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Abstract

This paper evaluates the predictive power of building energy performance certificates on ex-post

home heat loss. Improving the insulative capacity of residential properties is a policy priority in

many markets, with building energy performance certificates providing the indicative benchmark.

We exploit a rich panel dataset of high-frequency thermostat readings, coupled with data detailing

weather and buildings characteristics, to identify an ex-post metric of heat loss. Our results show

a significant effect of building energy performance rating on indoor temperature, a proxy for home

heat loss. However, we do not find evidence of a distinct gradient in performance between building

energy rating categories, as suggested by ex-ante estimates of home heat loss.

JEL Codes: C55; D12; Q4; Q55

Keywords: Energy-efficiency; Energy performance gap; Home heating; High-frequency data;

Smart thermostat



1. Introduction

This paper evaluates the predictive power of building energy performance certificates on ex-post

home heat loss. We find evidence that building energy performance certificates affect indoor tem-

perature, a proxy for home heat loss. However, we do not find evidence to support the distinct

gradient along the building energy performance scales as suggested by ex-ante estimates of home

heat loss. Our results highlight the presence of much within-classification variance in energy per-

formance.

The EU Energy Performance of Buildings Directive (EPBD) aims to improve building energy ef-

ficiency in member states and legislates for the use of Energy Performance Certificates (EPC) to

improve information for buyers and sellers on the indicative energy performance of buildings, and

to provide guidance on possible energy efficiency improvements (European Union, 2018). EPC

ratings, such as those under the EU’s ‘Energy Performance of Building Directive’ and the ‘Energy

Star Certified Homes’ in the United States have been a central element of energy policies to pro-

mote investment in energy efficiency and to meet targets of greenhouse gas emissions reduction.1

EPCs are broadly used as a policy metric within the residential sector in the context of ambitious

climate targets (UNEP, 2021). EPCs by their nature are unable to capture the full nuance of

energy performance observed in a property and there is potential for attenuation between expected

and observed energy performance (Coyne and Denny, 2021; Cozza et al., 2020; Zou et al., 2018;

van den Brom et al., 2018; Gram-Hanssen and Georg, 2018; Majcen et al., 2013; De Wilde, 2014).

This difference is known commonly as the Energy Performance Gap.

Many of the empirical studies comparing ex-ante projected energy performance with actual energy

consumption are unable to fully disentangle building fabric performance from the intensity of oc-

1For details of the European Union (EU) Energy Performance of Buildings Directive: See,
https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-
directive.
For different kinds of energy certifications in the USA (including buildings): See, https://www.energystar.gov/about.
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cupants’ behavioural effects (Coyne and Denny, 2021; Cozza et al., 2020; Zou et al., 2018; van den

Brom et al., 2018; Gram-Hanssen and Georg, 2018; Majcen et al., 2013; De Wilde, 2014). For

instance, energy consumption data will reflect occupants’ preferences for ambient internal temper-

ature, or hot water demand, which are distinct from building fabric performance. Understanding

the potential magnitude of such attenuation is important to validate the projected estimates of cli-

mate impact measures. This paper provides this contribution, adding to the energy performance

gap literature by attempting to isolate building fabric performance from occupant behavioural ef-

fects to examine the relationship between building fabric performance and EPC ratings. This is

relevant as some recent ex-post evaluations have cautioned policymakers relying on theoretical

EPCs’ energy use as a mechanism to deliver real energy savings or cast doubt on the projected

benefits of an energy efficiency investment (e.g., Levinson, 2016; Fowlie et al., 2018; Davis et al.,

2020; Coyne and Denny, 2021).

The present research entails an ex-post evaluation of the effects of EPCs on home heat loss, us-

ing indoor temperature as its proxy, in existing residential buildings. To isolate from occupant

behavioural impacts, the analysis focuses on data from the early morning hours when the heat-

ing system is confirmed as being turned off and behavioural impacts, such as secondary heating,

are less likely to arise. We exploit a high-frequency panel dataset of household temperature and

heating system operation over a 2-year period. This is in contrast to many studies that rely on

metered energy consumption data. These data are matched with information on weather and prop-

erty energy performance, as measured by EPCs. This allows us to clearly evaluate the impact of

building fabric on temperature change within the dwelling, a proxy for heat loss and the insulatve

performance of the building fabric.

The remainder of this paper is structured as follows. Section 2 presents the institutional setting.

Section 3 outlines the data employed in this analysis. Section 4 provides the empirical strategy.

Section 5 presents the results. Section 6 discusses the results. Finally, section 7 concludes the
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paper.

2. Institutional setting

The EU Energy Performance of Buildings Directive (EPBD) was first introduced in 2002 and re-

cast in 2010 and 2018, with the aim of improving the energy performance of buildings within the

European Union (European Union, 2018). Among other measures, the EPBD requires EU Mem-

ber States to provide information on a building’s energy performance through the use of Energy

Performance Certificates. The rationale behind this requirement is simple; salient information re-

garding a dwelling’s energy performance can help guide individual decision-making towards the

achievement of EPBD energy efficiency goals.

Energy performance certificates provide information to consumers on buildings they plan to pur-

chase or rent. It includes an energy performance rating and recommendations for cost-effective

improvements. Certificates must be included in all advertisements in commercial media when a

building is put up for sale or rent. This must also be shown to prospective tenants or buyers when a

building is being constructed, sold, or rented. Following the EU EPBD, Ireland adopted a manda-

tory energy performance certificate program. This program began on the first of January 2009 and

the certificate is known as the Building Energy Rating (BER). By law, all new homes and homes

for sale or rent are obliged to have a BER certificate for the purpose of providing information in

advance to prospective tenants and purchasers of the home (SEAI, 2022a).

For each building, the BER certificate provides an estimation of energy use associated with light-

ing, ventilation, space heating and water heating (SEAI, 2022b). It does not include electricity

used for cooking, refrigeration, laundry, and entertainment. The energy performance of a building

is expressed in terms of primary energy use per squared metre of floor area per year (kWh/m2/yr)

on a 15-scale from A1 to G and the associated carbon dioxide (CO2) emissions in kgCO2/m2/yr.

Figure 1 demonstrates how the 15 BER scales (A1–G) map to the BER in kWh/m2/yr. The rat-
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Figure 1: Mapping the BER scales (A1–G) across BER in kWh/m2/year

ing scale is similar to the EU energy labelling for products subject to energy labelling regulation

(EC, 2017). A1-rated properties, with an energy performance rating of 25 kWh/m2/year or less,

are the most energy efficient. On the other end of the scale, G-rated properties, with an energy

performance rating of more than 450 kWh/m2/year, are the least energy efficient (SEAI, 2022b).

The Irish BER certificate is administered by the Sustainable Energy Authority of Ireland (SEAI).

The assessments are carried out by SEAI-registered BER assessors and the certificate is valid for

up to 10 years. A BER certificate becomes invalid if there are modifications that could signif-

icantly affect energy performance (SEAI, 2022a). The BER assessment follows a standardised

Dwelling Energy Assessment Procedure (DEAP) where property fabric and heating systems are

inspected (DEAP, 2022). The DEAP accounts for factors such as property dimensions (size and

geometry); construction material; thermal insulation of building fabric; ventilation (air infiltration

due to openings and air tightness of the structure); characteristics of space and water heating sys-

tems; solar gains through glazed openings; property thermal storage (mass) capacity; fuel used for

heating; and renewable and alternative energy generation technologies.
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Data on BER-assessed properties is freely available on the SEAI website.2 In addition to the BER

rating in kWh/m2/year and corresponding scales, the database contains information on the size and

type of property, year of construction, fuels used by a main space heating system, and the thermal

transmittance of building fabrics and associated area of exposed and semi-exposed parts of the

buildings. As of the beginning of February 2022, BER assessments have been completed on more

than 960,000 properties. This corresponds to around 52% of the total number of occupied houses

recorded in the 2022 Irish census (CSO, 2022).

3. Data

3.1. Data sources

We wish to analyse the relationship between the recorded Building Energy Rating and the insu-

lative performance of a property, as revealed ex-post by observed temperature change. For this

analysis, we use smart thermostat data which provides information on indoor temperature and

heating system operation by property. This is matched to two datasets. First, each property is

assigned a BER value using the online public search facility. Secondly, the concurrent outdoor

temperature and weather conditions are matched using data from the Irish Meteorological Service.

Each data source will now be outlined in turn.

High-frequency data detailing household temperature and heating system operation for the main

living space3 of each sample dwelling are sourced from a Hub Controller, an Automatic Energy

Manager device with smart thermostat functionality, hereinafter referred to as the ’smart thermo-

stat’.4 The smart thermostat unit reports this information at regular intervals averaging every three

minutes. The gross dataset received comprises 10,000 Irish homes for 24 months: October 01,

2Freely available Irish BER database: https://ndber.seai.ie/BERResearchTool/ber/search.aspx
3Through personal communication with Hub Controls Ltd., we have learned that each smart thermostat is installed

in the main living area of the household.
4Additional variables in this dataset include humidity of the living space, thermostat set-points, and whether an

operational boiler (gas or oil) is in heating or boost mood
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2019–September 30, 2021.5

These data are matched with energy performance certificate data from each household’s Irish

Building Energy Rating (BER) certificate. The energy performance certificate provides infor-

mation on the household’s BER rating, both in terms of primary energy use per squared metre of

floor area per year (kWh/m2/yr) and on a 15-scale from A1 to G. The BER certificate also contains

information on dwelling floor area and estimated carbon dioxide (CO2) emissions in kgCO2/m2/yr,

alongside information on the reason for obtaining the BER certificate.

The final data source employed in this analysis is local weather data from Ireland’s National Me-

teorological Service, Met Éireann.6 The weather data consists of hourly air temperature (°C), rel-

ative humidity (%), wind speed (knots), sunshine duration (% per hour), and precipitation (mm).

This weather data is then matched with the high-frequency thermostat data set at an hourly level,

after collapsing the smart thermostat high-frequency data to an hourly level. Properties in the

smart thermostat dataset are located in the Greater Dublin area. Consequently, we use data from

the Dublin Airport weather station. These data were matched to the smart thermostat data of each

property at hourly level.

3.2. Data Processing

We process the data by limiting the analysis to time periods where changes in temperature are

plausibly influenced by the observed variables of ambient temperature and BER rating alone.

To do so, we restrict the time period of analysis to the main winter heating months in Ireland:

December to February. To abstract from occupant behaviour, we limit the data to the hours of

00:00 to 05:59am inclusive, conditional on the heating system being turned off. This is carried out

for the following reason; it is plausible that there is no secondary energy input during this time,

such as an open fire, and therefore the rate of temperature change is a reflection of the insulative

5See https://thehubcontroller.com/ for further information on Hub Controls Ltd.
6Source: www.met.ie
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capacity of the building. If the heating system is turned on prior to 06:00am, we exclude all

subsequent data points from that analysis window. If a heating system is switched off for a lengthy

period prior 00:00, it may be difficult to capture how heat loss is associated with BER rating, as

heat loss has already occurred. Consequently, we limit the analysis to properties that were heated

in 12 hours or less prior to midnight.

The smart thermostat data is recorded in 3-minute intervals, on average. Observations pertaining

to the same one-hour interval (i.e. 00.00; 01:00; 02:00; 03:00; 04:00; 05:00) within the 00.00–

05.59 observation window are constructed from this raw data. We find the closest recording on or

after the required interval (+/- 3 minutes, as the thermostat frequency is 3 minutes). To illustrate, a

recording for 00:00 may be required but a smart thermostat may not have recorded the temperature

at this exact time. Thus, we extract the date-time stamp and associated indoor temperature of the

first reading closest to 00:03 and then retrieve the subsequent temperature readings at intervals of

1 hour. Figure 2 illustrates how the indoor temperature data is extracted from the high-frequency

smart thermostat data for an example starting at 00:03 and the subsequent 5 hourly data points (at

01:03; 02:03; 03:03; 04:03; 05:03). While analysis at a sub-hourly frequency is possible, the re-

source intensity for some of the statistical methods subsequently employed increases non-linearly.

Hence, the analysis was undertaken at an hourly frequency without any loss in information perti-

nent to the analysis. Upon completion of this data processing, 703 properties remain in the dataset

with a total of 356,318 hourly observations for analysis.

3.3. Descriptive statistics

This section provides insight into the distribution of the assembled data. First, though not intended

to be representative of the national housing stock, the degree to which the matched dataset matches

the national distribution is explored. Table 1 compares the distribution of the 703 matched obser-

vations to the 967,608 residential properties with a BER assessment as of February 2022. Column

(2) in Table 1 shows that about 90% of the sample have a “C1” rated property or lower compared
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Figure 2: Illustration of data used in the analysis

to approximately 80% of properties in the BER database. The mean BER rating is about 242

kWh/m2/year for both the smart thermostat sample properties and entire BER database. On aver-

age, the 703 properties are older and smaller in terms of property floor area and living room area

compared to the national BER database. The average number of years since a BER assessment is

similar at approximately six years.

Second, we explore the distribution of indoor temperature and outdoor weather conditions dur-

ing the sample period. Table 2 provides summary statistics of indoor temperature (°C), outdoor

temperature (°C), relative humidity (%), and wind speed (knots) at an hourly level for the 703

sample properties when the heating system was off during the interval 00:00–05:59. The mean

indoor temperature in the 703 properties was 16.58°C in the 6-hour period 00:00–05:59 across the

three months (December – February) over two years. Table 2 also reports corresponding values

for properties by BER rating. There is a high level of variability of indoor temperatures across

properties with minimum and maximum values of 6°C and 34°C. The distribution of temperatures
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Table 1: Descriptive statistics of sample properties

Smart thermostat properties BER database
Variables Mean/percent Mean/percent
BER (kWh/m2/year) 243.02 241.95
BER scales (percent):

A1 0 0.1
A2 0 3.6
A3 2.6 5
B1 0.6 1.4
B2 1.1 3
B3 6.7 7.6
C1 10.1 11.4
C2 14.8 12.6
C3 15.1 12
D1 13.7 11.6
D2 14.2 10
E1 7.4 5.8
E2 6.1 4.6
F 4.8 4.7
G 2.8 6.8

Dwelling type (percent):
Detached house 7.5 28.7
Semi-detached house 45.7 27.2
End of terrace house 16.2 7.7
Mid-terrace house 27.3 14.1
House (general) 0.1 3.5
Maisonette 0.3 1.1
Ground-floor apartment 1.8 5.4
Mid-floor apartment 0.3 6.5
Top-floor apartment 0.7 5.6

Building age in 2022 (years) 45.9 39.5
Total floor area of a dwelling (m2) 98.7 111.3
Area of a living room (m2) 18.6 21.7
Main space heating fuel (percent):

Gas 78.7 38.3
Oil 18.1 36.5
Electricity 3 17.8
Others (including solid fuels) 0.3 7.4

Years since the BER assessment (in 2022) 5.9 6.6
Purpose of BER (percent):

Grant support 34.4 21
Sale 41.8 38
Other purposes (including letting) 23.8 41

Number of observations (properties) 703 967,608
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are plotted in Figure 3. The solid red line depicts the density of the indoor temperature readings at

00:03 across the 703 sample properties when a heating system was off. The solid black line shows

the density of indoor temperature 5 hours after the initial readings at 00:03. The mean indoor tem-

perature declines from 17.62°C at 00:03 to a mean of 15.70°C after five hours. This is an average

of 2°C drop in indoor temperature over five hours while a heating system was off throughout.

We further breakdown the average indoor temperature by hours across BER scales. Table 3 shows

the average indoor temperature and its difference over hours across BER scales. In the first hour,

the overall average drop in indoor temperature is about 0.54°C and it continues to decline and get

closer to zero (a steady state point), with a small variations across the BER scales. The decline

in temperature after a heating system is turned off is anticipated. The research question is to what

extent the decline in temperature systematically varies by BER rating of properties. When compar-

ing the mean temperature values in Table 2 there is a slightly greater decline in temperature among

lower energy efficiency rated properties. The next section outlines a more systematic approach to

investigate this question.

Table 2: Summary statistics of indoor temperature and weather variables for the 703 sample properties

Variables Obs. Mean Std. Dev. Min Max
Indoor temperature (0C) at hour h 356,318 16.58 2.82 6.04 33.88

A3–B3 35,175 17.35 2.31 6.21 29.55
C1 37,526 16.72 2.81 6.29 25.91
C2 53,383 16.76 2.79 6.04 26.82
C3 55,181 16.75 2.73 6.56 28.41
D1 49,152 16.30 2.91 6.17 31.15
D2 52,346 16.55 2.82 6.27 28.18
E1 or E2 43,386 15.75 3.07 6.08 33.88
F or G 30,169 16.51 2.77 6.29 24.92

Average outdoor temperature (0C) at hour h 356,318 4.87 3.40 -5.4 12.3
Average relative humidity (%) at hour h 356,318 86.98 7.55 52 100
Average wind speed (knot) at hour h 356,318 10.02 4.61 1 31
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Table 3: Average indoor temperature by hours across BER scales for the 703 sample properties

Hours All BER A3 – B3 C1 C2 C3 D1 D2 E1 or E2 F or G
Panel A: Average indoor temperature by hours across BER scales

00:03 17.62 18.33 17.64 17.75 17.82 17.45 17.67 16.79 17.57
01:03 17.08 17.83 17.19 17.24 17.29 16.84 17.1 16.23 17.05
02:03 16.62 17.42 16.78 16.78 16.81 16.34 16.61 15.77 16.59
03:03 16.24 17.07 16.45 16.42 16.41 15.93 16.2 15.42 16.2
04:03 15.94 16.78 16.19 16.18 16.08 15.56 15.84 15.11 15.84
05:03 15.70 16.54 15.98 15.97 15.84 15.33 15.57 14.85 15.56

Panel B: Difference of the average indoor temperature over hours
01:03 - 00:03 -0.54 -0.50 -0.45 -0.51 -0.53 -0.61 -0.57 -0.56 -0.52
02:03 - 01:03 -0.46 -0.41 -0.41 -0.46 -0.48 -0.50 -0.49 -0.46 -0.46
03:03 - 02:03 -0.38 -0.35 -0.33 -0.36 -0.40 -0.41 -0.41 -0.35 -0.39
04:03 - 03:03 -0.30 -0.29 -0.26 -0.24 -0.33 -0.37 -0.36 -0.31 -0.36
05:03 - 04:03 -0.24 -0.24 -0.21 -0.21 -0.24 -0.23 -0.27 -0.26 -0.28
Observations 356,318 35,175 37,526 53,383 55,181 49,152 52,346 43,386 30,169
Sample properties 703 77 71 104 106 96 100 95 54

4. Methodology

We seek to understand the extent with which building energy performance certificates capture the

insulative capacity of the home. We use changes in indoor temperature as a proxy for unobserved

heat loss. There are a number of confounding factors relating to energy use and behaviour that

must be incorporated into the analysis. For example, households with large heating demand could

self-select into A or B-rated buildings. Energy-efficient households may also self-select into better-

rated buildings and/or may have different preferences for indoor temperature. To address these and

other effects relating to occupants’ behaviour, we limit our analysis to early morning hours when a

heating system is off. The occupants’ behavioural impact is anticipated to be minimal during this

time, as potential secondary heating sources (e.g., open fire, portable heaters) are less likely to be

operational. In following this approach, we isolate the effects of building fabric from consumers’

behaviour on indoor temperature.

The underlying premise of our analytical approach is that temperature within the property in the

early morning hours, isolated from occupant behaviour, is a function of three factors. The first

and potentially greatest impact relates to temperature inertia. If a property had a high temperature
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reading one hour ago, its current temperature reading is also likely to be relatively high. This

autoregressive approach for modelling heating is widely used (Massana et al., 2017; Fazeli et al.,

2016; Fang and Lahdelma, 2016; Powell et al., 2014). To fully exploit this inertia, we limit the

period of analysis to the winter months (December–February) when a heating system is likely to

be operational. The second factor relates to the insulative capacity of building fabric as measured

by BER. This is our subject of interest. The third factor is ambient weather. Internal temperature

is affected by external temperature, humidity, and wind conditions.

Modelling temperature as a function of lagged temperature values introduces a potential source

of endogeneity as the lagged dependent variable is likely to be correlated with the error term

(Anderson and Hsiao, 1981). A common solution is to adopt dynamic panel models using a

generalised method of moments (GMM) estimator (e.g., Arellano and Bond, 1991; Arellano and

Bover, 1995; Blundell and Bond, 1998; Roodman, 2009). This is a panel dataset with many

time periods which presents some modelling challenges. A standard panel comprises N units of

analysis (e.g., properties) across T time intervals (e.g., hours or years). There is an excess of 600

time intervals in the current dataset for some properties. Dynamic panel estimators (e.g., Arellano

and Bond, 1991; Arellano and Bover, 1995) are designed for situations with small T , as the number

of instruments increases quadratically in the number of time periods making estimation of large T

models resource intensive and practically difficult. We follow three estimation strategies to address

the challenge, which in practice return broadly similar results.

4.1. Standard panel data estimator

In the first we specify a panel data model where the time dimension is the hourly smart thermostat

data frequency, while the panel dimension is residential property. The model is estimated using

a standard random-effects panel estimator. Such an approach does not address potential for bi-

ased coefficients associated with dynamic panels, termed “dynamic panel bias” (Nickell, 1981),

14



however with large T the bias is small.7 The model is outlined in equation (1):

Tempihdmy = α + βTempih−1dmy + γE f f iciencyi + δWeatherhdmy + ϵihdmy (1)

Where Tempihdmy is indoor temperature (°C) in property i, at hour h, day d, month m and year

y. The indoor temperatures are those recorded by the smart thermostat at hourly intervals in the

early morning hours. E f f iciencyi is a measure of the energy efficiency rate of property i, of

which we utilise several specifications. In the first instance, we use a property’s BER assessment,

specified as a categorical scales (A–G) or in kWh/m2/year. In alternative model specifications,

the sum of the thermal transmittance (U-value denoted in in W/m2K) of the different components

of a building: wall, roof, floor, window, and door dimensions multiplied by the corresponding

area (m2) of the building fabrics is utilised. Lower U-values (thermal transmittance) are associ-

ated with greater levels of energy efficiency (i.e., highly insulated). External weather variables

(Weatherhdmy) include mean hourly outdoor temperature (°C), mean hourly outdoor relative hu-

midity (%) and wind speed (knot). ϵihdmy is the stochastic disturbance term and α, β, γ and δ are

parameters to be estimated. γ is our main parameter of interest that captures the effect of building

energy ratings on indoor temperature, a proxy for home heat loss.

4.2. Arellano-Bond type dynamic panel estimator

The second estimation strategy is to follow the common approach for estimating panel data with

lagged dependent variables, which explicitly address dynamic panel bias (Arellano and Bond,

1991; Arellano and Bover, 1995; Blundell and Bond, 1998; Roodman, 2009). However, as noted

earlier such models are designed for situations with small T and estimation with large T datasets

is resource intensive. To counter the estimation issues associated with large T in such estimators,

7Nickell (1981) show that −(1+β)
(T−1) provides an approximation of the bias, where β is the coefficient on the lagged

dependent variable as in equation (1). For β = [0.5, 1] the associated downward bias is less than 2% for T > 150 and
therefore in practice almost negligible.
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we restructure the data in the following manner. For each property, we use the mean temperature

values at each hour for every month and year, as specified in equation (2).

Tempimyh =
1
|D|

D∑
d=1

Tempihdmy ∀h,m, y (2)

We then specify the time dimension solely as the hour index (h), representing the early morning

hours (h ≤ 6). The panel dimension is represented by an index of property-month-year (imy >

3100). The goal is to estimate the effects of building energy performance but the variable of

interest is time-invariant. One strategy to address this problem is to conduct a panel analysis

with a two-stage GMM procedure (Kripfganz and Schwarz, 2019). In the first stage, we use

the GMM approach to estimate the time variant variables. The model estimated is equation (3),

where subscripts i, m, and y from equation (2) are subsumed as a single index representing the

property-month-year, though we still use imy as a subscript for clarity. The estimated parameters

include α, β, δ, with the γE f f iciencyimy term dropping out when first differences are taken during

GMM estimation. Note that the variable E f f iciencyi in equation (1) is equivalent to variable

E f f iciencyimy in equation (3).

Tempimyh = α + βTempimy(h−1) + γE f f iciencyimy + δWeathermyh + λh + θimy + νimyh (3)

where h is a set of hour dummies, which accounts for correlations across unit of analysis (Rood-

man, 2009).8 θimy is unobserved property specific effects, while E f f iciencyi is observed time-

invariant. νimyh is the error term. The description of the variables is similar to equation (1) except

the values are the monthly means at each hour.

8(Roodman, 2009) suggests the inclusion of time dummies is to control for correlations across our unit of analysis
as the autocorrelation test and the robust estimates of the coefficient standard errors assume no correlation across units
in the idiosyncratic disturbances
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The second stage entails estimation of the time invariant parameters to retrieve the γ parameter

from equation (3). To do so, we regress the composite residuals from the first stage, ûimyh, on

the observed time-invariant variables (i.e., E f f iciencyimy), as illustrated in equation (4). Since

we are looking at the effect of the physical building, by excluding occupants’ behavioural effects,

we assume that E f f iciencyi is uncorrelated with unobserved property specific effects, θimy, or the

error term for the second stage estimation, ωimyh.

ûimyh = Tempimyh − α̂ − β̂Tempimy(h−1) − δ̂Weathermyh − λ̂h = γE f f iciencyimy + θimy + ωimyh (4)

In the Difference GMM approach, lagged levels are weak instruments if the coefficient on the

lagged variable is close to one (Arellano and Bond, 1991), which is the case in this empirical

application. Hence, we implement System GMM with a two-step estimator. Pooled ordinary

least squares (OLS) and panel fixed effects specifications are commonly estimated for compari-

son. While both these estimators are biased and inconsistent due to the correlation between the

composite error terms and lagged indoor temperature, their estimates bound the true value. In

the OLS regression the lagged temperature is positively correlated with the disturbance terms and

provides a coefficient that is biased upward whereas in the fixed effects regression the is biased

downward due to the negative sign on the transformed error.

4.3. Individual property level estimates

Our third estimation strategy entails estimating temperature equations at individual property level,

as specified in equation (5). The objective in this approach is to illustrate the heterogenity of

building performance across the BER scales in contrast to the point estimates from the prior two

approaches. With the building fabric constant within individual properties, our focus moves to

temperature inertia. Within a single property, β̂ provides an estimate of how much heat, using
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temperature as a proxy, is retained within the building fabric after one hour’s time while the heating

system is turned off. In a property that is not being actively heated, one would anticipate β̂ < 1,

with estimated values declining as energy efficiency declines. We utilise the same dynamic panel

estimator as previously, (i.e., Roodman, 2009) with the hour index (h) as the time dimension (i.e.,

early morning hours, 1 ≤ T ≤ 5) and the panel dimension represented by the number of days

over which data is available (1 ≤ N ≤ 181). β̂ therefore represents an estimate of the average

temperature inertia within a property. We plot kernal densities of β̂ associated with each BER

scale to illustrate both the heterogenity of temperature inertia for a given BER rating and how the

densities differ across BER scales. Kolmogorov–Smirnov tests are utilised to test equality of the

estimated distributions.

Temphdmy = α + βTemp(h−1)dmy + δWeatherhdmy + υhdmy ∀i (5)

5. Results

5.1. Standard panel data estimates

5.1.1. Main results

We begin presenting the estimates for a standard random-effects panel model. Table 4 presents the

parameter estimates for equation (1), with several alternative specifications included. The main

model specification is reported in Column (1).9 The coefficients on the BER scales have a neg-

ative sign, indicating a decline in temperature relative to the reference category of A3–B3 rated

properties. The absolute value of the coefficients is broadly increasing in magnitude as the BER

9Due to a small number of properties for some BER categories (see Table 1), we have amalgamated some scales
during model estimation (e.g., E1 and E2, F and G). The reference category includes properties in BER categories A3,
B1, B2, and B3, which are the most efficient properties (A3–B3). Note that while the number of hourly observations
reported in Table 2 is 356,318, the inclusion of the lagged indoor temperature variable in the regression reduces the
number of observations for estimation to 287,211 across the 703 smart thermostat properties. The R-square for the
estimated models exceeds 0.92, indicating how well the model explains changes in temperature within each of the
households over time.
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scale value moves from A to G, with the exception of F or G rated properties. Only for prop-

erties rated C3 and below are the coefficients statistically different than zero. The magnitude of

temperature decline is greater among the least energy efficient properties, as one would antici-

pate. However, the gradient of performance decline is much less than one would anticipate. For

instance, the decline in indoor temperature for D1-rated property relative to A3–B3 properties is

0.12°C, while point estimate detailing the decline in indoor temperature for E-rated properties is

only marginally greater, at 0.15°C. BER categories of C1 to C3 tend to have either insignificantly

different degrees of performance or significant differences of relatively small magnitude. BER

categories of D1 or greater tend to have significant differences of a relatively greater magnitude.

Contrary to expectation, the magnitude of the coefficient on the F and G-rated properties is not

the greatest in absolute value. F and G-rated properties have the lowest assessed level of energy

efficiency. This result is potentially a reflection of the composition of the F and G-rated properties

in our sample. Over 83% of F and G rated properties had their BER assessment completed in

2014 or earlier. Also, two-thirds completed their BER assessment for the purpose of selling the

property. Given the length of the intervening period and the likelihood that the properties were

renovated subsequent to sale, there is a strong possibility that the BER ratings of some properties

in this category are no longer valid. Given the overall number of F or G rated properties in the

sample, at just 54, it is likely that any renovated properties will have a substantial impact on the

coefficient estimate. Irrespective of the point estimate for F and G rated properties, the conclusion

from the regression estimate remains that a significant difference remains, relative to an A3-B3

-rated property, of a magnitude that is similar to D1-E2 -rated properties.

While the energy efficiency parameter estimates are of primary interest, the coefficient estimate

on lagged temperature (β in equation 1) is also noteworthy. The estimate at 0.91 indicates that

in the absence of heating, the indoor temperature at any hour will be approximately 90% of the

temperature level an hour earlier with other factors such as thermal efficiency and external weather
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accounting for the balance. As wind speed increases temperature drops more rapidly, whereas the

opposite is the case for external temperature and humidity.

Table 4: Estimates from a standard panel data model

Variables (1) (2) (3) (4) )
Dependent variable: Indoor temperature (0C) at hour h

Full sample Excl. Recent BER Excl. Grant Excl. Sale
BER scales (Reference: A3–B3):

C1 -0.001 -0.057 -0.019 0.007
(0.036) (0.057) (0.046) (0.040)

C2 -0.048 -0.146*** -0.089** -0.019
(0.033) (0.054) (0.043) (0.038)

C3 -0.066** -0.137** -0.116*** 0.008
(0.033) (0.054) (0.043) (0.038)

D1 -0.122*** -0.215*** -0.174*** -0.052
(0.034) (0.053) (0.043) (0.043)

D2 -0.116*** -0.200*** -0.152*** -0.108**
(0.035) (0.054) (0.045) (0.047)

E1 or E2 -0.152*** -0.246*** -0.189*** -0.143***
(0.037) (0.056) (0.046) (0.046)

F or G -0.135*** -0.217*** -0.177*** -0.125**
(0.039) (0.055) (0.046) (0.060)

Indoor temperature (0C) at hour h − 1 0.914*** 0.915*** 0.913*** 0.912***
(0.002) (0.003) (0.003) (0.004)

Average outdoor temperature (0C) at hour h 0.035*** 0.035*** 0.036*** 0.033***
(0.001) (0.001) (0.001) (0.001)

Average relative humidity (%) at hour h 0.003*** 0.003*** 0.003*** 0.003***
(0.000) (0.000) (0.000) (0.000)

Average wind speed (knot) at hour h -0.005*** -0.005*** -0.005*** -0.005***
(0.000) (0.000) (0.000) (0.000)

Constant 0.744*** 0.845*** 0.801*** 0.792***
(0.047) (0.066) (0.054) (0.066)

R-squared (within) 0.980 0.979 0.980 0.979
Observations 287,211 207,421 254,617 162,552
Sample properties 703 492 605 409
Robust standard errors clustered at the property level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1

5.1.2. Sensitivity analysis

To investigate the robustness of the model estimates reported in Column (1), the same model

specification is re-estimated for various sub-sample categories and reported in Columns 2–4 of

Table 4. The pattern described above remains broadly the same: BER categories of C1 to C310

10or D1 in column 4
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tend to have either insignificantly different degrees of performance or significant differences of

relatively small magnitude. BER categories of D111 or greater tend to have significant differences

of a relatively greater magnitude.

These sensitivities were chosen to rule out any possible confounding factors influencing our anal-

ysis. In Column (2), properties where the BER assessment was completed after December 2019,

which is the start point for the smart thermostat data in our analysis, are excluded. The rationale

for this is that recently assessed homes may have had an energy efficiency renovation during the

period of the smart thermostat data collection. Excluding these observations precludes this situ-

ation. In this instance the sample drops to 492 properties. Broadly, the estimates are similar to

those in Column (1) though the coefficients on the BER variables have roughly doubled in magni-

tude. The largest coefficient, on E-rated properties, is -0.25 relative to -0.15 in Column (1). The

pattern observed in Column (1) prevails: there is a statistically significant drop in temperature

across the BER scales relative to the reference category, with the difference growing as rated en-

ergy efficiency declines subject to the same caveat for F and G rated properties. The differences

among grades C3 or lesser are less than the differences among grades E1 or greater, although the

distinction is less clear in this specification.

The results in Column (3) exclude properties where the BER assessment was for retrofit grant

support from December 2019 onward. BER assessments for grant applications occur after renova-

tion works are completed. In the case where the BER assessment occurred from December 2019

forward, it is possible that the smart thermostat data could cover both before and after the retrofit

work. The coefficient estimates on the BER scales in absolute value are somewhat greater than

those in Column (1) but less than those in Column (2). The pattern from Column (1) emerges once

again: BER categories of C1 to C3 tend to have either insignificantly different degrees of perfor-

mance or significant differences of relatively small magnitude. BER categories of D1 or greater

11or D2 in column 4
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tend to have significant differences of a relatively greater magnitude.

The purpose of some BER assessments is for the sale of the property. New property owners

often undertake renovation works, some of which could change the energy efficiency status of the

property. For instance, the likelihood of fuel system upgrades is much higher when occupancy

changes (Curtis and Grilli, 2021). It is feasible that renovation works were completed but an

updated BER assessment was not undertaken and registered. In such circumstances, the BER

rating linked to the smart thermostat data might not reflect the true BER status of the property.

The results presented in column (4) exclude all properties where the BER was undertaken for the

purpose of selling the property. The coefficient estimates on the BER scales in this instance are

broadly similar to those in Column (1), though only three of the BER coefficients are statistically

different than the reference category. Nevertheless, the pattern observed in Column (1) prevails

once more, with the lesser performing group extending to include D1-rated dwellings. We see in

Column (4) that BER categories of C1 to D1 tend to have either insignificantly different degrees

of performance or significant differences of relatively small magnitude. BER categories of D2 or

greater tend to have significant differences of a relatively greater magnitude.

While there are some small differences in the coefficient estimates across Columns 1–4, they are

broadly similar. Focusing on the BER coefficient estimates, those in Column (2) are the largest in

magnitude but still the hourly drop in temperature is less than 0.25°C irrespective of BER rating

relative to the most energy efficient A3–B3 rated properties within the sample. It is feasible that

secondary heating sources (e.g., open fire, plugged electric heaters) operate for some time after the

main heating system (gas or oil boiler) are turned off. To account for this, we re-run the same model

specifications but restrict our analysis to hours after 2:00am when secondary heating sources are

less likely to operate. Results are reported in the Appendix Table A1 and are broadly the same as

those in Table 4. Several other models were estimated based on various sub-samples, for example,

weekend or weekdays, and excluding cases of high (>25°C) or low (<15°C) temperatures, with
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parameter estimates broadly similar to those reported here. The robustness of the estimates across

the different samples highlights that neither retrofits undertaken within the analysed period nor

properties with a typical heating profiles have disproportionate impact on the estimates.

5.2. Arellano-Bond type dynamic panel estimates

Column (3) in Table 5 presents the first stage System GMM estimates, with the OLS and fixed

effects estimates provided for comparison as noted earlier. Also reported in Table 5 are tests that

determine validity of the GMM models, including a first and second order serial correlation tests

and a Hansen test of over-identifying restrictions. The AR(1) test indicates the presence of first

order correlation in the residuals, supporting the argument that the error terms contain unobserved

property specific effects. The AR(2) tests fail to reject the null hypothesis that the difference errors

in period ‘h’ and ‘h-2’ are uncorrelated, indicating that a second lagged value is a valid instrument.

Also, the Hansen’s test statistic indicates the validity of the instruments.

Table 6 presents the results of the second stage regressions for GMM residuals. The relative pat-

terns of temperature decline across the BER scales broadly matches that of the standard random-

effects estimations in Table 4. The negative estimated coefficients on the dummies for BER scales

indicate temperature declines relative to the A3–B3 (reference category). BER categories of C1 to

C3 tend to have either insignificantly different degrees of performance or significant differences of

relatively small magnitude. BER categories of D1 or greater tend to have significant differences of

a relatively greater magnitude. Indeed, the difference between relatively high (i.e. C1–C3) and rel-

atively low-performing (i.e. D1–G) BER categories is more pronounced when assessed using the

Arellano Bond-type estimator. Columns 2–4 comprise estimates based on different sub-samples

of our data, similar to those discussed earlier in the sensitivity analysis in section 5.1.2. In terms of

magnitude, the estimated parameters from the GMM residuals are larger than those from standard

random-effects, with E-rated properties showing a relatively large decline (a mean of 0.62°C drop

per hour relative to the default category).
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Table 5: First stage regressions for GMM models

Variables (1) (2) (3)
OLS Fixed effects System GMM

Indoor temperature (0C) at hour h − 1 0.976*** 0.722*** 0.736***
(0.001) (0.005) (0.017)

Average outdoor temperature (0C) at hour h 0.055*** 0.167*** 0.115***
(0.002) (0.004) (0.015)

Average relative humidity (%) at hour h 0.010*** 0.027*** 0.016***
(0.001) (0.001) (0.006)

Average wind speed (knot) at hour h -0.002 -0.033*** -0.012
(0.002) (0.002) (0.009)

Hour dummies Yes Yes Yes
Constant -1.233*** 1.562*** 2.190***

(0.096) (0.133) (0.617)
Hansen test of overid. restrictions 0.229
Arellano-Bond test for AR(1) 0.00
Arellano-Bond test for AR(2) 0.629
Observations 15,282 15,282 15,282
Number of groups 3,136 3,136 3,136
Sample properties 703 703 703
Robust standard errors in parentheses. p-values are reported for the Arellano-Bond test
for serial correlation and Hansen test of the validity of overidentification restriction. The
null hypothesis of the Hansen test is H0: overidentifying restrictions are valid. The null
hypothesis of the Arellano-Bond test for serial correlation is H0: no autocorrelation. ***
p<0.01, ** p<0.05, * p<0.1.

5.3. Individual property level estimates

The estimates at individual property level are presented graphically in Figure 4. The distribution

of the coefficients on the lagged indoor temperature shown with separate density plots associated

with each BER category. This provides insight into the heterogeneity of performance within BER

categories.

Figure 4 clearly demonstrates that there is greater within-BER heterogeneity than between-BER

heterogeneity. While the greater majority of properties have estimated coefficients in the range

0.8–0.95, there are many properties with estimated coefficients below 0.8. Ex-ante one would

have anticipated a clearer difference in the mean performance between property types. However,

there is no distinct pattern when observing these plots, further emphasising the findings of the

preceding analyses. In addition, Kolmogorov-Smirnov tests fail to reject equality of distributions
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Table 6: Second stage regressions for GMM residuals

Variables (1) (2) (3) (4) )
Dependent variable: GMM residuals

Full sample Excl. Recent BER Excl. Grant Excl. Sale
BER scales (Reference: A3–B3):

C1 -0.101 -0.113 -0.137 -0.082
(0.095) (0.149) (0.124) (0.102)

C2 -0.179** -0.314** -0.281** -0.102
(0.087) (0.146) (0.113) (0.107)

C3 -0.183** -0.276** -0.304*** -0.013
(0.083) (0.140) (0.110) (0.094)

D1 -0.315*** -0.443*** -0.445*** -0.076
(0.089) (0.142) (0.113) (0.109)

D2 -0.274*** -0.410*** -0.364*** -0.202*
(0.088) (0.138) (0.113) (0.118)

E1 or E2 -0.475*** -0.619*** -0.574*** -0.449***
(0.093) (0.140) (0.116) (0.114)

F or G -0.288*** -0.406*** -0.394*** -0.226
(0.099) (0.145) (0.120) (0.152)

Constant 0.234*** 0.377*** 0.340*** 0.232***
(0.058) (0.118) (0.090) (0.062)

Adjusted R-squared 0.0388 0.0537 0.0454 0.0348
Observations 15,282 11,055 13,521 8,579
Sample properties 703 492 605 409
Robust standard errors clustered at the home level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1

between each of the BER scales. Similar results arise when the samples are restricted in a similar

way to those discussed in the sensitivity analysis in section 5.1.2.

6. Discussion

Two striking results emerge from the preceding analysis; (1) we find little between-BER hetero-

geneity relative to within-BER heterogeneity and (2) we observe a lesser than expected gradient

of performance between BER categories.

Table 3 and Figure 4 show that the mean performance of properties across BER scales are broadly

similar and are overshadowed by within-category variance. This suggests that factors other than

BER have an overwhelming influence of building fabric performance. Our analysis considers

temperature change in the main living space, which may vary considerably between dwellings.
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26



However, there is no reason to believe that there is a systematic difference in the distribution of

these factors across BER categorisations and a difference in mean performance should still prevail.

A substantial share of properties across all BER ratings perform relatively strongly in terms of

temperature inertia, while another substantial share of properties across all BER ratings perform

relatively poorly.

While BER may be a good standardised approach to measure potential performance across proper-

ties, these results suggest that there are additional factors to be considered when evaluating energy

performance in the home. From national energy statistics we know that fossil fuel use per house-

hold has declined by more than 28% since 2002. This presumably can be attributed to extensive

program of residential energy retrofits plus higher building standards. Results from this and simi-

lar papers in the literature (e.g. Coyne and Denny, 2021) provides evidence to suggest that relying

on theoretical energy performance certificate data may lead to a misspecification of true energy

performance in the home. This insight was achieved through the use of ex-post data analysis, both

in the case of this paper and that of Coyne and Denny (2021), motivating the incorporation of such

data into a more comprehensive energy performance evaluation going forward.

This paper also finds that the performance gradient between BER categories is less than expected

ex-ante. While previous research has demonstrated how energy retrofits within the Irish housing

stock leads to a reduction in energy consumption (Beagon et al., 2018; Coyne et al., 2018; Rau

et al., 2020), none of these studies examines the gradient of performance between BER scales.

Broadly consistent with the results here, Coyne and Denny (2021) find a lack of variation in av-

erage metered energy use across BER categories among 10,000 Irish properties and conclude that

energy demand is unresponsive to the energy efficiency rating of properties. The Irish building en-

ergy performance standard (BER/DEAP) is consistent with EU guidance and similar differences

between theoretical and actual residential energy performance have been identified elsewhere (Ma-

jcen et al., 2013; van den Brom et al., 2018; Cozza et al., 2020).

27



The research presented in this paper, as well as the findings of Coyne and Denny (2021), sug-

gest that achieving a policy target of retrofitting 500,000 properties to a B2 BER standard (CAP,

2021) may not necessarily lead to the same degree of energy savings as predicted ex-ante. This

has important implications for the efficient allocation of public funds, with e8billion earmarked

for residential energy retrofits in Ireland (CAP, 2021). The findings of this paper and others in

the literature suggests that there are considerable deficiencies in the design of energy performance

certificates, with scope for greater emissions reduction per unit of funds spent through a more

representative measure of energy performance. Further information is required, however, to un-

derstand the missing information.

It is likely to be practically and administratively difficult to design and implement a subsidy scheme

that is directly linked to improved energy and emissions performance. What is more feasible is the

development of national surveys with appropriate samples and statistical analysis to understand the

relationships between energy efficiency standards; energy retrofits; energy use, and; occupant use

and behaviours. With more comprehensive information, retrofit grant schemes can be regularly

reviewed to ensure the most efficient use of public funds.

7. Conclusion and policy implications

Energy performance certificates (EPCs) are widely used as a benchmark of performance against

which residential investment in energy efficiency is measured. Indeed, EPCs form the basis of

national programmes of energy efficiency in order to meet climate targets. While energy perfor-

mance certificates do not purport to be a projection of occupants’ actual energy usage, they are

used as the basis for public policy. This research, supporting earlier findings by Coyne and Denny

(2021), does not find a distinct gradient in performance between BER ratings, lending evidence to

suggest that BER is not as strong an indicator of building fabric performance as one would expect

ex-ante. In addition, we find that there is a wide heterogeneity of building fabric performance

within BER grades, to extent that this is far greater than between-BER heterogeneity.
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Two key policy implications follow from this research. Firstly, more research is required to im-

prove our understanding of the relationship between energy efficiency standards, energy use and

occupant behaviour. Using national surveys with appropriate samples combined with data from

smart meters, data loggers, and other devices controlling heating systems, a substantially better

understanding of energy use is feasible.

Secondly, many national policies frame energy efficiency objectives relative to a particular energy

performance standard, as measured by energy performance certificates. While energy efficiency

retrofits will invariably reduce residential energy use, this research finds that the Irish energy per-

formance certificate captures a relatively small degree of total heterogeneity in energy use; there

are many other factors unaccounted for by this metric. Given this finding, directly linking policy

targets to a given EPC standard may lead to an outcome substantially different than envisaged.
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