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1. Introduction

Energy poverty is defined by Pye et al. in [1] as “a situation where individ-
uals or households are not able to adequately heat or provide other required
energy services in their homes at affordable cost”, and has attracted a lot of
attention in the literature. The battery of existing metrics of energy afford-
ability are defined on the basis of only two variables, disposable household
income and energy expenditure [see 2]. In addition, these metrics assume that
these variables do not change, raising the question of how changes in energy
expenditure, disposable income and energy efficiency affect the measurement
of deprivation of energy consumption. In a context where carbon taxation
has emerged as a key policy tool for environmental protection, lack of knowl-
edge on how to appropriately measure energy poverty leaves an important
gap that needs to be investigated, particularly when considering policies to
protect vulnerable households. In this regard [3] analyse several channels that
are already used in some jurisdictions to re-allocate additional revenues to
compensate vulnerable households and improve public acceptance of carbon
taxation. This raises the question of how metrics for energy affordability be-
have under changes in energy prices and household incomes due to increases
in carbon taxes and re-allocation of additional revenues.

Increases in energy efficiency are seen as a key policy instrument to over-
come energy poverty. However, [4] found that increases in energy efficiency
might not yield reductions in energy consumption for the poorest house-
holds. In addition, the property value after retrofitting does not increase for
these household types. Consequently, grants for energy efficiency need to be
carefully designed. To the best of our knowledge this study is the first one
that analyses how measures of energy affordability respond to changes in en-
ergy prices, energy efficiency and household expenditure using a behavioral
microsimulation model. In this study, we also quantify energy affordability
using a multidimensional approach for the first time. Under this approach,
different dimensions of deprivation can be simultaneously considered when
measuring energy affordability. In addition, multidimensional metrics can
capture the extension of energy poverty and its intensity experienced by the
individuals that are already in this condition.

Several reviews of the question of energy poverty from a policy perspective
exist, see for example [5], [6] and [7]. Both the measurement and alleviation of
energy poverty surface as important considerations. [8] recommends several
different measures of energy poverty for use in EU policy-making. However,
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the incidence and extent of energy poverty varies greatly depending on the
metric chosen. These works point out that there are several drivers of energy
poverty, including energy prices themselves, low income, energy inefficient
dwellings and energy inefficient appliances. The drivers of energy poverty
are therefore (a) multidimensional, and (b) most likely correlated with other
forms of deprivation. Furthermore, of particular relevance to policy makers
is the impact of new policies, such as environmental taxes and/or energy
efficiency retrofits, on energy poverty and on deprivation in general. We
therefore examine these issues by means of a microsimulation model to eval-
uate existing energy poverty metrics and potential policy responses. The
interaction between various indicators of deprivation when determining the
extent of energy poverty has been considered at various points in the liter-
ature, giving rise to the concept of multidimensional poverty. [9] propose a
methodology both for counting the number of deprivations being experienced
by each household and for determining the depth of the deprivation in each
case. We apply this methodology to determine the extent of energy poverty
in Ireland.

The literature on energy poverty is broad and we focus on those articles
that are most relevant to our study, either from a geographic or methodolog-
ical point of view. The question of energy poverty in an Irish context has
been addressed in two papers. The first, [10], estimates the extent of fuel
poverty in Ireland using expenditure on fuel as a proportion of total income,
and using a subjective self-reported metric. The work also identifies charac-
teristics of households most likely to experience fuel poverty and discusses
potential policy implications. [11] uses factor analysis and a multinomial re-
gression to determine that fuel poverty is not a distinct type of deprivation
in Ireland, and therefore does not warrant a policy response separate to that
of addressing poverty in general.

Outside of Ireland, the suitability of the energy poverty metrics used by
policy makers has received attention in the literature. [12] uses data from
France to analyse the extent of fuel poverty. They question the suitability
of defining fuel poverty as expenditure on fuel of 10% or more of net in-
come, and instead examine households that are not considered poor when
considering their income net of housing costs, but that become poor when
fuel expenditure is considered. [13] also questions expenditure-based metrics
of fuel poverty by considering housing costs in tandem with low income with
high fuel expenditure. They propose alternative metrics for fuel poverty and
identify households at risk of fuel poverty. [14] uses German data to review
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the choice of fuel poverty line and the measurement of fuel poverty. The
number of households determined to be experiencing fuel poverty is found to
be highly sensitive to the fuel poverty line chosen. [15] use French data to
examine the interaction between fuel poverty and self-assessed health, finding
a causal relationship, by means of instrumental variables. [16] uses Arme-
nian data to examine the impacts of a reform to the country’s natural gas
tariffs on poverty (as opposed to fuel poverty). They find that increased gas
tariffs led to a switch away from gas and also to an increase in the number
of households falling below the poverty line.

There is very little literature that employs a behavioural microsimula-
tion approach to examine energy poverty. [17] uses a ’morning after’ mi-
crosimulation model to examine the dynamic behaviour of various energy
poverty metrics, and finds that some measures, including metrics recom-
mended and used by the European Commission, described in [8], exhibit odd
dynamic behaviour. However, this microsimulation exercise does not capture
behavioural responses to changes in prices and income.

In contrast, this paper performs a behavioural microsimulation, para-
materised through the estimation of a demand system, which we then use
to examine energy poverty. A demand system is a behavioural model that
represents consumption decisions as a system of equations which depend on
prices, consumption budgets, and observed as well as unobserved household
characteristics. Demand systems have been used to study households’ energy
use and carbon emissions [see 18, 19, 20, 21, 22]. A significant limitation of
the existing literature is the assumed shape of the Engel curves, which de-
scribe how household expenditure on a particular commodity varies across
different levels of household income. In particular, recent studies assume
linear (i.e. the Almost Ideal Demand System (AI-DS) model proposed by
[23]) or quadratic Engel curves (i.e. Quadratic Almost Ideal Demand Sys-
tem (QUAIDS) proposed by [24]).

Relevant literature that employs demand systems to examine energy poverty
include [25]. They use experimental data from India to construct a demand
system for solar PV and for grid electricity. [26] uses the QUAIDS model to
determine the impact of environmental taxes on both emissions and house-
hold welfare in Mexico. [27] also uses QUAIDS to determine the impact
of energy price changes in Indonesia, and finds that energy pricing policies
can reduce both emissions and welfare, and so should be accompanied by
compensation measures. [28] uses a demand system to examine the distri-
butional impacts of carbon taxes, and finds they depend on the underlying
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demand structure. Here we use a more flexible approach where Engel curves
are allowed to have any shape. We followed [29] and employ the Exact Affine
Stone Index (EASI) implicit Marshallian demand system.

In this paper, we use our model to determine the impacts not only of prices
but also of the energy efficiency of dwellings on expenditure on energy and
non-energy goods and services. We consider three different energy poverty
metrics proposed by the EU Commission, described in [8]. We then go sig-
nificantly beyond the extant microsimulation literature on energy poverty by
considering the multidimensional poverty framework proposed by [9]. Fur-
thermore, we also consider the impacts of increased housing costs, which [13]
proposes are the “elephant in the room” when it comes to energy poverty.
As a final novel contribution, we simulate the impact of two oft-proposed
policy interventions to mitigate the increase in energy poverty, namely an
increase in energy efficiency of dwellings via housing retrofits and a policy
that recycles the revenues from carbon taxation back to households.

In line with [17] we find that expenditure-based metrics for energy poverty
have two important drawbacks. First, they can only capture the extensive
margin of energy poverty (i.e. the relative number of households experi-
encing energy poverty). Second, they have a counterintuitive behaviour, in
that metrics based on setting the threshold above the median of expenditure
find the largest proportion of energy poor in high income levels, while met-
rics based on minimum standard of living find increases of energy poverty
when there is a lump-sum transfer. Recent proposals for multidimensional
poverty open a promising door to designing more efficient policies to protect
vulnerable households and so form the final part of our analysis.

The remainder of this article is structured as follows. Section 2 describes
the methodology for estimating the demand system. Section 3 describes the
data used and the microsimulation scenarios chosen. Section 4 presents the
results and section 5 discusses and concludes.

2. Methodology

2.1. EASI demand system estimation

We use the Exact Affine Stone Index (EASI) implicit Marshallian demand
system to estimate the household expenditure function and derive a demand
system developed by [29]. It is the latest major advancement in the litera-
ture on household demand systems. It provides a first-order approximation
of an arbitrary expenditure function from which a demand system can be
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derived. In order to estimate the EASI, only information on the expenditure
for different goods and their prices are required. Unlike the Almost Ideal
Demand System and its variations, the EASI demand system can represent
the relationship between expenditure and income, the Engels curves, in a
flexible manner. Recent applications of this methodology can be found in
[30] and [31].

The generalized method of moments (GMM) estimator or an iterated lin-
ear approximation can be used to estimate the demand system. [29] propose
the following expenditure function:

log [C(p, y)] = y +
I∑

i=1

mi(y, z) log(pi)

+
1

2

I∑
i=1

I∑
j=1

aij log(pi) log(pj)

+
1

2

I∑
i=1

I∑
j=1

bij log(pi)y

+
I∑

i=1

εi log(pi)

(1)

where

mi =
R∑

r=0

br log(y)r +
∑
l

dilzl log(y) +
∑
l

gilzl (2)

and where pi are commodity prices, y is the implicit household utility, and
zl are demographic characteristics. R is chosen by the modeller and deter-
mines the degree of the polynomial mi. This specification allows for highly
flexible Engel curves while still keeping the functional form quite compre-
hensible. ai,j,l, bi,j, bi,r, di,l and gil are the parameters to be estimated. εi
represents, unobserved preference heterogeneity. The Almost Ideal Demand
System (AI-DS) model proposed by [23] and the Quadratic Almost Ideal De-
mand System (QUAIDS) proposed by [24] assume linear and quadratic Engel
curves. [29] has shown that the EASI demand system can approximate these
models by setting r in the polynomial of mi either linear or quadratic.
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[29] show that the implicit utility, y, can be expressed in the following
way:

y =
log(x)−

∑
iwi log(pi) + 1

2

∑
i

∑
j ai,j log(pi) log(pi)

1− 1
2

∑
i

∑
j bi,j log(pi) log(pj)

(3)

By applying Shephard’s lemma to the cost function embedded in expres-
sion (1)1, the following set of equations for the budget shares wi is obtained:

wi =
∑
j

ai,j log pj +
∑
j

bi,j log y

+
R∑

r=0

bi,r[log y]r +
∑
l

gi,lzl +
∑
l

di,lzl log y + εi.

(4)

[29] shows that (4) can be estimated with an approximation of y or with
(3), with very similar estimates2. We use the first approach where approxi-
mating y reduces the computational burden of estimating the parameters of
the system and standard errors using three-stage least squares (3SLS).

The estimated expenditure function must have all the properties that
hold for a theoretical expenditure function [32]. The following restrictions
ensure the theoretical consistency of the estimated expenditure function:

ai,j,l = aj,i,l and
∑
i

ai,j,l = 0 ∀ l,

bi,j = bj,i and
∑
i

bi,j = 0,∑
i

di,l =
∑
i

gi,l = 0 ∀ l,∑
i

bi,r = 0 for r 6= 0,∑
i

bi,r = 1 for r = 0,

(5)

1Note that log(x) = log [C(p, y)]
2The authors approximate y by using log(x) −

∑
i w̄ilog(pi) where w̄i is the mean of

the budget share.
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DispInc
A household is determined to be experiencing energy poverty if
their expenditure on energy is greater than 10% of their disposable
household income

AboveMed
Above the median: A household is determined to be experiencing
energy poverty if their expenditure on energy is more than
the national median energy expenditure

MISLI

Minimum Income Standard Low-Income: A household is considered
to be experiencing energy poverty if disposable income after energy
costs is below the median income of the poorest 40 % after housing
and energy costs

Table 1: Expenditure-based energy poverty metrics considered

We use information on intra-group variation of the aggregated consump-
tion categories to obtain household-specific prices following [33] to further
improve identification. Once the parameters in equation 4 are estimated,
own-price elasticities (OPE) and expenditure elasticities (EE) can be com-
puted as follows:

OPE =

{
∂wi

∂ log(pi)

}
1

wi

− 1 (6)

EE =

{
∂wi

∂ log(X)

}
1

wi

+ 1 (7)

2.2. Calculation of energy poverty metrics

Once the demand system above has been estimated, we use microsimula-
tion to determine the impact of increasing fuel and housing costs on energy
poverty, and to evaluate two potential policy responses. We first consider
three expenditure-based energy poverty metrics recommended by the Euro-
pean Commission and described in [8]. The metrics we examine are described
in Table 1.

In addition to these metrics, we calculate the proportion of households
experiencing multidimensional poverty, as proposed in [9]. The methodology
requires computing a multidimensional headcount ratio, H, which measures
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the incidence of simultaneous deprivation in the population. The index A
then computes the breadth of simultaneous deprivation. The index M0 =
H ·A computes the proportion of households experiencing multidimensional
poverty, while the index M1 considers the incidence of poverty H, the breadth
of deprivation (A) and the average depth of deprivation across the deprived
dimensions G. Finally the metric S can be computed, which is the average
severity of deprivations.

The index H is given by

H =

∑N
i=1 ρk(yi, z)

N
=

q

N
(8)

where y is a vector of deprivation indicators, z is a vector of threshold
levels below which deprivation is indicated for each element of y, k is the
number of deprivations that a household must experience in order to be con-
sidered to be experiencing multidimensional poverty, N is the total number
of households and ρ is a binary function that is equal to one if a household
experiences k or more deprivations, and is equal to zero otherwise.

A is computed by first computing the deprivation matrix g0i,j, whose el-
ements are wi,j if yi,j < zi,j and zero otherwise, for all households i and
deprivation indicators j. The vector wj is a vector of weights assigned to
each deprivation. | g0k | is defined as the sum of all elements in the matrix
g0k, and from this A is derived:

A =
| g0k |
q

(9)

M0 is then computed as the product of H and A.
M1 is computed by

M1 = M0 ·G =
| g1(k) |
N

(10)

,
where g1(k) is the sum of the poverty gaps of poor individuals and G is

the average poverty gap across all possible deprivations,

G =
| g1(k) |
| g0(k) |

(11)

Finally S is given by
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S =
| g2(k) |
| g0(k) |

(12)

where g2 = g0∗ z−y0
z

2
is an indicator of the rate in which a poor household

becomes poorer3.
The deprivation metrics y we consider are threefold: (i) income, (ii)

equivalised energy consumption and (iii) energy requirement. The associ-
ated thresholds z we choose are (i) disposable income net of housing costs of
less than 60% of the median, (ii) energy usage per person in kWh of less than
the median and (iii) a dwelling energy requirement in kWh per m2 greater
than the median, respectively. We choose k = 2, and so ρ is equal to one if
a household is below the threshold for at least two of these three deprivation
metrics.

We perform two analyses, an unweighted analysis where the three depri-
vations considered are equally weighted (wj = 1

3
∀ j) and a weighted analysis

where the weighting on income is 45%, on energy requirement is 35% and on
the quantity of energy used is 20%.

We compute these metrics using the mpi command in Stata [34].

3. Data and scenarios

3.1. Household, housing, commodity and pricing data

The dataset employed in this work is the Household Budget Survey
(HBS), conducted by the Central Statistical Office (CSO) every five years.
The purpose of the survey is to determine a detailed pattern of household
expenditure, which in turn is used to update the weighting basis of the Con-
sumer Price Index4. We use the waves from 1994, 1999, 2004, 2009 and
2015-2016 in this work, in a pooled cross-sectional manner. We also use
indices for commodity prices for the same years provided by the CSO.

For the purposes of this study, the consumption goods were grouped into
several categories: foods, housing, lighting and heating, transportation, edu-
cation and leisure, and other goods and services. This aggregation is similar
to that used in [30] and [35]. This grouping largely follows the Classification
of Individual Consumption According to Purpose (COICOP). As in [18], we

3The expression generalises to gα = g0 ∗ z−y0z

α

4See https://www.cso.ie/en/methods/housingandhouseholds/householdbudgetsurvey/
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do not include the purchase of vehicles and white goods appliances. Instead,
dummy variables for ownership of these goods are included in the analysis.
The rationale for this is that consumption of durables is an investment and
in order to model changes in household investment would require a different
approach from the one used in this study. Summary statistics for expenditure
and price data are shown in Table 2.

Variable Mean Std. Dev.
Expenditure shares:
Food 0.243 0.112
Housing 0.15 0.117
Energy 0.05 0.034
Transport 0.094 0.054
Education 0.145 0.134
Services 0.319 0.144

Prices (logs):
Food 4.218 0.271
Housing 3.272 0.499
Energy 3.756 0.41
Transport 3.584 0.524
Education 3.525 0.883
Services 2.846 0.89

Total expenditure 996.004 1251.262
Income 10385.469 27988.161
Energy requirement (kWh/m3) 263.912 94.116

Rural 0.339 0.473
Washing machine 0.973 0.162
Dishwasher 0.597 0.490
Fridge 0.339 0.473
Owning a car 0.878 0.328

N 18504

Table 2: Summary statistics

In addition, dummy variables are included for whether a dwelling is in
a rural area (according to the CSO classification of same), the age of the
dwelling, whether the dwelling has a washing machine, a dishwasher and a
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fridge, and finally whether the household owns a car. Summary statistics for
these variables are also shown in Table 2. We also include dummy variables in
our econometric specification for the quarter in which the data were collected.

Regarding energy efficiency, we follow [36] and use the data from The
Sustainable Energy Authority of Ireland (SEAI). SEAI maintains a public
register of completed Energy Performance Certificates (EPCs), termed Build-
ing Energy Ratings (BERs) in Ireland5. BERs are determined as the inverse
of the energy requirement of the dwelling, expressed as kWh/m3. In order
to determine the energy requirement of each dwelling in our sample, we re-
run the regression as in [36] with updated data and an adjusted specification
to suit the data available in the household budget survey (HBS) 6. The esti-
mates are displayed in Table 3. The parameters are in line with the estimates
provided by [36]. In general, one can see that newer dwellings, dwellings with
a gas fired central heating system and semi-detached and terraced dwellings
have higher levels of energy efficiency. The HBS dataset includes data on the
age of dwellings, the type of heating system and fuel of the dwelling and the
dwelling type (detached house, semi-detached house, apartment, etc), and so
we use these parameters to impute the energy requirement of each dwelling
in the HBS. The descriptive values for this variable are displayed in Table 2.

Interaction of expenditure levels and variables for family types are intro-
duced in the econometric specification. Family categories are shown in Table
4.

Heating and lighting expenditure, which we shall also denote as “energy”
expenditure throughout the paper, comprises expenditure on electricity, nat-
ural gas, liquid fuels and solid fuels. Transportation expenditure comprises
petrol, diesel, maintenance, insurance and public transport. Carbon taxes in
the non-ETS sector affect the prices of heating fuels and of fuels for private
transportation, and so we can estimate the changes in the expenditure dis-
tribution as a result of the carbon tax’s effect on both groups. Pricing data
was obtained from the price index from the CSO. Given that this is a price
index, we do not have actual prices in monetary values. However, the precise
evolution of prices for the goods categories observed in the expenditure data
is sufficient to identify the EASI demand system.

5The database of BERs is available to download at: http://www.seai.ie/Your Build-
ing/BER/National BER Research Tool/

6We thank Dr. John Curtis for providing the estimation routine used in their paper.
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Pre 1919 Ref.
1919–1945 -0.042***
1946–1960 -0.110***
1961–1970 -0.219***
1971–1980 -0.306***
1981–1990 -0.398***
1991–2000 -0.476***
2001–2010 -0.666***
2011 -1.848***
Detached house Ref.
Semi-detached house and Terrace -0.005****
Apartments 0.007***
Other -0.001
No central heating Ref.
Electricity 0.416***
Gas 0.095***
Oil 0.177***
Solid fuels 0.671***
Other 0.728***
constant 5.673***
N 872056
R-squared 0.664

Significance levels: ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 3: Dependent variable log(energy requirment). Using ordinary least squares

Sample size Frequency
Adult aged 14-64 years 1,633 8.83
1 adult aged 65 or over 1,408 7.61
Single adult with children 862 4.66
Married couple with children 5,457 29.49
Married couple only 3,517 19.01
Rest other households 5,627 30.41

Table 4: Household types

12



0
.0

2
.0

4
.0

6
.0

8
.1

%

4 6 8 10
x

Energy
0

.0
5

.1
.1

5
.2

%

4 6 8 10
x

Housing

0
.0

5
.1

.1
5

%

4 6 8 10
x

Transport

Figure 1: Engel curves across the logarithm of total expenditure

Figure 1 shows the Engel curves for expenditure on energy, housing and
transport. These commodities make up a larger share of expenditure in lower
income households. The nonlinearity evident in the Engel curves justifies the
EASI demand system approach, as an AIDS or QUAIDS specification would
be unable to capture the expenditure functions that describe the underlying
data.

Energy efficiency is also allocated unequally across income levels, with
poorer households more likely to live in poorer quality housing, which has
lower energy efficiency. Figure 2 shows the average energy requirement of
dwellings by income quartile, which decreases as incomes increase, indicating
that more affluent households live in more energy efficient properties. The
equivalised energy demand in kWh is also shown, which increases across
income quartiles.
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Figure 2: Energy requirement and energy consumption

3.2. Microsimulation scenarios

We determine the impact on energy poverty of several potential scenarios
via microsimulation. We simulate the impact of increasing carbon taxation
by 94 eper tonne, which according to [3] is the level required in order to
reach the goals set in the Paris agreement. A carbon tax was introduced in
2010 in Ireland which applies to non-ETS emissions and currently stands at
e26 per tonne. Consequently, the carbon tax that we simulate is of 120 eper
tonne. Fuel for heating and fuels for private transportation are affected under
this scenario. We apply the tax increase to both heating and transportation
commodities, and we also increase the cost of housing (rent or mortgage
repayment) by 30%. We model the impacts of both sets of cost increases
when combined with an increase in energy efficiency, by decreasing the energy
requirement of each dwelling by 50 kWh/m2. Finally we model the impact
when combined with a revenue recycling scheme, where the revenue from
carbon taxation is distributed via a lump sum payment to each household,
colloquially known as a “green cheque”. Table 5 summarises these scenarios.

14



Scenario Description Income change Price change
NoTax No increase to tax or housing NO NO
Tax Tax and housing increase NO YES
TaxRev Tax and housing increase; lump-sum YES YES
TaxEff Tax, housing and energy efficiency increase NO YES

Table 5: Scenario overview

4. Results

4.1. EASI demand system estimation

The results of the results of the EASI demand system estimation are
shown in Table 4.1. We find statistically significant and greater than zero
parameters for the polynomials of up to degree six. This confirms the non-
linearity of the Engel curves and justifies the EASI demand system approach
used.

The columns in Table 4.1 give the polynomial coefficients for the equa-
tions describing expenditure on each commodity group. The inclusion of the
variable for energy requirement of the dwelling, measured in kWh/m2 is a
novel contribution and so is difficult to evaluate in the absence of data from
other countries. The positive sign on this coefficient in the case of energy
expenditure is intuitive: as the energy requirement of a dwelling increases,
so too does the expenditure on energy. The negative coefficient on housing
reflects the fact that low efficiency houses tend to be of poorer quality and
therefore have a lower rent or mortgage repayments. The positive coefficients
on the other commodity groupings may be driven by the fact that families
in less energy efficient households spend less time at home or consume more
alcohol or tobacco (which are included in the “food” category). The exact
identification of the drivers of these results are beyond the scope of this paper.

4.2. Elasticities

Table 7 shows the own-price and cross-price elasticities of each commod-
ity group for the lowest income quartile. The expenditure elasticity of energy
is lowest of all commodity groups, which is a natural consequence of the fact
that energy is (a) a necessary good and (b) has few substitutes. Transport’s
own price elasticity is second lowest, for similar reasons. The cross price
elasticities show that increases in housing prices will reduce the demand of
essential commodities such as food, energy, transport and education. In-
creases in the price of transportation have the same effect.
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Regressor: Dependent variable: budget share for...
Food Housing Energy Transport Education

Polynomial coefficient:
y1 1.080*** 0.416 0.133 0.104 -0.602
y2 -0.789*** -0.329 -0.099 -0.147 0.538*
y3 0.285*** 0.151 0.024 0.069 -0.263**
y4 -0.057*** -0.038 -0.002 -0.017 0.072***
y5 0.006*** 0.005* 0.000 0.002* -0.010***
y6 -0.000*** -0.000** 0.000 -0.000* 0.000***

Household types:
z1 -0.067*** -0.010 -0.011*** -0.010** 0.021*
z2 -0.086*** -0.046*** -0.010*** 0.011* -0.022
z3 -0.007 -0.030* 0.002 -0.015** 0.010
z4 0.000 0.000 0.000 0.000 0.000
z5 0.005 -0.087*** -0.001 -0.009** 0.032***
z6 0.020*** -0.060*** -0.002 0.004 0.013

Interaction term:
yz1 0.007** 0.006 0.001 0.002 -0.001
yz2 0.014*** -0.010* 0.002 -0.009*** 0.020***
yz3 -0.003 0.007 0.000 0.003 0.003
yz4 0.000 0.000 0.000 0.000 0.000
yz5 -0.002 0.014*** -0.000 0.003** -0.006**
yz6 0.003 0.007*** 0.000 0.003*** -0.003

Interaction between price and expenditure (bi,j):
ynp1 -0.038*** -0.006*** 0.001 -0.002 0.047***
ynp2 -0.006*** -0.003 0.001 0.004*** -0.003
ynp3 0.001 0.001 -0.008*** 0.002*** 0.003***
ynp4 -0.002 0.004*** 0.002*** -0.014*** 0.007***
ynp5 0.047*** -0.003 0.003*** 0.007*** -0.084***

Price parameter (ai,j,l)
np1 0.143*** -0.018*** -0.005** -0.010*** -0.102***
np2 -0.018*** 0.050*** -0.008*** -0.015*** 0.007
np3 -0.005** -0.008*** 0.047*** -0.011*** -0.012***
np4 -0.010*** -0.015*** -0.011*** 0.072*** -0.018***
np5 -0.102*** 0.007 -0.012*** -0.018*** 0.175***
Log(Energy requirement) 0.022*** -0.054*** 0.003*** -0.004*** 0.015***
constant -0.370** 0.304 0.015 0.168** 0.298
N 18504

Significance levels: * p<0.10, ** p<0.05, *** p<0.01

Table 6: Results of the EASI demand system estimation. Iterated 3SLS, 3 digits
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Food Housing Energy Transport Education Services
Food -0.669 0.093 0.133 0.092 0.140 0.107
Housing -0.109 -0.780 -0.029 -0.050 -0.028 0.110
Energy 0.000 -0.021 -0.450 -0.028 -0.032 -0.094
Transport -0.128 -0.049 -0.026 -0.455 -0.017 -0.068
Education -0.066 -0.102 -0.112 -0.099 -0.877 0.034
Services -0.287 -0.189 -0.283 -0.280 -0.210 -1.170

Estimates are statistically significant at 5% level of significance.

Table 7: Own- and cross-price elasticities for the lowest expenditure quartile

Given the fact that this is the first attempt to estimate these elasticities
for Ireland using the EASI demand system, and the aggregation approach
used here is also not used in the previous literature for Ireland, a direct
comparison with previous estimates is not possible. Our estimated own price
elasticities for lighting and heating and transport are nonetheless in line
with estimates found in the literature for other countries: [31] in the case
of Germany, [37] in the case of Ireland, and [38] for six different European
countries. In terms of transport, a wide range of estimates exists in the
literature: [38] finds a weighted average of 0.47, while [39] report an average
expenditure elasticity for transport across 45 OECD countries as 1.58. Our
estimates are within these two estimates.

Table 8 shows the expenditure elasticities for each commodity group by
income quartile. One can see that expenditure elasticities for food, housing,
energy and transport are inelastic. Consequently these commodities are nec-
essary goods. Increases in the price of these commodities will have regressive
effects. Increases in household expenditure will have the largest response in
the demand for energy and housing for the lowest income quartile. This is
important when modelling lump-sum transfers as this will lead to a greater
proportional increase in disposable income and consequently in consumption
of these commodities for low income households.

Table 9 shows the elasticity of each commodity group when the energy
requirement of each dwelling decreases. Decreases in the kWh/m2 (i.e. en-
ergy requirement of each dwelling) reduces energy demand. This elasticity
increases across income quartiles, which may reflect a budget constraint. Vul-
nerable households are constrained in their ability to decrease energy demand
as the energy requirement decreases. The positive sign on the elasticity for
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Quartile: Food Housing Energy Transport Education Services
1 0.522 0.861 0.212 0.589 1.373 1.889
2 0.607 0.734 0.167 0.651 1.679 1.530
3 0.654 0.650 0.142 0.679 1.739 1.345
4 0.693 0.320 0.315 0.614 1.536 1.246

Estimates are statistically significant at 5% level of significance.

Table 8: Expenditure elasticities by income quartile

housing indicates that energy inefficient dwellings are concentrated in poorer
quality housing stock, which have a lower market value. In general, these
elasticities reflect the coefficient on energy requirement that was estimated
by the EASI system (see Table 4.1).

Quartile: Food Housing Energy Transport Education Services
1 -0.071 0.390 -0.040 0.034 -0.154 -3.821
2 -0.085 0.318 -0.054 0.035 -0.131 -3.508
3 -0.096 0.312 -0.074 0.036 -0.115 -3.161
4 -0.126 0.382 -0.119 0.044 -0.077 -2.690

Estimates are statistically significant at 5% level of significance.

Table 9: Energy requirement elasticities by income quartile

4.3. Microsimulation results

Table 10 shows mean values of energy consumption, expenditure and
equivalised income net of housing and energy costs in the NoTax case, as
well as proportional changes of these quantities under the various scenar-
ios considered (see Table 5) for each income quartile. After carbon tax and
housing costs increase, low income households have the largest reduction in
energy consumption and the largest fall in equivalised income. Under the
TaxRev scenario, where revenues from carbon taxation are distributed via
a lump sum, the equivalent income of low income households increases rela-
tive to the NoTax scenario, prompting increases in energy consumption and
expenditure. For higher income households, there is a slight reduction in in-
come and a greater reduction in energy consumption. In the TaxEff scenario
energy demand decreases even further, as a result of both the carbon tax and
the increase in energy efficiency. More affluent households experience larger
reductions in energy expenditure, showing that they profit more than poor
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households from improvements in energy efficiency. In the scenario TaxEff2,
improvements in energy efficiency are targeted towards low income house-
holds: the energy requirement of the lowest quartile’s dwellings is reduced
by 50kWh/m2, as in TaxEff. The improvements in energy efficiency reduce
gradually across expenditure quartiles, where the most affluent households
get a reduction in energy requirement of 10 kWh/m2. One can see that
changes in energy expenditure are distributed homogeneously across income
levels.

Income quartile:
1st 2nd 3rd 4th

NoTax:
Energy (KWH) 301.038 341.825 333.041 351.332
Expenditure (e) 21.434 24.535 24.349 25.870
Income(e) 129.016 336.502 586.235 938.747

∆ w.r.t. the NoTax scenario (%)
Tax:
Energy -7.650 -6.235 -5.203 -6.614
Expenditure 6.980 7.355 8.000 6.340
Income -2.302 -1.395 -1.184 -1.149

TaxRev:
Energy -5.715 -5.437 -4.828 -6.420
Expenditure 9.238 8.238 8.415 6.560
Income 2.924 0.297 -0.295 -0.628

TaxEff:
Energy -8.313 -7.211 -6.780 -8.828
Expenditure 6.174 6.170 6.130 3.739
Income -4.450 -2.782 -2.431 -2.325

TaxEff2 :
Energy -8.313 -6.776 -5.770 -7.002
Expenditure 6.174 6.695 7.317 5.884
Income -4.450 -2.167 -1.626 -1.352

Table 10: Changes in energy consumption, expenditure and equivalised income under
different scenarios (%)
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4.3.1. Expenditure-based energy poverty metrics

We now examine the impact of the various microsimulation scenarios
considered, outlined in Table 5, on energy poverty. First, we examine the
metrics DispInc, AboveMed and MISLI, as per [8] and Table 1, shown in
Figure 3.

Regarding the expenditure base metrics, the first panel of Figure 3 shows
the energy poverty metric DispInc under the NoTax and Tax scenarios. The
DispInc metric classifies households as experiencing energy poverty if their
expenditure on energy is greater than 10% of their disposable household in-
come. The second panel in Figure 3 represents the proportion of households
considered to be experiencing energy poverty under the AboveMed metric,
which binds when a household spends more than the national median energy
expenditure. The third panel shows the proportion of households experienc-
ing energy poverty as defined by the MISLI metric, where disposable income
after energy costs must be below the median income of the poorest 40% of
households after housing and energy costs.

Surprisingly, only the simplest of these three metrics, DispInc, shows a
consistent increase in energy poverty after the increase in carbon taxation.
This increase, however, is very slight. There is no discernible difference after
the introduction of carbon taxation in the proportion of households experi-
encing energy poverty under the MISLI metric, while the AboveMed metric
actually sees a decrease in energy poverty for low income households from
carbon taxation, and an increase or no effect for high income households.
Furthermore, the AboveMed metric shows that the proportion of households
experiencing energy poverty increases, rather than decreases, in income. This
suggests that AboveMed is not an appropriate metric for determining energy
poverty by any criterion, and that MISLI is also limited in its ability to cap-
ture changes in prices and expenditure brought about from carbon taxation.
A clear policy response is therefore difficult to determine on the basis of these
metrics, but our results suggest that these metrics are not fit for purpose.

We now examine the impacts of policy measures designed to decrease
energy poverty, TaxRev and TaxEff described in Table 5. We present the
results for a e100 increase in carbon taxation, shown in Figure 4.

In general the DispInc metric show increases in energy poverty after in-
creases in housing and carbon prices. TaxRev shows a very slight decrease in
energy poverty relative to the Tax scenario, while TaxEff make no difference.
The pattern of the AboveMed metric is similar to the NoTax scenario, show-
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Figure 3: Portion of households determined to be experiencing energy poverty under the
base and a carbon tax scenario of an increase of carbon taxes by e100/t
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Figure 4: Percentage of households determined to be experiencing energy poverty under
various metrics and scenarios
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ing only a small proportion of energy poor households in the lowest income
quartile, with very slight impacts from the policy measures and with unex-
pected results (eg, energy poverty increases in quartile 1 under the TaxRev
scenario). The MISLI metric moves in the right direction after tax. However,
both this metric and the AboveMed metric show increases in energy poverty
after transfers. The TaxEff policy, however, shows a very slight decrease in
energy poverty.

The results here suggest that the results reported by [11], which found
that energy poverty is not a distinct type of deprivation, may actually un-
derstate the unsuitability of energy poverty as a policy metric. In fact, the
expenditure-based metrics above lead to misleading conclusions, rather than
a mere meaningless distinction between poverty and energy poverty, as ar-
gued in [11]. The microsimulation exercise used here allows us to model
changes in energy consumption and expenditure after changes in both in-
come and commodity prices. The lump-sum transfer modelled here increases
the energy demand (i.e. as shown by the income elasticities) and expendi-
ture, which increases the number of households in energy poverty as defined
by these metrics. In other words, these metrics indicate that the optimal
policy for combating energy poverty in the presence of carbon taxation is to
do nothing. This is hardly the case.

4.3.2. Multidimensional poverty results

We now present the results of the multidimensional poverty analysis. Ta-
bles 11 and 12 show the proportion of households experiencing multidimen-
sional poverty in all scenarios. We analyse three dimensions of depriva-
tion: equivalised income, energy consumption and energy efficiency, with the
thresholds chosen described in section 2.

Table 11 shows the head counting ratio (H), the average weighted number
of deprivations (A), the multidimensional poverty index (M0), the average
poverty gap (M1) and the average severity of deprivations (S) for the NoTax
scenario. Rows 2-4 show the relative changes of these metrics with respect
to the NoTax scenario.

The estimation of poverty metrics allows us to weight each dimension of
poverty equally or unequally. [11] show that fuel poverty is not a distinct
dimension of general deprivation that can be better explained by household-
ers characteristics than by dwelling characteristics. Following this finding in
Table 11, weights are allocated as follows: energy efficiency (0.35), equiv-
alised income (0.45), energy demand (0.2). In addition, we show that energy
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H M0 M1 A G S

NoTax 0.195*** 0.173*** 0.095*** 0.888*** 0.547*** 0.506***
∆ w.r.t. the base scenario (%)

Tax 0.205 0.526 1.543 0.320 1.012 2.897
TaxRev -0.363 -0.223 -0.906 0.141 -0.685 -0.940
TaxEff -9.705 -9.690 -2.478 0.016 7.986 10.750
TaxEff2 -13.457 -13.522 -11.974 -0.075 1.790 4.534

Significance levels: ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 11: Multidimensional poverty metrics when income has the largest weight

efficiency is distributed unequally across income levels. In order to check the
robustness of our findings, in Table 12 the weights are distributed equally.

H M0 M1 A G S
NoTax 0.425*** 0.312*** 0.135*** 0.734*** 0.432*** 0.338***

∆ w.r.t. the base scenario (%)
Tax 0.313 0.600 0.031 0.286 -0.566 0.499
TaxRev 0.235 0.310 -1.665 0.075 -1.969 -2.923
TaxEff -5.429 -5.809 1.331 -0.402 7.581 10.776
TaxEff2 -4.336 -5.236 -3.709 -0.940 1.611 3.427

Significance levels: ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 12: Multidimensional poverty metrics when all the deprivation dimensions are
equally weighted

The proportion of households experiencing multidimensional poverty in-
creases as carbon tax increases in the absence of any mitigation poverty
measures (M0). This is driven by the breadth of poverty (A), showing that
there is an increase in the number of people facing a deprivation in a new
dimension. Note that the average poverty gap also increases, driving up M1,
showing that a poor household becomes more deprived in a given dimension.
Finally, a carbon tax increases the average shortfall of the total population
from the poverty line, as indicated by G. The depth of deprivation of those
already facing poverty increases (i.e. severity S).
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When the carbon tax is combined with a lump-sum payment to each
household (TaxRev), the opposite effect of the carbon tax is observed. In
fact, the average poverty gap and its severity decreases relative to the NoTax
scenario. Note that breadth of poverty (A) has increased under this scenario.
Re-allocation policies where vulnerable households receive a larger propor-
tion of the additional revenues could be an option to reduce the average de-
privation magnitude. Increasing energy efficiency equally across households
(TaxEff) reduces the number of households experiencing energy poverty by
a greater proportion. This will consequently reduce the breadth of poverty
(A) because in the dimension of efficiency, households have become more
energy efficient. However, the situation for those already experiencing en-
ergy poverty gets worse. Note that under this scenario, the average poverty
gap (G) and severity increase (S). Increases in energy efficiency across all
dwellings, i.e. energy efficiency increases that are not targeted to low income
households, will therefore worsen the situation of those already in poverty.

The final scenario, TaxEff2, finds a greater reduction in the number of
households experiencing poverty than the untargeted scenario. Furthermore,
the average poverty gap and severity have a much smaller effect on those
experiencing poverty than in the untargeted energy efficiency scenario. Thus
an energy efficiency scheme targeted towards low income households reduces
both the number of households experiencing multidimensional poverty and
lessens the severity of poverty exprienced by those already in poverty.

Table 12, which weights the dimensions of poverty equally, with the ex-
ception of the scenario TaxRev, sees a similar pattern. However, the number
of households in energy poverty is much higher than in the weighted results.
A head counting metric is therefore dependent on the weights attached to
each dimension. We argue that a weighted scheme could better identify the
number of households in energy poverty.

The Almost Ideal Demand System (AI-DS) model proposed by [23] was
improved in the Quadratic Almost Ideal Demand System (QUAIDS) pro-
posed by [24] by allowing quadratic Engel curves. As a robustness check we
also estimated a QUAIDS model. The coefficients for this model are displayed
in Table 6 in the appendix of this paper. Table 13 and Table 14 display the
metrics for the multidimensional poverty for the weighted and unweighted
deprivation dimensions. One can see that the trends in energy poverty are
almost the same across the two models. However, in the case of the scenario
related to the equal improvement in energy efficiency (TaxEff), there is in-
creases in energy poverty. This shows that imposing quadratic linear curves
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can lead to misleading conclusions when measuring energy poverty.

H M0 M1 A G S

NoTax 0.205*** 0.182*** 0.100*** 0.889*** 0.551*** 0.509***
∆ w.r.t. the base scenario (%)

Tax 0.195 0.584 1.588 0.388 0.998 2.808
TaxRev -0.463 -0.275 -0.853 0.189 -0.579 -0.902
TaxEff 0.146 0.327 5.250 0.181 4.907 7.546
TaxEff2 -12.469 -12.754 -7.305 -0.326 6.246 18.604

Significance levels: ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 13: Multidimensional poverty metrics when income has the largest weight. QUAIDS
model parameters.

H M0 M1 A G S
NoTax 0.432*** 0.319*** 0.138*** 0.737*** 0.433*** 0.339***

∆ w.r.t. the base scenario (%)
Tax 0.425 0.775 0.173 0.348 -0.597 0.483
TaxRev 0.491 0.579 -1.452 0.088 -2.019 -3.002
TaxEff 0.572 0.704 4.515 0.132 3.784 6.873
TaxEff2 -6.556 -7.493 -5.331 -1.003 2.337 4.854

Significance levels: ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 14: Multidimensional poverty metrics when all the deprivation dimensions are
equally weighted. QUAIDS model parameters.

5. Discussion and conclusion

This paper provides a robust examination of various metrics for energy
poverty, motivated by the impact of carbon taxation. The EASI demand
system was used to parameterise a microsimulation model which examines
the impact of both carbon taxation and increases in housing costs on en-
ergy poverty, as well as exploring the potential policy responses of revenue
recycling and improved energy efficiency.
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We found that expenditure-based energy poverty metrics, such as those
recommended by the European Commission in [8], perform poorly both in
measuring baseline rates of energy poverty and in capturing any changes to
energy poverty from carbon taxation. They also fail to capture any impact of
policy responses. The only metric that behaved as one would expect was the
simplest, that which designates a household as experiencing energy poverty
if they spend more than 10% of their income on energy.

Multidimensional poverty metrics prove far more intuitive. Increasing
carbon tax and housing costs are found to increase poverty, but revenue
recycling decreases poverty even in the presence of increases to carbon and
housing costs. Energy efficiency improvements, on the other hand, while
reducing the number of households in energy poverty, worsen the situation
of those already experiencing energy poverty. Targeting energy efficiency
upgrades toward less affluent households mitigates, but does not reverse,
this effect. The results suggest that policy responses that increase revenue
to households are more effective in reducing the number and the intensity of
energy poverty than energy efficiency upgrades.

6. Appendix
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