., Klotz, L., Lopes, L. and de Miranda Grochoki, L.F. (2024). *Chronic absenteeism after the pandemic: Evidence from Brazilian students*.

Liu, J., Lee, M. and Gershenson, S. (2021). 'The short- and long-run impacts of secondary school absences'. *Journal of Public Economics*, 199, 104441. <https://doi.org/10.1016/j.jpubeco.2021.104441>.

Malkus, N. (2024). *Long COVID for Public Schools: Chronic Absenteeism before and after the Pandemic*. American Enterprise Institute.

Mateo-Berganza Díaz, M.M., Becerra, L., Hernández Agramonte, J.M., Lopez Boo, F., Pérez Alfaro, M. and Vasquez Echeverria, A. (2020). *Nudging Parents to Increase Preschool Attendance in Uruguay*. <https://doi.org/10.18235/0002901>.

Musaddiq, T., Prettyman, A. and Smith, J. (2024). 'Using existing school messaging platforms to inform parents about their child's attendance', *Journal of Research on Educational Effectiveness*, 17(4), 770-805.

OECD (2024). 'OECD Review of Resourcing Schools to Address Educational Disadvantage in Ireland', *Reviews of National Policies for Education*, OECD Publishing, Paris, <https://doi.org/10.1787/3433784c-en>.

Osborne, J.W. and Overbay, A. (2004). 'The power of outliers (and why researchers should always check for them)', *Practical Assessment, Research, and Evaluation*, 9(1).

Reid, K. (2013). *Managing school attendance: Successful intervention strategies for reducing truancy*. Routledge.

Robinson, C.D., Lee, M.G., Dearing, E. and Rogers, T. (2018). 'Reducing student absenteeism in the early grades by targeting parental beliefs', *American educational research journal*, 55(6), 1163-1192.

Sinclair, M.F., Christenson, S.L. and Thurlow, M.L. (2005). 'Promoting school completion of urban secondary youth with emotional or behavioral disabilities', *Exceptional children*, 71(4), 465-482.

Smerillo, N.E., Reynolds, A.J., Temple, J.A. and Ou, S.R. (2018). 'Chronic absence, eighth-grade achievement, and high school attainment in the Chicago Longitudinal Study', *Journal of School Psychology*, 67, 163-178. <https://doi.org/10.1016/j.jsp.2017.11.001>.

Smiti, A. (2020). 'A critical overview of outlier detection methods', *Computer Science Review*, 38, 100306.

Smyth, E. (1999). 'Pupil Performance, Absenteeism and School Drop-out: A Multi-dimensional Analysis', *School Effectiveness and School Improvement*, 10:4, 480-502, DOI: 10.1076/sepi.10.4.480.3496.

Smyth, E., Hingre, G. and Darmody, M. (2025). *The School Completion Programme revisited*. Dublin: ESRI.

Swiderski, T., Fuller, S.C. and Bastian, K.C. (2025). 'Student-Level Attendance Patterns Across Three Post-Pandemic Years', *Educational Evaluation and Policy Analysis*, 01623737251315715.

Thornton, M., Darmody, M. and McCoy, S. (2013). 'Persistent absenteeism among Irish primary school pupils', *Educational Review*, 65(4), 488-501. <https://doi.org/10.1080/00131911.2013.768599>.

Tomaszewski, W., Zajac, T., Rudling, E., Te Riele, K., McDaid, L. and Western, M. (2023). 'Uneven impacts of COVID-19 on the attendance rates of secondary school students from different socioeconomic backgrounds in Australia: A quasi-experimental analysis of administrative data', *Australian Journal of Social Issues*, 58(1), 111-130.

Tusla (2024, November). *Annual Attendance Report & Student Absence Reports: Primary and Post-Primary Schools 2022/2023* [PDF]. Tusla. https://www.tusla.ie/uploads/content/AAR_SAR_2022_2023_School_Year.pdf.

Villares, E., Bowers, H., Brigman, G. and Bottini, C. (2024). 'The effects of Student Success Skills on attendance and emotion regulation', *Journal of Counseling & Development*, 102(2), 163-174.

**Economic & Social Research
Institute**

**Whitaker Square
Sir John Rogerson's Quay
Dublin 2**

**Telephone: +353 1 863 2000
Email: admin@esri.ie
Web: www.esri.ie**

**An Institiúid um Thaighde
Eacnamaíochta agus Sóisialta**

**Cearnóg Whitaker
Cé Sir John Rogerson
Baile Átha Cliath 2**

**Teileafón: +353 1 863 2000
Ríomhphost: admin@esri.ie
Suíomh Gréasáin: www.esri.ie**

