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1. Introduction 

The Common Agricultural Policy (CAP) in place in the European Union (EU) is broadly structured along 

with two main groups of payments, or Pillars (Hill, 2012). Payments granted under Pillar I relate to 

direct income support and market measures, while those under Pillar II relate to rural development. 

In the current CAP design, there is a range of environmental obligations in both Pillars I and II, although 

most of these measures are in Pillar II. Under the current plans for designing a new CAP post-2020, 

transit towards more sustainable agricultural production systems as part of the EU’s European Green 

Deal (European Commission, 2019a) has taken centre stage in the negotiations. A new range of 

different measures is being discussed (European Commission, 2021). For example, eco-schemes are 

policy instruments that members of the European Union are expected to implement. These schemes 

are typically designed to be voluntary and are based on conditionality, meaning that failing to 

implement the environmental obligations results in a reduction of payments (European Commission, 

2019b). It is planned that these schemes will be funded by Member States' direct payment (CAP Pillar 

I) budgets (European Commission, 2019b). It is this re-distribution and balance between Pillars I and 

II funding that is of particular interest for our empirical analysis.  In June 2021 the European Parliament 

and the Council reached a provisional agreement to be implemented starting in January 2023. The 

agreement included important environmental provisions, such as making eco-schemes compulsory, 

increased conditionality, or allocating 35% of rural development funds to agri-environment 

commitments1. 

Agricultural subsidies affect factors important to farm survival, such as income (Bonfiglio et. 

Al, 2019 and Ciliberti and Frascarelli, 2018) and farm level competitiveness (Latruffe, 2010). While 

research on either the distributional effects and competitiveness effects of subsidies in the agricultural 

sector is not new, the quantification of changes in the distribution of the farmer income and farm level 

economic and environmental performance due to changes in agri-environmental subsidies has 

received limited attention in the existing literature. Regarding changes in farm level performance 

linked to receiving agri-environmental subsidies, past literature uncovered mixed results. The impact 

of different types of agri-environmental payments on technical efficiency in several European 

countries is explored in few previous analyses and is found to be mostly negative (for example, 

Kumbhakar, Lien, and Hardaker (2014) for Norwegian crop farms; Lakner et al. (2014) for organic farms 

in Germany; or Latruffe and Desjeux (2016) for dairy, beef and crop French farms). A positive 

relationship is found for example in Mamardashvili and Schmid (2013) for Swiss dairy farms; 

Manevska-Tasevska, Rabinowicz, and Surry (2013) for dairy, beef, and pig farms in Sweden; Lakner et 

 
1 https://ec.europa.eu/commission/presscorner/detail/en/IP_21_2711 

https://ec.europa.eu/commission/presscorner/detail/en/IP_21_2711
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al. (2014) for organic farms in Switzerland; or Martinez Cillero et. al (2017) for Irish beef farms. As to 

the analysis of the distributional effects of changes in farm subsidies Ciliberti and Frascarelli (2018) 

find that the reform in the Single Payment Scheme in Italy in 2013 limited the reduction in farm income 

inequality. They argue that it has increased the share of farm income that is dependent on increased 

market exposure, leading to higher risks of price volatility and increasing pressure on income. Bonfiglio 

et. al (2019) analyse the effects of the same reform in both technical efficiency and income inequality. 

They find that technical efficiency is negatively correlated with direct payments for arable farms and 

positively correlated for farms specialised in livestock. They also find that using workforce size rather 

than the number of hectares as a criterion of redistribution has the best redistributive properties.  

In this paper we investigate the relationship between farm level competitiveness, proxied by 

farm level technical efficiency estimates (Latruffe, 2010), and past and present CAP agri-

environmental subsidies. In order to explore this relationship, we first apply standard Stochastic 

Frontier Analysis (SFA) to estimate farm level technical efficiency scores and the effect of subsidies on 

these estimates. Second, we also analyse environmental efficiency by applying a modified SFA 

approach (Jin and Kim, 2019). Under this alternative specification, a policy maker will seek to keep 

observed levels of methane production under the maximum (i.e., frontier) level computed through 

SFA. We focus on methane production since 58% of Irish emissions from agriculture in 2019 

corresponded to this gas, produced by the rumen of cattle animals.2 We use an unbalanced panel of 

National Farm Survey (NFS) farm level financial data, and include farms classified as specialist dairy 

and beef producers. We find mixed evidence regarding the relationship between agri-environmental 

payments and farm efficiency. Our SFA estimates show that payments under the Rural Environment 

Protection Scheme (REPS) had a negative impact on the efficiency of both types of farms, however 

more recent schemes had a positive impact on the efficiency of dairy farms only. We also find evidence 

that the Green, Low-Carbon, Agri-Environment Scheme (GLAS) can increase the gap between the 

maximum possible levels of methane production and the observed ones.  

We then simulate decreases in decoupled payments to finance an increase in payments under 

the GLAS and quantify resulting changes in competitiveness, environmental performance, and 

changes in income inequality. We find that when the additional payments under the GLAS mechanism 

are allocated to farms with low stocking rates, there is a trade-off between competitiveness and goals 

for environmental protection. Regarding changes in income distribution, our simulated scenario 

shows that income inequality measured by the Gini coefficient can be reduced in both farm types.  

 
2 https://www.epa.ie/our-services/monitoring--assessment/climate-change/ghg/agriculture/ 
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Under the new CAP reforms, it is foreseen that while a big proportion of direct payments 

under Pilar I will be still used for income support, a proportion will be used to promote voluntary pro-

environmental actions (see IEEP, 2020).  We simulate additional transferences of resources from Pilar 

I to actions previously financed by Pillar II.  The paper is organized as follows. Section 2 provides a 

description of the system of CAP payments in place in Ireland in the period we analysed. Section 3 

describes the data and variables used in the empirical analysis; and section 4 outlines the approaches 

followed for the estimation of efficiency and its drivers, as well as for the simulation performed. 

Section 5 contains the main results for the baseline specification, and section 6 the results for the 

simulations performed. Section 7 concludes.  

2. CAP policy framework between 2000 and 2017 

Since its inception in the 1957 Treaty of Rome, the EU CAP has included an ever-changing system of 

subsidies granted to European farmers. The bulk of agricultural support in the EU has traditionally 

been in the form of market support mechanisms, followed by direct income support (i.e. Pillar I 

payments). Before the implementation of the 2003 reform, known as the Mid-Term Review, the 

system of direct income support granted to Irish farmers was very complex, consisting primarily of a 

series of direct payments coupled to production (i.e. given per head of animal produced or hectare 

farmed), that included several specific livestock and arable premia granted between 1993 and 2004. 

The 2003 Mid-Term Review introduced decoupled direct support as part of the CAP for the first time. 

A subsidy can be considered decoupled if it is not linked to current prices, factor use, or production 

(Burfisher and Hopkins, 2003). Decoupled payments were implemented in the CAP through the Single 

Farm Payment (SFP). It was implemented in Ireland in 20053 and replaced all the previous types of 

livestock coupled support outlined above. Ireland opted for the implementation of full decoupling, 

which meant that coupled support was entirely removed, therefore, the direct link between 

agricultural production and direct payments was also removed. Note that although there was not a 

requirement to produce in order to receive the SFP, farmers were required to maintain the land in 

Good Agricultural and Environmental Condition (GAEC)4. Decoupled payments were maintained, 

albeit re-structured in the 2013 CAP Reform. This Reform introduced the Basic Payments Scheme (BPS) 

to replace the SFP in 2015. It consisted of a basic payment (European Commission, 2016a) and a series 

of compulsory and optional top-ups (European Commission, 2016b). The basic payment was also 

granted based on the possession of entitlements, calculated with relation to the entitlements owned 

 
3 The general implementation guidelines of the Single Farm Payment (SFP) were outlined in Regulation (EC) No. 

1782/2003 (EUR-LEX, 2003). 
4These conditions covered a group of compulsory and optional standards concerning soil protection, water 

management, etc. Failing to comply led to a reduction of part of the payment received by the farmer. 
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by a farmer under the SFP in 2014. For the case of Ireland, the top-ups consisted of a greening top-up 

(compulsory) and a top-up for young farmers (also compulsory)5 (European Commission, 2016b). The 

greening component required farmers to follow certain beneficial practices for the environment, such 

as crop diversification and the maintenance of permanent pastures and ecological focus areas 

(European Commission, 2011). The idea behind this design was to further enhance the purpose of 

direct payments as a useful tool to achieve a sustainable and efficient use of natural resources in 

agriculture (European Commission, 2011). 

Apart from income support payments for Irish farmers, they also received a number of Pillar 

2 payments between 2000 and 2017, the most important being agri-environmental payments. 

Farmers’ participation in agri-environmental payments is on a voluntary basis. The Rural Environment 

Protection Scheme (REPS) was implemented in 4 rounds, starting in 1994, and was closed to new 

entrants in 2009. REPS paid farmers to maintain and improve the environmental conditions of their 

land. The Agri-Environment Options Scheme (AEOS) replaced REPS in 2010 and was implemented in 

three rounds, and it was closed to new entrants in 2012. Finally, the Green, Low-Carbon, Agri-

Environment Scheme (GLAS) was introduced in 3 rounds between 2015 and 2016, when it closed to 

new entrants. Priority was given to farmers with environmental assets and to farmers who undertake 

GLAS actions. Access is on the basis of tiers. If oversubscribed within a tier, a ranking system will apply. 

Note however, that all these three types of payments were undertaken under 5-year contracts. Agri-

environmental payments share the common feature that they intend to compensate farmers for the 

adoption of farming practices that help to mitigate the negative impacts of farming activities on the 

environment, promote the conservation of high value environments and the enhancement of rural 

landscapes (DAFM, 2007). Finally, organic payments were implemented in 2015 in order to incentivize 

organic production. These payments were co-financed between the EU and the Irish National 

Exchequer, and they consist of (mainly) payments per hectare, and are implemented through 

successive Rural Development Plans6. A timeline of the agri-environmental payments granted to Irish 

farmers between 2000 and 2017 can be found in Table A1 in Appendix 1.   

3. Data and variable description 

We obtained a sample of the NFS dataset through the Irish Social Science Data Archive (ISSDA, 2020). 

The NFS, compiled by Teagasc annually since the 1970s, includes a random stratified sample of farms, 

and contains a detailed panel of farm level financial data built to be representative of the Irish farming 

 
5 Ireland also opted for the implementation of voluntary coupled support for protein crops. 
6 REPS3 was implemented as part of the Rural Development Programme 2000-2006; AEOS and REPS4 were 
implemented as part of Ireland's Rural Development Programme 2007-2013; and GLAS and organic payments 
were implemented in the Rural Development Plan 2014-2020.  
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population. We select specialist dairy and beef farms for our analysis7, and include data between 2000 

and 2017. We select these two farming systems for several reasons. First, dairy production constitutes 

the largest farming system in terms of economic output. The beef system obtained remarkably low 

family farm income (€333 per hectare, according to 2019 NFS data), while dairy obtained the highest 

(€1,118 per hectare in the same year) (Donnellan et al., 2020). Second, despite the larger economic 

importance of dairy production, beef farming constitutes the largest category in terms of the number 

of farms. The beef system comprises 58 per cent of Irish farms, while the dairy system comprises 17 

per cent of farms (Donnellan et al., 2020). Third, beef farms have the highest reliance on subsidies for 

their survival, with direct payments representing 162 per cent of family farm income for the case of 

specialist rearing farms in 2019 (Donnellan et al., 2020). It is likely, that changes in the configuration 

of direct support will impact this group of farms in particular. Finally, it is likely that these two sectors 

will be the target of policy measures aimed at reducing emissions from the agricultural sector in 

Ireland. For example, in a MACC (Marginal Abatement Cost Curve) analysis Teagasc pointed out the 

need for development of policy measures to encourage uptake of mitigation technologies on-farm, 

such as genetic and feeding improvements (Teagasc, 2019). In the same line, Ireland’s 2019 Climate 

action Plan calls to “accelerate the assessment of feed additives […] to mitigate methane emissions 

from enteric fermentation, including identification of their abatement potential in grazing-based 

systems” (Department of the Environment, Climate and Communications, 2019; page 105). 

For each specialisation group, we compute a single aggregated output category and four input 

categories. The output variable is computed as the sum of the annual values of the farm total livestock 

and total crops gross output. Livestock gross output includes the value of output obtained by the farm 

from the dairy, beef, sheep, pigs or poultry enterprises, and crops gross output includes the value of 

all cash crops and fodder crops sold. Since the production of livestock is not an annual process, the 

value of the opening and closing inventories of livestock (dairy, beef animals and sheep) are subtracted 

and added, respectively, to the value of gross output. Our output measure excludes subsidies.  

The four input categories included are land, labour, capital and intermediate inputs. Land is 

measured in hectares, and includes the utilised agricultural area (UAA) of the farm. This is defined as 

the area under crops and pasture plus the area of rough grazing (including area owned and rented, 

and excludes area let). Labour is measured in hours, and includes both hours paid and unpaid. The 

capital input category aggregates the monetary value of machinery, buildings and livestock.  

 
7 The NFS classifies farms in systems depending on their dominant enterprise, based on production specialisation 
defined according to the Standard Gross Margin (until 2008) and the Standard Output (since 2009) of the farm 
(Donnellan et al., 2020).  
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Due to the prevalence of part-time farming among Irish beef producers (Donnellan et al., 

2020), we include a dummy variable indicating whether a beef farm is considered part-time8 or not in 

the production function estimated for this system. Machinery and building values correspond to the 

end of year valuation of each based on the replacement cost methodology, while the value of livestock 

corresponds to the opening plus closing valuation of livestock divided by two. Finally, the intermediate 

input category aggregates the value of the farms’ direct (i.e. purchased feeds, artificial insemination 

and veterinarian costs, fertilisers, crop protection costs, transport, hired machinery, casual labour and 

other costs directly incurred in the production of the farm enterprises) and overhead costs (i.e. hired 

labour, interest payments, depreciation, repairs, etc.).  

In addition to farm level financial information, the NFS also contains detailed and 

disaggregated information regarding the level of subsidies received by each farm. We use this rich 

information to analyse the link between different types of subsidies and farm technical efficiency. We 

build the subsidy variables as ratios of the amount of each type of subsidy received (in euros) over 

farm livestock units (LU)9 . We include five subsidy ratios: (i) decoupled direct payments (we group 

both the SFP, and posterior BPS, in a single ratio); (ii) REPS; (iii) AEOS; (iv) GLAS; and finally (v) organic 

farming payments. Table A2 in Appendix 2 provides details regarding the timelines of each type of 

payment in the dataset. We also include the share of pasture hectares on total farm hectares in order 

to explore the relationship between using a grass based feeding system and technical efficiency. 

Finally, we account for the quality of the soil in which farms operate by including a dummy which 

equals 1 if the farm is located in land defined as more favourable for agricultural production, and zero 

otherwise (see Donnellan et al., 2020, page 87, for details on this classification). 

We complement this database through two external data sources. We use yearly price indices 

series published by the Central Statistics Office (CSO) to deflate the monetary values of output and 

inputs in the NFS (with base year 2010), in order to approximate volume measures of each of them. 

The CH4 enteric fermentation emissions are obtained using the Irish Environmental Protection Agency 

(EPA) emission factors published for different types of cattle animals (Duffy et al., 2016, 2017, 2018 

and 2019; see Table 5.4). These factors are multiplied by the yearly average number of animals 

reported by the farmers in the NFS to compute a farm specific measure of CH4 enteric fermentation 

emissions.  

 
8 A farm is considered to be part-time if it requires less than 0.75 standard labour units to operate, as calculated 
on a standard man day basis (Donnellan et al., 2020). 
9 A dairy cow is taken as the basic grazing livestock unit, with other grazing stock given equivalents based on pre-
established coefficients (see Donnellan et al., 2020, page 85, for details). Using these ratios helps remove 
confounding effects of farm size. 
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Descriptive statistics for the variables described in this section can be found in Table 1. Due to 

the low number of beef farms receiving organic subsidies in our sample, this variable is not included 

in the inefficiency effects model estimated for beef farms. Dairy farms are on average much larger 

than beef farms, both in terms of total farm output generated, hectares of land farmed and value of 

capital input. Dairy farms also employ more labour hours and have higher total costs. Dairy farms have 

on average a higher share of pasture area in total farm area, and are located in better quality soils. 

Beef farms receive on average a higher amount of both types of payments, decoupled and agri-

environmental, per livestock unit.  

Table 1. Average values of main variables in the model 

 Dairy farms Beef farms 

Production function variables   

Total output (€) 131,242 24,780 

 (82,325) (22,954) 

Land (hectares) 58.25 42.17 

 (29.40) (26.01) 

Labour (hours) 3,065.32 1,810.25 

 (1,216.44) (721.29) 

Capital (€) 230,460.96 91,072.06 

 (152,957.56) (71,334.82) 

Variable costs (€) 86,680.18 23,771.38 

 (58,733.43) (19,758.69) 

Part-time farm (D) 0.06 0.74 

 (0.23) (0.44) 

Efficiency drivers   

REPS/LU (2000-2014) 26.50 72.30 

 (56.60) (123.50) 

GLAS/LU (2015-2017) 4.10 24.80 

 (16.70) (53.80) 

AEOs/LU (2011-2017) 0.80 7.80 

 (6.50) (35.20) 

Organic subs./LU (2016-2017) 1.50 - 

 (12.20)  
Decoupled subs./LU (2005-2017)  181.89 301.10 

 (79.43) (179.11) 

Soil type 1 (D) 0.58 0.44 

 (0.49) (0.50) 

Pasture share 0.92 0.89 

 (0.14) (0.18) 

Observations 6,149 6,390 
Notes: Standard deviation in parentheses. (D) indicates a dummy variable, LU indicates livestock units. The 
averages refer to the 2000-2017 period, unless stated otherwise.  

4. Methodology 



9 
 

4.1  Stochastic Frontier Analysis  

In this analysis we apply SFA in order to obtain estimates of farm level technical efficiency, as well as 

assessing the effect of several farm specific characteristics on this estimate. In the context of our 

analysis, SFA is preferred to alternative methodologies to estimate technical efficiency such as Data 

Envelopment Analysis (DEA) or semi-parametric approaches due to its capacity to accommodate 

external shocks through the inclusion of a random error in the production function estimated (Coelli 

et al., 2005). Accounting for these factors is important when using agricultural data, since farm 

production can be often affected by disease or adverse weather conditions (Irz and Thirtle, 2004; Zhu 

and Lansink, 2010). Farm production technology is represented using a production function: 

lnYit = f(lnXit, t) + vit - uit 

 

(1) 

where Yit is farm output Xit represents a vector of k inputs, t is a time trend capturing technical change, 

and i and t denote the i-th farm (i = 1,…,n) and the t-th time periods (t = 1,…,T) respectively. Equation 

(1) displays the double error term that characterizes SFA, with a stochastic random error vit and the 

inefficiency term uit, proposed in the seminal papers by Meeusen and Van den Broeck (1977) and 

Aigner et al. (1977). A detailed and didactic description of the standard SFA methodology can be found 

in Kumbhakar and Knox Lovell (2000). 

Since SFA is a parametric estimation approach that relies on Maximum Likelihood (ML) 

estimation, we need to make assumptions about the functional form of the production function 

outlined in equation (1) as well as about the distribution of the two error terms it includes.  In this 

analysis we assume a translog functional form for the estimated production function: 

LnYit = β0 + ∑ βklnXitk
K
k=1  + 

1

2
∑ ∑ βgk

K
g=1 lnXitklnXitg

K
k=1 + βtt +

1

2
 βttt2 + ∑ βtklnXitk

K
k=1 t + vit - uit (2) 

This functional form is commonly assumed in related literature, as it offers flexibility in the 

representation of the production technology (for example, see previous SFA analyses of Irish 

agricultural sector in O’Neill and Matthews, 2001; Newman and Matthews, 2007; or Carroll et al., 

2001). Another common, albeit less flexible, functional form also found in the literature is the Cobb-

Douglas specification. Since the Cobb-Douglas is nested in the translog functional form, we will test 

the preferred specification using a likelihood ratio test. In equation (2), β0, βk, βgk , βtt and βtk are 

parameters to be estimated. It also includes non-neutral technical change, by allowing for the 

interaction of the inputs and a time trend t.  

Regarding the distribution of the two error terms in equation (1), we make the following 

assumptions: 
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uit ∼ N+(0, σ2
itu), with σ2

itu = exp(γmZitm) 

vit ∼ N(0, σ2
itv) 

(3) 

The inefficiency term, uit, is modelled with constant mean 0 and variance σ2
itu, which is made 

dependent on a vector of m inefficiency drivers Zit. In equation (3), γm is a set of parameters to be 

estimated. This model corresponds to the heteroskedastic specification of the inefficiency term 

proposed in Caudill et al. (1995). The farm specific technical efficiency estimates are recovered post-

estimation using the approach outlined in Battese and Coelli (1988) as: 

Technical efficiencyit = E[exp(-uit)|eit] = E[exp(-uit)|vit - uit] 

 

(4) 

Since we are using panel data, we apply the True Fixed Effects (TFE) and True Random Effects (TRE) 

estimation approaches proposed in Greene (2005). In the TFE estimation, the limitation of a common 

intercept imposed in the model described in equation (2), which may bias the results in the presence 

of time invariant farm specific unobserved heterogeneity (likely to arise from differing production 

conditions and farmers’ attitudes, such as climatic conditions, educational levels or risk preferences), 

is relaxed by allowing farm specific intercepts β0 in the model as described in equation (2). 

In TRE estimation, the time invariant farm specific unobserved heterogeneity is accommodated 

through the inclusion of a random (across farms) constant term β and a time invariant farm specific 

random term αi.10 In this specification, as in the typical random effects panel estimator, αi and the 

variables in equation (6) are assumed to be uncorrelated (Greene, 2005). 

  

4.2 Methane inefficiency  

Jin and Kim (2019) apply a modified version of the classic SFA methodology for frontier estimation 

outlined in Section 4.1. They apply an alternative SFA model where  lnYit in equation (1) is replaced by 

lnMit, which is the log of farm specific computed methane emissions: 

lnMit = f(lnXit, t) + vit - uit 

 

  (5) 

As in equation (1), Xit is a vector of k inputs used in the farm, that also contributes to methane 

production, t is a time trend, and i and t denote the individual farm and time periods, respectively. 

Equation (7) also includes the double error term typical of SFA. We assume a translog functional form 

 
10 LnYit = (β + αi) + ∑ βklnXitk

K
k=1  + 

1

2
∑ ∑ βgk

K
g=1 lnXitklnXitg

K
k=1 + βtt +

1

2
 βttt2 + ∑ βtklnXitk

K
k=1 t + vit - uit 
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for f(.) in equation (7), and the same error distribution outlined in equation (3) for uit and vit. In this 

framework, vit is also the stochastic random error. The gap between each observation and the frontier 

is measured in this modified SFA framework by the methane efficiency score (MEit), which is recovered 

post-estimation, in an equivalent way as technical efficiency in equation (4): 

In this case the gap is interpreted as the emissions shortfall (Jin and Kim, 2019). Under this view, 

environmental gains imply maintaining the observed level of methane under the maximum possible 

level represented by the frontier (i.e. the larger the gap, or shortfall, from the frontier the better).  

4.3 Farm income distribution 

Farm income is estimated using the following expression:  

𝐼𝑛𝑐𝑜𝑚𝑒s
it   +∑ Subsidyitk

𝑝
k=1  

 

(7) 

𝐼𝑛𝑐𝑜𝑚𝑒s
it is the farm output value less the production cost: 𝑌s

it* 𝑞i- 𝐶𝑜𝑠𝑡it, where 𝑌s
it, 𝑞i are the output 

under scenario S and the monetary value of a unit of production for farm i at time t. To measure 

changes in income distribution we use the Gini coefficient. In addition, we follow Lopez-Feldman 

(2006) to decompose the factors affecting this metric. The methodology follows Lerman and Yitzhaki 

(1985) who show that the Gini coefficient can be represented as follows: 

𝐺 = ∑ 𝑆k𝐺k
𝐾
k=1 𝑅k   

Where Sk is the share of the income source k in the total income, Ik is a metric of inequality regarding 

the income source k, and Rk is a metric of the correlation between the income source k and the 

distribution of total income.  In other words  𝑅k = Cov{Incomek, F(Incomek)}/ Cov{Incomek, F(Income)}, 

where F(Income) and F(Incomek) are the cumulative distribution of total income and income from 

source k.  While the income source k is equally distributed, Gk will be equal to zero, Rk is positive and 

large if the income source is unequally distributed and its distribution benefits those at the top of the 

income distribution.  

4.4 Simulating changes in subsidies 

MEit = E[exp(-uit)|eit] = E[exp(-uit)|vit - uit] 

 

  (6) 
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We simulate increases in the payments under the Agri-Environment Scheme (GLAS). We concentrate 

on this payment because it is the largest and currently used environmental payment11. Revenue 

neutrality12 is kept in our simulation by reducing total decoupled subsidies by 1%. Note that the 

additional revenue is raised from all recipients of decoupled subsidies.  Note that one caveat of this 

approach is that it only allows for small changes in the simulated payments13. The re-allocation of the 

1% of the decoupled subsidies is distributed to GLAS recipients by using two mechanisms. In the first 

mechanism, the additional resources are allocated equally to those farms that receive the GLAS 

payment. We refer to this scenario as “flat allocation” in the paper. In the second mechanism, the 

resources are allocated to those farms with a stocking rate below the sample median. We refer to this 

scenario as “stocking rate allocation”.  

 Following Bonfiglio et. al (2019) we estimate changes in technical efficiency using a two stage 

procedure. In the first step, the simulated value of the farm output is computed (i.e. 𝐿𝑛𝑌s). In the 

second step, Equation (2) is re-estimated using the simulated output and subsidy levels.  According to 

Bonfiglio et. al (2019), the logarithm of the inefficient term associated with farm i at time t can be 

written as: 

uit =𝜌0 + 𝜌1 ∗ 𝑆𝑢𝑏𝑠𝑖𝑑𝑦1+…+𝜌𝑝 ∗ 𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑝 

 

(8) 

Where uit is defined in equation (5), 𝑆𝑢𝑏𝑠𝑖𝑑𝑦1 is the subsidy of type 1, 𝜌1 is the parameter to be 

estimated. In addition, the observable output can be expressed using the following expression:  

LnYit = 𝐿𝑛�̂�it - uit 

 

(9) 

Where 𝐿𝑛�̂�it is the estimated output using expression (5). Consequently, we can derive the logarithmic 

distance of observable output of farm i under scenario S as follows: 

Ds
i =𝐿𝑛�̂�it -𝐿𝑛𝑌s

it= uit + 𝜌1 ∗ (𝑆𝑢𝑏𝑠𝑖𝑑𝑦s
it1- 𝑆𝑢𝑏𝑠𝑖𝑑𝑦it1)+..+ 𝜌𝑝 ∗ (𝑆𝑢𝑏𝑠𝑖𝑑𝑦s

itp- 𝑆𝑢𝑏𝑠𝑖𝑑𝑦itp) 

 

(10) 

Using expression (10), the logarithm of observable output of farm i under scenario S can be thus 

obtained as follows: 

𝐿𝑛𝑌s
it=𝐿𝑛�̂�it - Ds

i= 𝐿𝑛𝑌s
it - 𝜌1 ∗ (𝑆𝑢𝑏𝑠𝑖𝑑𝑦s

it1- 𝑆𝑢𝑏𝑠𝑖𝑑𝑦it1)+..+ 𝜌𝑝 ∗ (𝑆𝑢𝑏𝑠𝑖𝑑𝑦s
itp- 𝑆𝑢𝑏𝑠𝑖𝑑𝑦itp) (11) 

 
11 The number of recipients of the rest of the current payments is very small. In our simulation, re-allocation of 
the additional resources to these small numbers of recipients results in very inflated values of farm efficiency. 
The Bonfiglio et. al (2019) approach can only be used for relatively small changes in the simulated subsidies and 
output, hence our choice of a 1% transfer.   
12Revenue neutrality implies that the simulated allocation does not require an increase or decrease in taxes.   
13 One important consequence of simulated large changes in the payments is that in the second stage when 
the new efficiency is estimated, convergence in the estimation when using the maximum likelihood method 
might not be achieved.  
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𝐿𝑛𝑌s
it and 𝑆𝑢𝑏𝑠𝑖𝑑𝑦s

it are used to re-estimate equation (5). We simulate the environmental and 

distributional effects of allocating the additional resources to those farms that receive the GLAS 

payment. When modelling changes in the farm income distribution we replace Equation (12) to 

estimate the new farm income under the analysed scenarios. 

5 Results  

5.1 Elasticities, returns to scale and technical change 

Specification tests can be found in Appendix 3. The Cobb-Douglas functional form was rejected in 

favour of the more flexible translog in all cases. A Hausman test rejected the TRE estimation for dairy 

farms in favour of TFE, while for beef farms TFE estimation did not converge, therefore TRE is used. 

The dummy variable capturing technology differences between beef farms operated part-time is 

statistically significant, which indicates that technological differences exist between part-time farms 

and those operated full-time. The sign of the coefficient is negative, indicating that farms operated 

part-time obtain less output than full-time farms, using the same inputs14. 

The estimated coefficients of the first order terms of the translog production function are 

provided in Table 2. Since the inputs are expressed in natural logarithms and were divided by their 

arithmetic means before estimation, the first order coefficients displayed can be interpreted as output 

elasticities (at the sample means). 

 

 

 

 

 

 

 
14 Almost three quarters of beef farms are operated on part-time basis, while only 6 per cent 

of dairy farms are considered to be part-time.  
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Table 2. Estimated coefficients  

 Dairy Beef 

Output elasticities   

Area  0.154*** 0.201*** 

 (0.028) (0.048) 

Labour 0.090*** 0.007 

 (0.026) (0.043) 

Capital 0.128*** 0.261*** 

 (0.024) (0.048) 

Variable costs 0.187*** 0.384*** 

 (0.027) (0.046) 

Part-time dummy  -0.099*** 

  (0.021) 

Notes: Standard errors are in parentheses. ***Significant at 1%, **Significant at 5%, *Significant at 10%. 

All elasticities in both models have positive signs and are statistically significant at the 1% level, except 

for the elasticity of labour in the model estimated for beef farms. This finding could be linked to the 

prevalence of part-time farmers in this sector, where the number of working hours presents less 

variability. Moreover, labour input has the smallest contribution to output production in both models. 

Variable costs input has the highest elasticities in both models. The higher coefficient of land input for 

beef farms compared to dairy is not surprising, since beef production in Ireland is predominantly grass-

based; therefore, the availability of grazing area is of great importance in the production of output. 

Capital input has a substantially smaller contribution to output production for dairy compared to beef 

farms.  

5.2 Technical efficiency and efficiency drivers  

Table 3 displays the coefficients obtained through the estimation of the inefficiency effects model 

described in equation (3). These coefficients indicate the direction of the impact of each variable on 

farm technical inefficiency (i.e. a negative coefficient for a given variable means a positive effect on 

technical efficiency and vice versa). Note that the magnitude of the coefficients has no direct 

interpretation, therefore we will focus the discussion below on the coefficients’ sign and significance 

alone.  
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Table 3. Coefficients of technical inefficiency drivers 

 Dairy Beef 

REPS/LU  0.118** 0.076*** 
 (0.050) (0.020) 
GLAS/LU  -0.419* -0.073 
 (0.251) (0.086) 
AEOs/LU  -2.801** -0.067 
 (1.341) (0.086) 
Organic subs./LU  -6.768 - 
 (6.970)  
Decoupled subs./LU 0.002*** -0.029*** 
 (0.000) (0.011) 
Soil type 1 (D) -0.392*** -0.252*** 
 (0.058) (0.047) 
Pasture share  0.804*** 0.142 
 (0.222) (0.128) 
Constant -3.689*** -0.753*** 
 (0.224) (0.123) 

Notes: Standard errors are in parentheses. ***Significant at 1%, **Significant at 5%, *Significant at 10%. 

The key variables of interest are those capturing the impact of CAP subsidies received by Irish beef 

and dairy farmers in the period analysed, and in particular we are interested in the relationship 

between agri-environmental payments and technical efficiency.  

Note that the payments are divided by LU; however, in reality they are not linked to livestock units. 

This normalization using LU is used in order to avoid confounding effects with farm size. This is a 

standard procedure in the literature when using dairy or beef farms (see for example discussion in: 

Minviel and Latruffe,2016). 

The impact of receiving higher normalised environmental subsidies is statistically insignificant 

for beef farms, with the exception of REPS payments which had a negative and statistically significant 

effect on technical efficiency. For the case of dairy farms, the impact of receiving higher normalised 

REPS is also negative and statistically significant, however the impact of receiving higher GLAS or AEOs 

is positive, and also significant. Finally, the impact of organic subsidies is statistically insignificant. Past 

literature has theorized that the relationship between agri-environmental payments and technical 

efficiency is likely to be negative, linked to more extensive production techniques (Mamardashvili and 

Schmid 2013) or reduced input use (Latruffe and Desjeux 2016) these payments generally impose. 

Lakner (2009) noted these payments could also induce market distortions. However, some research 

has noted that positive impacts of agri-environmental payments to successful compensation of the 

disadvantages originated by the reduced agricultural potential (Manevska-Tasevska, Rabinowicz, and 
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Surry 2013) or to overcompensation compared to the environmental good incentivized (Lakner et al. 

2014)15.  

Receiving higher normalised decoupled support appears to be positively associated with 

technical efficiency of Irish beef farms from 2005 onwards16.  The opposite relationship however is 

estimated for dairy farms. Theory suggests that decoupled payments can benefit farm technical 

efficiency through several channels. First, positive effects can indirectly arise from increased 

investment on farm due to the relaxation of farmers’ financial constraints (Zhu et al., 2012), by 

facilitating access to credit, which would in turn increase on-farm investment and it would improve 

performance (Rizov et al., 2013; Kazukauskas et al., 2014). It is also possible that Irish farms are 

benefiting from the reduced need for external credit by using decoupled payments directly to increase 

investment (Breen et al., 2006). A second possible source of efficiency improvements is linked to 

reduced farmers’ risk aversion arising from the increased income associated with decoupled payments 

(Hennessy, 1998; Zhu et al., 2012), resulting also in increased investment on farms. Finally, other 

positive effects could be linked to the removal of the link between the payment and production 

enterprises, leading to incentives to engage in more efficient farm practices and productive farm 

activities by adapting their production decisions to market signals (Rizov et al., 2013). Negative 

impacts of decoupled support; however, could be linked to the continuation of distortionary effects 

on production that were caused by previous income support that was linked (i.e. coupled) to farm 

production levels (Rizov et al., 2013).  

In terms of the rest of farm characteristics included as controls in the inefficiency effects 

model, higher share of pasture over total farmland is linked to lower efficiency levels for dairy farms. 

Having more pasture area is likely to imply farms use a predominantly grass-based feeding system, 

therefore the are also likely to perform additional activities on-farm that relate to pasture growth and 

management, resulting in farmers being more prone to managerial mistakes that translate in lower 

farm efficiency  (Alvarez et al., 2008). Finally, being located in better quality soil types is unsurprisingly 

linked to higher technical efficiency levels for both types of farms.  

Table 4 presents yearly and overall descriptive statistics for the technical efficiency estimates 

obtained for the dairy and beef models (as described in equation (4)). These scores, which take values 

from 0 to 1, indicate the distance from each farm observation to the production frontier. Note that, 

 
15 However, note that since these are voluntary schemes that require additional management guidelines or data 
recording, selection bias might potentially be present. 
16 Decoupled payments are not linked to livestock units; however, the normalization of decoupled payments 
using LU is used in order to avoid confounding effects with farm size. This is a standard procedure in the 
literature when using dairy or beef farms (see for example discussion in: Minviel and Latruffe,2016). 
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since they have been estimated separately for each farming system, they are not directly comparable 

(i.e. they do not allow establishing which system is more efficient, but only how close each group of 

farms operate in relation to their respective frontier). The closer the scores are to 1, the closer farms 

operate to the frontier.  

Table 4. Technical efficiency estimates 

 Dairy Beef 

 Mean  S.D. Mean  S.D. 

2000 0.825 0.090 0.632 0.204 
2001 0.852 0.087 0.580 0.235 
2002 0.862 0.087 0.594 0.208 
2003 0.876 0.084 0.600 0.217 
2004 0.884 0.080 0.620 0.208 
2005 0.820 0.101 0.618 0.211 
2006 0.798 0.105 0.626 0.201 
2007 0.869 0.093 0.612 0.213 
2008 0.832 0.098 0.632 0.194 
2009 0.755 0.121 0.607 0.216 
2010 0.838 0.106 0.586 0.221 
2011 0.873 0.071 0.712 0.167 
2012 0.806 0.094 0.692 0.182 
2013 0.835 0.080 0.613 0.188 
2014 0.854 0.071 0.623 0.178 
2015 0.863 0.071 0.704 0.165 
2016 0.840 0.080 0.695 0.172 
2017 0.873 0.084 0.637 0.177 
Total  0.843 0.096 0.631 0.203 

Notes: S.D. indicates standard deviation.   

The average technical efficiency score obtained for the 2000–2017 period for dairy farms is 0.843, 

while beef farms had an average score of 0.631 in the same period. These scores indicate that both 

beef and dairy farms have scope for efficiency improvement, particularly beef farms. Figures 1 and 2 

display the distribution of the technical efficiency scores estimated for the dairy and beef farms 

samples separately, between 2000 and 2017. They show that the dispersion is higher in the beef farms 

sample, suggesting there is more heterogeneity present in the sector.  

Average yearly estimates of technical efficiency displayed in Table 4 show a slightly positive 

trend between 2000 and 2017, with the comparison of technical efficiency at the beginning and at the 

end of the time frame show an overall improvement. A deterioration of average efficiency scores can 

be observed in 2009 and 2010 for dairy and beef farms, respectively. Average technical efficiency then 

recovered afterwards.    
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Figure 1. Dairy farms technical efficiency distribution (2000-2017) 

 

Figure 2. Beef farms technical efficiency distribution (2000-2017) 

 

Figure 3 displays the technical efficiency scores across the distribution of family farm income, for dairy 

farms in the right hand side figure, and for beef farms on the left. Technical efficiency displayed is the 

average technical efficiency estimated for each income quintile. Quintiles 1 corresponds to lower 

income, and quintiles 5 corresponds with higher income.   

Figure 3 suggests that farms in the higher income quintile have larger average technical 

efficiency scores than farms in the lower quintiles. The gap between the current production level and 
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its maximum potential output (as indicated by the estimated frontier) could be reduced for farms in 

the lower income quintiles in particular, if certain subsidies targeted these groups of farms better. For 

example, Table 3 showed a positive and statistically significant relationship between efficiency and 

decoupled support for beef farms only (i.e. the relationship was negative for dairy farms). Therefore, 

beef farms in lower income quintiles (i.e. less technically efficient) would theoretically benefit more 

from increased decoupled support. Decoupled payments have been found to have positive indirect 

effects on efficiency, arising from several channels. Decoupling can encourage efficient farm practices 

by allowing farmers to follow market signals when making production decisions (Carroll et al., 2008; 

Kazukauskas et al., 2014). In addition, they contribute to the relaxation of credit constraints by making 

it easier to access credit or reducing the need for external financing (Rizov et al., 2013). The alleviation 

of financial constraints may induce an increase in investment in newer and more efficient farm 

technology (Zhu et al., 2012), leading to technical efficiency improvements. For the case of dairy farms 

in lower income quintiles (i.e. also less technically efficient), could benefit from increased targeting 

environmental support to this group of farms, as suggested by the positive and statistically significant 

relationship between these payments and efficiency for dairy farms shown in Table 3.   

Figure 3. Technical efficiency across farm family income quintiles (2000-2017) 

   

5.3 Methane production 

Table 5 displays the average methane production (computed as outlined in Section 3) across different 

levels of the farm family income. Farms in higher income quintiles have higher average levels of 

methane production in both dairy and beef systems. However, note that higher heterogeneity in 

methane production can be found in low income levels. Methane production level is driven by the 

farm production level and by the composition of the livestock.  
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Table 5. Average methane production across income quintiles of fam income (tonnes per year) 

  Dairy Beef 

  Methane CV (%) Methane CV (%) 

First quintile 0.760 1.058 1.032 0.716 

Second quintile 0.871 0.922 0.958 0.626 

Third quintile 1.109 0.776 1.232 0.563 

Fourth quintile 1.277 0.760 1.659 0.513 

Fifth quintile 1.654 0.672 3.049 0.651 

Sample 1.134 0.856 1.586 0.847 

Following Jin and Kim (2019), we also model methane production following the SFA framework 

outlined in Section 4.4. The average MEit scores for each group of farms are displayed in Table 6. Note 

that these efficiency estimates have a different interpretation to the ones discussed in Table 5, since 

in this case they measure the distance between observed farm emissions and the potential levels of 

methane emissions represented by the frontier (Jin and Kim, 2019). Under this modified SFA 

framework, MEit (recall, defined according to equation (8)) measures how much output (emissions) 

farms could obtain at the current level of inputs they use on farms. Therefore, the smaller MEit is, the 

larger the environmental gains, as farms are producing less methane than they could. Table 6 shows 

that the mean methane efficiency is 0.756 for dairy farms, and 0.843 for beef. This indicates that dairy 

farms are situated on average further from their respective “methane frontier”, suggesting that their 

observed emissions are lower than frontier emissions, relative to beef farms17. As in the case of the 

technical efficiency estimates, beef farms’ methane efficiency estimates are more dispersed, 

suggesting again greater heterogeneity in the sector. 

The coefficients estimated using the modified SFA framework are displayed in Table 6. As in 

the production case, the contribution of the variables included in the efficiency terms is indicated by 

the inverse of the sign of the coefficients displayed in Table 6. In this model, receiving higher 

normalized GLAS and decoupled subsidies is linked to a larger gap between the maximum level of 

methane production and the observed one for beef farms.  For dairy farms, normalized REPS, GLAS 

and decoupled payments increases the gap between the frontier and the observed levels of methane 

production. We interpret this as improvements in environmental performance. The level of methane 

production in our estimation is driven by the output level (i.e. yit in Equation (1)) and the composition 

of the livestock portfolio. Note that the environmental payments are not directly conditioned on the 

 
17 Note that the estimation of two separated frontiers for dairy and beef precludes direct comparison of the 
efficiency scores estimated for each group of farms.  
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levels of these factors. Consequently, we do not expect a reverse causality between methane 

production and the level of environmental subsidies18. 

Table 6. Methane inefficiency model output 

 Dairy Beef  

Methane efficiency  0.756 0.843 
 (0.135) (0.152) 

Inefficiency effects model   

REPS/LU  0.122** 0.020 
 (0.049) (0.020) 
GLAS/LU  0.662** 0.341*** 
 (0.290) (0.082) 
AEOs/LU  0.746 -0.006 
 (0.576) (0.106) 
Organic subs./LU  1.152** - 
 (0.544)  
Decoupled subs./LU 0.002*** 0.236*** 
 (0.000) (0.013) 
Soil type 1 (D) -0.136** 0.067 
 (0.056) (0.055) 
Pasture share  -1.037*** -0.436*** 
 (0.190) (0.146) 
Constant -1.074*** -3.306*** 
 (0.186) (0.146) 

Figure 4 displays the average methane efficiency scores calculated based on the methane frontier 

estimated, for each quintile of family farm income distribution. Farms in higher income quintiles have 

more room for environmental improvement than low income farms. Figure 4 also shows that the gap 

between farms in lower and farms in higher income quintiles is more visible in the case of beef farms.  

 

 

 

 

 

 

 
18 We employed the Hausman test for endogeneity between methane production and environmental 
payments (see Wooldridge 2002), and we did not find any evidence for it in daily and beef farms.  
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Figure 4. Methane efficiency across farm family income quintiles (2000-2017) 

  

5.4 Income distribution  

Table 7 and Table 8 display the current effect of the subsidies in the income distribution. Note that 

the first panel shows the effect of REPS and AEOS and the second panel the effect of GLAS and AEOS. 

The metrics displayed in the table are explained in the methodological section. The column “Change” 

displays the elasticity of changes in the Gini coefficient for a 1% change in the analysed income source. 

The tables are presented in this way to represent the fact that REPS and GLAS were not 

implemented jointly across the time in the sample (see Table A2 in the appendix). The first panel of 

Table 8 shows that that decoupled support represents around 18% of daily farm family income. We 

can see that while REPS and GLAS, which have the largest shares after the decoupled supports (Sk), 

are unequally distributed (i.e. Gk is not zero). However, compared with other sources of income, their 

contribution towards income inequality is among the smallest compared with the other income 

sources (i.e. Rk is around 0.5). Regarding beef farms, Table 8 shows that decoupled support has a more 

important contribution towards total farm income than for daily farms. Consequently, changes in this 

payment will considerably impact income inequality. Concerning the REPS and GLAS payments, Gk and 

Rk show similar patterns to the ones found for dairy farms.   
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Table 7. Subsidies and income distribution of dairy farms 

  Sk Gk Rk Change(%) 

REPS & AEOS 
Farm income 0.7758 0.3014 0.9343 -0.0276 
Decoupled support 0.1868 0.5012 0.6315 0.0157 
REPS 0.037 0.8362 0.4599 0.0117 
AEOS 0.0004 0.9958 0.4554 0.0002 

GLAS & AEOS 
Farm income 0.8049 0.3014 0.9438 -0.0192 
Decoupled support 0.1938 0.5012 0.6358 0.0181 
GLAS 0.0009 0.9923 0.5379 0.0008 
AEOS 0.0004 0.9958 0.4920 0.0003 

Table 8. Subsidies and income distribution of beef farms 

  Sk Gk Rk Change(%) 

REPS & AEOS 
Farm income 0.5225 0.4746 0.8938 0.0252 
Decoupled support 0.369 0.4729 0.7544 -0.0437 
REPS 0.104 0.7697 0.6198 0.0186 
AEOS 0.0045 0.9839 0.4102 0 

GLAS & AEOS 
Farm income 0.5795 0.4746 0.8966 0.0299 
Decoupled support 0.4092 0.4729 0.788 -0.0324 
GLAS 0.0063 0.9767 0.5214 0.0016 
AEOS 0.005 0.9839 0.4832 0.0009 

6. Simulation results 

We simulate a 1% decrease in total decoupled subsidies and then use these resources to increase the 

GLAS payments.  For the re-allocation of these additional resources, we follow two mechanisms. In 

the first scenario (labelled as “Flat allocation” in Tables 9 to 11), the allocation of the additional 

revenue follows a flat allocation and in the second scenario farms receive additional payments when 

their stocking rate is below the sample median (labelled as “Stocking rate allocation” in Tables 9 to 

11). Figure 5 displays the mean stocking rate at different quintiles of the farm income distribution. 

One can see that a policy allocating the extra funds to farms with lower stocking rates is potentially 

progressive, lower income households would receive larger payments. Recall, quintiles 1 corresponds 

to lower income levels, and quintiles 5 corresponds to higher income levels.  
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Figure 5. Stocking rate across farm family income quintiles (2000-2017) 

  

6.1 Changes in technical efficiency  

In Table 9, we display the changes in technical efficiency estimates resulting from the simulation 

exercise, and the two alternative re-allocation of funds approaches described above. Scores above 1 

indicate that increasing GLAS would induce a generalised increase in technical efficiency for dairy 

farms.  The re-allocation of the subsidies using the second mechanism (i.e. stocking rate allocation) 

has slightly better results (i.e. the sample mean of this score under these scenarios are 1.007 and 

1.009). Note that in general the largest improvements in technical efficiency come from farms at the 

bottom of the income distribution. The largest level of heterogeneity in changes in technical efficiency 

can be found in lower income quintiles farms, as indicated by the Coefficient of Variation (CV). As for 

beef farms, we do not see significant changes. Note that in our SFA model for beef farms (see Table 

3), GLAS is not statistically significant.  
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Table 9. Changes in technical efficiency relative to the base scenario  

 Flat allocation Stocking rate allocation 

 Dairy 

 Technical efficiency CV Technical efficiency CV 

First quintile 1.012 0.037 1.016 0.046 

Second quintile 1.007 0.018 1.010 0.027 

Third quintile 1.006 0.014 1.008 0.018 

Fourth quintile 1.006 0.020 1.007 0.023 

Fifth quintile 1.003 0.013 1.004 0.017 

Sample 1.007 0.022 1.009 0.028 

 Beef 

 Technical efficiency CV Technical efficiency CV 

First quintile 1.000 0.000 1.000 0.000 

Second quintile 1.000 0.002 1.000 0.004 

Third quintile 1.000 0.003 1.000 0.006 

Fourth quintile 1.000 0.002 1.000 0.004 

Fifth quintile 1.000 0.002 1.000 0.003 

Sample 1.000 0.002 1.000 0.004 

 

In Table 10, we display the changes in methane efficiency estimates resulting from the same 

simulation exercise. A score of more than 1 indicates that the methane efficiency score increases as a 

result of increasing GLAS. Note that such increase would not represent an environmental gain, given 

that higher methane efficiency implies that the farm is closer to the methane frontier. In the case of 

dairy farms, the re-allocation of the GLAS payments via low stocking rates produces the largest 

environmental gains.  These gains come mainly from farms at the bottom of the income distribution. 

Note also that these farms have the largest heterogeneity as indicated by the coefficient of variation.  

In the case of beef farms, the two mechanisms reduce environmental gains similarly.  Note that for 

these farms the largest heterogeneity in the score is found in farms at the top of the income 

distribution.  

 

 

 

 

 

 

 



26 
 

Table 10. Changes in methane efficiency relative to the base scenario  

 Flat allocation Stocking rate allocation 

 Dairy 

 Methane efficiency CV Methane efficiency CV 

First quintile 1.000 0.021 0.999 0.032 

Second quintile 0.999 0.027 0.998 0.039 

Third quintile 1.000 0.013 1.000 0.020 

Fourth quintile 0.999 0.020 0.998 0.029 

Fifth quintile 1.000 0.010 1.000 0.013 

 Sample 1.000 0.019 0.999 0.028 

 Beef 

 Methane efficiency CV Methane efficiency CV 

First quintile 1.009 0.000 1.008 0.000 

Second quintile 1.007 0.029 1.006 0.033 

Third quintile 1.008 0.029 1.007 0.035 

Fourth quintile 1.010 0.029 1.010 0.032 

Fifth quintile 1.006 0.026 1.007 0.029 

Sample 1.008 0.028 1.008 0.031 

6.2 Changes in income distribution  

Table 11 displays the estimated changes in the Gini coefficient across the simulated scenarios. The 

analysed scenarios reduce income inequality in dairy and beef farms. A flat allocation of additional 

resources via the GLAS payment financed by a reduction in the decoupled payments has a slightly 

larger reduction in income inequality than an allocation based on the stocking rate. This is due to the 

fact that in the second scenario only a subsample of the population receives the additional payments.  

Table 11. Changes in income distribution relative to the base scenario 

  Changes in Gini (%) 

 Gini Flat allocation Stocking rate allocation 
Dairy farms 0.292 -0.801 -0.534 
Beef farms 0.404 -1.319 -1.287 

7. Policy discussion and conclusions 

The European Green deal sets out the strategies to ensure a sustainable and inclusive economic 

growth in the EU. The Farm to Fork Strategy is central in the Green Deal and it addresses the challenges 

arising from transiting towards a more sustainable food system. The CAP payments are foreseen to 

play an important role under this new road map. Under this proposal, one of the key measures are 

the ‘eco-schemes’, with compulsory implementation for Member States but of optional adoption for 

farmers, which will aim at addressing the requirements in the EU environmental agenda. Another 

novelty of the proposals is to implement the new CAP through national strategic plans in which every 
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Member State would choose the policy instruments justifying how their strategy will help in achieving 

goals regarding environmental protection. An important criticism of these new proposal is the lack of 

transparency and data on environmental performance (see Pe'er et al. 2019). 

The evolution of the environmental payments, which started with the REPS and transformed 

into the AEOS, and finally evolved into the GLAS describes an evolution in the strategies for agri-

environmental protection. GLAS collects the experience from previous schemes regarding farmers 

participation and targeted actions for environmental protection.  REPS was designed to establish 

farming practices and controlled production methods for conservation and wider environmental 

problems. The AEOS introduced specific measures to promote biodiversity, encourage water 

management and quality and combat climate change. Under GLAS participants are required to 

prepare nutrient management plans and actions for greater biodiversity protection. Our results add 

to the narrow literature on quantifying the effects of these payments in competitiveness and 

environmental performance. We find evidence that GLAS has positive effects on both efficiency and 

environmental performance. 

The promotion of the eco-schemes is covered under the proposals for the new CAP payments in Pillar 

I. The eco-schemes actions promote increases in the space per animal and low intensity grass-based 

livestock systems19.  In order to investigate the distributional, competitiveness and environmental 

performance of these reforms, we use farm level NFS data from Ireland to analyse the link between 

the historical set of environmental payments granted under Pillar II and farm level competitiveness, 

environmental performance, and income inequality, for Irish beef and dairy farms between 2000 and 

2017. We carry out a simulation exercise where we reduce decoupled support and increase GLAS 

subsidies. We use two mechanisms to re-allocate these resources. Under the first scenario, we use a 

flat allocation mechanism where each recipient of the GLAS payment receives the same amount from 

the additional revenue. Then under a second scenario, GLAS recipients obtain additional resources 

when they have a stocking rate below the sample median. In both cases, we compute changes in 

technical efficiency, environmental gains (i.e. methane efficiency), and income inequality induced by 

this hypothetical transfer of funds across Pillars.  

Our simulated results show that increases in GLAS financed by decoupled payments can 

potentially improve competitiveness (i.e. technical efficiency) and environmental performance (i.e. 

methane efficiency) of dairy farms under the second scenario for the re-allocation of funds. The largest 

 
19 See List of potential agricultural practices that eco-schemes could support, prepared by the European 
commission and available at https://ec.europa.eu/info/news/commission-publishes-list-potential-eco-schemes-
2021-jan-14_en 
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improvements in our metrics are located at the bottom of the farm income distribution. Regarding 

beef farms, under both of our scenarios, competitiveness does not change. However, environmental 

gains are reduced under both scenarios.  As for the effects on income inequality, increasing GLAS can 

potentially decrease income inequality under the two analysed scenarios. Our findings highlight the 

importance of considering the heterogeneous effects in changes of environmental payment schemes. 

It shows that neglecting these effects across farm production types and farm income levels could 

cause conflicting results regarding competitiveness, environmental gains, and income inequality. Our 

simulation results suggest that there is a trade-off between improving competitiveness (measured by 

technical efficiency) and environmental gains (measured by methane efficiency). These estimates 

point to the need of designing a scheme where instruments consider the structural differences in dairy 

and beef production, as well as income differences. We find that while farms in the lowest quintiles 

of the income distribution have more room to improve competitiveness (i.e. they display lower 

average technical efficiency) than farms in higher income quintiles, they also have lower average 

methane efficiency estimates, which suggest that they operate further from the emissions frontier. 

Accounting for these inequalities would also benefit the design of future policy instruments for 

environmental protection aimed to improve social acceptability and unlock the potential of the sector 

to contribute toward a more sustainable economy.   
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Appendix 1 

Table A1. Agri-environmental payments received by Irish farmers (2000-2017) 

 REPS1 REPS2 REPS3 REPS4 AEOS1 AEOS2 
 

AEOS3 
 

GLAS 

 Tranche1 Tranche2 Tranche3 

2000           

2001           

2002          

2003          

2004           

2005          

2006          

2007           

2008          

2009          

2010           

2011           

2012           

2013           

2014           

2015           

2016           

2017           
Note: The cells shared in grey indicate the years when farmers could enter the contracts as part of each payment 
and round/tranche.  

Appendix 2 

Table A2. CAP payments (2000-2017) in the data 

 Direct payments (Pillar 1) Pillar 2 payments 

 Premia SFP BPS REPS GLAS AEOs Organic payments 

2000 x       

2001 x       

2003 x       

2004 x       

2005  x  x    
2006  x  x    
2007  x  x    
2008  x  x    
2009  x  x    
2010  x  x    
2011  x  x  x  
2012  x  x  x  
2013  x  x  x  
2014  x  x  x  
2015   x  x x  
2016   x  x x X 

2017   x  x x x 
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Note: SFP: single Farm Payment BPS: Basic Payment Scheme; REPS: Rural Environment Protection Scheme; AEOs: 
Agri-Environment Options Scheme; GLAS: Green, Low-Carbon, Agri-Environment Scheme.  

Appendix 3 

Table A3-1. Likelihood ratio tests for functional form of the production function  

 LR value p-value Decision 

Dairy data 169.15 0.000 Reject CD 

Beef data 54.94 0.000 Reject CD 

Table A3-2. Hausman test FE vs. RE 

 Chi2 value p-value Decision 

Dairy data 431.20 0.000 Reject TRE 

Beef data For the case of beef farms, the TFE specification failed to 

converge, therefore TRE is used to estimate their frontier 

 

Note 

Conditions on data usage 

It is important that a database on Data usage/Publication is retained so as to inform future data collection and 

usage. Arising from this, a condition of using NFS data is that a copy of all papers/articles/reports using or reporting 

NFS data is to be emailed to nfs@teagasc.ie  
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