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Abstract

Conventional wastewater treatment plants consume significant amounts of electricity. The constant aera-

tion of the wastewater in order to foster the growth of microorganisms or the pumping of wastewater are

two examples for energy-intensive processes within a plant. Case studies have shown that switching off

blowers and inlet pumps for a certain period of time is possible without a loss in water quality. This yields

a potential for wastewater treatment plants to provide demand response (DR) to the power system and

thereby increase overall system flexibility. So far, the DR potential has only been quantified for individual

plants, while the effects of large-scale DR provision by the wastewater treatment sector for the power sys-

tem have not yet been studied. One reason for this is the lack of optimisation models which include both

the wastewater treatment process and the power system operation in sufficient detail. Our model tackles

this gap in the literature by providing a reduced-order linear biochemical model for the activated sludge

process within a WWTP that can be incorporated into an operational energy system model. The results

show that the effluent concentrations are predicted well by the linear reduced-order model in comparison

to the results of the Standard Activated-Sludge model No. 1 (ASM1). Potential model applications are

the variation of the airflow rate within a certain range and the variation of liquid influent flow rate to the

system, which is a result of electricity load shedding of the inlet pumps and the blowers connected to the

activated sludge tank.

Keywords: linear biochemical model; wastewater; energy system; ASM1
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Nomenclature

α1 Share of heterotrophs in the influent

α2 Share of heterotrophs in the aerated tank

β Share of autotrophs

ηX Share of biomass concentration in the effluent

γDO Correction factor for re-circulation of DO

µA Autotrophic specific growth rate [d−1]

µH Heterotrophic specific growth rate [d−1]

D̃ Dilution factor Q
V

Air Airflow rate [m3/d]

bA Autotrophic decay rate [d−1]

bH Heterotrophic decay rate [d−1]

DO Dissolved oxygen concentration [g/m3]

DOsat Dissolved oxygen saturation concentration [g/m3]

fP Fraction of biomass yielding particulate products

h Immersion depth of diffusers [m]

iXB Nitrogen content in biomass [g N]

iXP Nitrogen content in products from biomass [g N]

ka Ammonification rate [m3 (g COD day)−1]

kd Decay rate of microorganisms [d−1]

kh Max. specific hydrolysis rate [g slowly biodeg. COD (g cell COD day)1]

KS Half-saturation coefficient (hsc) for heterotrophs [g COD m3]

KX Hsc for hydrolysis of slowly biodegradable substrate [g slowly biodeg. COD (g cell COD day)1]
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KNH Ammonia hsc for autotrophs [g NH3Nm3]

KOA Oxygen hsc for autotrophs [g O2 m3]

KOH Oxygen hsc for heterotrophs [g O2 m3]

n ∈ N Node in Backbone

nns ∈ NNS Node pairs of nodes which have a state connection (e.g. diffusion) in Backbone

OU20 Oxygen utilization rate [g/(m3 ·m)]

pdecay
n Decay parameter of biomass in Backbone

pdecay
n Recycling parameter of biomass in Backbone

pdi f f usionIn
n′,n Incoming diffusion parameter in Backbone

pdi f f usionOut
n′,n Outgoing diffusion parameter in Backbone

pe f f iciency
u Efficiency parameter of a unit in Backbone

psel f discharge
n Self discharge parameter in Backbone

pthresholdLow
q Lower influent threshold of WWTP model in Backbone

pthresholdU p
q Upper influent threshold of WWTP model in Backbone

ptrans f erLoss
n,n′ Transfer loss parameter in Backbone

Qt Liquid wastewater flow [m3/d]

Qin Influent flow [m3/d]

qq,t ∈ Q Binary variable for the influent category

S Substrate [g/m3]

SI Soluble nonbiodegradable COD

SS Soluble biodegradable COD

SND Biodegradable organic soluble nitrogen

SNH Ammonia nitrogen

SNO Nitrate

SO Oxygen
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tsout f lux
n,t , tsin f lux

n,t Time series parameter of exogenous flows from or to a node in Backbone

u ∈U Unit in Backbone

V Tank volume [m3]

v f lowGen
n,u,q,t Product variable of vgen

n,u,t and qq,t of a unit in Backbone

v f lowState
n,q,t Product variable of vstate

n,t and qq,t of a unit in Backbone

v f uelCost Fuel cost variable in Backbone

vgen
n,u,t Generation (consumption) variable of a unit in Backbone

vob j Value of the objective function in Backbone

vpenalty Penalty cost variable in Backbone

vrampCost Ramp cost variable in Backbone

vshutdownCost Shutdown cost variable in Backbone

vspill
n,t Spill variable of a node in Backbone

vstartupCost Start up cost variable in Backbone

vstate
n,t State variable of a node in Backbone

vtrans f er
n,t Transfer variable between nodes in Backbone

vvomCost Variable OM cost in Backbone

w j Linearisation parameter vector for the airflow of the linear model

X Microorganism population [g/m3]

Xe f f Effluent microorganism population [g/m3]

XI and XP Particulate nonbiodegradable COD

XS Particulate biodegradable COD

XB,A Autotroph active biomass

XB,H Heterotroph active biomass

XND Biodegradable organic particulate nitrogen

YA Growth rate of autotrophs [g cell COD formed (g N oxidized)1]
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YH Growth rate of heterotrophs [g cell COD formed (g COD oxidized)1]

Zi,q Linearisation parameter matrix for the kinetics of the linear model

AD Anaerobic digestion

ASM1 Activated Sludge Model No. 1

bCOD biodegradable Chemical Oxygen Demand

BOD Biological oxygen demand

BSM1 Benchmark Simulation Model 1

CO2 Carbon dioxide

COD Chemical Oxygen Demand

DO dissolved oxygen

DR Demand response

hsc Half-saturation coefficient

kLa Oxygen transfer coefficient [d−1]

LP Linear program

MILP mixed-integer linear program

OM Operations and maintenance

PE Population Equivalent

PV Photo voltaic

SSE Sum of squared errors

TKN Total Kjeldahl Nitrogen

WWTP Wastewater treatment plant
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1 Introduction

Case studies have shown the potential of wastewater treatment plants (WWTP) to provide demand re-

sponse (DR) to the power system, for example by shutting down the aeration of the activated sludge

process for a limited amount of time (Berger et al., 2011; Kollmann et al., 2013; Nowak et al., 2015;

Schäfer et al., 2017; Müller & Möst, 2018; Giberti et al., 2019). So far, these studies have assumed

power system operation and energy prices as exogenous to the demand response of WWTP. Instead, the

inclusion of the WWTP operation into the energy system optimisation can yield a more holistic system

perspective of large-scale DR provision by WWTP. However, wastewater treatment plant models are of-

ten characterised by a high level of complexity and non-linearity, while most power system models are

(mixed-integer) linear optimisation problems. An optimisation problem that simultaneously considers

both power system and wastewater treatment plant requires an integrated modelling approach that does

not exist to date. We overcome this limitation by introducing a linearised reduced-order model for the

activated sludge process, the core process within biological wastewater treatment, which can be inte-

grated into a mixed-integer linear program (MILP). Starting from the Activated Sludge Model No. 1

(ASM1), a well established standard model in the realm of wastewater treatment modelling, we derive

a linearised reduced-order WWTP model in three steps. First, the standard ASM1 is reduced to a non-

linear three-component model. By observing only three state variables (namely, substrate concentration,

biomass concentration and dissolved oxygen concentration) we can significantly reduce the complexity

of ASM1. Second, we derive a set of locally valid linear models from this by using a linearisation ap-

proach introduced by Smets et al. (2006). The approach uses weighted linear combinations of the state

variables for different ranges of influent flow. Depending on the level of influent, the parameters within

the model change according to the respective dynamics, resulting in a distinct linear model for each range

of influent flow. Third, the balance equations of the WWTP model are linearised with the help of binary

variables in order to fit the MILP structure. This allows for switching between the coefficients according

to the influent category.

To date, there have been various approaches to reduce the complexity of the ASM1 in the litera-

ture. Zhao et al. (1995) provide one of the first examples of model complexity reduction of the ASM1,

proposing a model that only observes the state variables for the ammonia and nitrate concentrations for

an alternating activated sludge process. Jeppson (1996) also develops a reduced-order model which con-

tains the four state variables of nitrate, ammonia, biomass and COD. Similar to these first approaches,

Julien et al. (1999) introduce a reduced-order model for a single tank set-up with alternating aerobic and

anoxic conditions, which contains one sub-model for aerobic conditions and one for anoxic conditions.

The model contains three state variables: the concentrations of nitrate, ammonia and oxygen. Mulas et

al. (2007) develop a four-state variables model for oxygen, nitrate and nitrite nitrogen, free and ionised

ammonia, and a reduced variable for COD, which contains the soluble organics and biodegradable par-

ticulates SI +SS +XS. Most recently, Lahdhiri et al. (2020) discussed a model with more detail, reducing
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the number of state variables from 13 in the ASM1 to 9. The approach is based on the steady-state mass

balances of the ASM1 and applied to a plant layout with a single aerated tank, with sludge recycling from

a subsequent settling tank. Some nonlinear reduced-order models also incorporate linear elements. The

reduced-order model by Nelson et al. (2018) contains four process equations for the change of soluble

substrate, particulate (heterotroph) biomass, soluble micro-pollutants and particulate micro-pollutants.

They partly linearise the model, using a linear process for the adsorption of particulates by the biomass.

Santa Cruz et al. (2016) identify reaction invariants within a batch system, which are unaffected by the

reaction process and can be expressed as linear algebraic expressions. In three case studies, they use one,

three and five reaction invariants in order to reduce the number of differential equations of the ASM1.

In addition to these reduced-order models, there have also been several examples of model linearisa-

tion of the ASM1. Smets et al. (2006) propose a relatively simple, general approach to linearise the full

ASM1 model. They argue that instead of using a classic Taylor expansion, an approach with weighted

linear combinations of the state variables yields a comparably good fit of the linear model. Benhalla et

al. (2010) also provide a linear model for the full ASM1. Instead of the mass balances, they linearise the

reaction rates by using linear combinations of state variables as well. After identification, these linear

rate models are incorporated into the mass balance equations of the ASM1.

Other linearisation approaches also consider a model complexity reduction before linearisation. A

two-phase model with 8 state variables for an intermittent aerobic-anoxic activated sludge process is

presented by Anderson et al. (2000). The nonlinear terms within the process equations of the ASM1 are

replaced by linear approximations. The model uses first-order expressions for the reaction rates in each

phase (aerobic and anoxic). They highlight that the resulting model is system-specific, and might not

reflect the behaviour of a different activated sludge system under different operating conditions. Gómez-

Quintero et al. (2004) also present a linear model with two sub-models for the aerobic and anoxic phase of

a continuous flow process. Their model contains four equations, which determine the states of the readily

biodegradable substrate, nitrate, ammonia and dissolved oxygen. They find that the linear dynamics

defined for the dissolved oxygen are slower compared to the ASM1, but demonstrate an overall good fit

of the model under different operating conditions. David et al. (2007) develop a reduced and linearised

version of the ASM1 for robust control purposes of a two-tank plant layout. Their approach is similar

to a classic Taylor expansion, but instead of using steady-state points, they linearise the model for the

average values of the input and state variables. This results in a linear model with five state variables for

the anoxic tank and six state variables for the aerobic tank. Nagy et al. (2009) propose a multi-model

approach with eight time-invariant sub-models and a set of weighting functions to combine them into a

global linear model. Their reduced-order model only considers carbon pollution, but the methodology

could potentially be applied to the full ASM1 as well.

7



In contrast to existing linearised models, our biochemical model provided the potential to be inte-

grated into an energy systems model to understand the implications of (industrial) process constraints for

demand response actions for both the power system operator and the plant operator.

2 Methodology

The full ASM1 model takes into account 13 different state variables and eight process equations in order

to describe the dynamic behaviour of the wastewater components in the activated sludge process. A full

representation of the ASM1 can be found in Henze et al. (1987) and Jeppson (1996). A detailed descrip-

tion of its successors ASM2 and ASM3 can be found in Henze et al. (2000).

The ASM1 describes the dynamics of the activated sludge process using four state variables for the

nitrogen components, one for the dissolved oxygen, one for alkalinity and seven for the chemical oxygen

demand (COD). COD consists of biodegradable, non-biodegradable COD and active biomass. It distin-

guishes between soluble (SS) and particulate (XS) biodegradable COD, soluble (SI) and particulate (XI

and XP) non-biodegradable COD. The active biomass consists of heterotroph (XB,H) and autotroph (XB,A)

micro-organisms.

The nitrogen components that are directly included in the model are biodegradable organic soluble

(SND) and particulate (XND) nitrogen, ammonia nitrogen (SNH) and nitrate (SNO). The model describes

four different kinds of dynamic processes: (aerobic and anoxic) growth of biomass, decay of biomass,

ammonification and hydrolysis. The dynamic processes for the autotrophic and heterotrophic biomass

are depicted in Figure 1. Some parallel processes for nitrogen components are omitted for conciseness:

Particulate organic nitrogen (XND) is embedded in XS and is therefore hydrolysed as well and the parts of

the embedded SND in SS is released to bulk liquid as ammonia when SS is utilised.

On that basis, we develop a reduced-order model which observes only three state variables for a

lumped substrate S, the biomass concentration X and the concentration of dissolved oxygen DO. We

compare the results of this model to the results of the full ASM1 for a two-week simulation period, based

on benchmark data from the well-established Benchmark Simulation Model No. 1 (BSM1). Since the

models observe different state variables, it is not possible to compare the results directly. Therefore, we

translate the results of both models into BOD, TKN and the oxygen consumption of the process. In or-

der to estimate the kinetic parameters of the reduced-order model, we perform a parameter estimation

that minimises the sum of squared errors between the effluent concentrations to achieve the best possible

match of the results of the reduced-order model and the ASM1 results.

Subsequently, the reduced-order model with estimated kinetic parameters needs to be linearised to

fit a mixed-linear optimisation framework. We use the linearisation approach by Smets et al. (2006) to
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Figure 1: Dynamic processes for autotrophic and heterotrophic biomass in the ASM1

develop a linear model of the activated sludge process with the same kinetic parameters and state variables

as the nonlinear reduced-order model. It consists of linear combinations of the state variables and their

average values over the simulation period, weighted with a linearisation parameter that varies depending

on the influent flow rate. We estimate the linearisation parameters for every inflow category such that

the results of the nonlinear model match the results of the linear model. Figure 2 summarizes the model

reduction process.
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Figure 2: Model reduction process

2.1 The nonlinear reduced-order model

The simplest description of the processes involved in wastewater treatment is given in equations 1, 2

and 3. These mass balances are written considering a continuous stirred tank reactor, and illustrate the

relationships between the microorganisms concentration X , the dissolved oxygen concentration DO and

the concentration of the substrate S from which the microorganisms obtain the carbon and nutrients they

need.

dS
dt

=
Q
V
· (Sin−S)+ rS(S,X ,DO) (1)
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dX
dt

=
Q
V
· (X in−X)+ rX(S,X ,DO) (2)

dDO
dt

=
Q
V
· (DOin−DO)+OT R+ rS(S,X ,DO) (3)

In each equation, the first term represents the contribution of the mass fluxes that enter and leave the

system, under the assumption that the liquid volume in the tank remains constant. The terms rs, rx and

rDO represent the reaction rates of each state variable, whereas OT R (Oxygen transfer rate) accounts for

the oxygen that is provided to the liquid phase through the aeration system.

We use this basic kinetic model as the starting point to build the reduced-order model. We consider

only biodegradable carbonaceous COD, because non-biodegradable COD is assumed to be unaffected by

the biochemical processes described in the ASM1. Moreover, we consider carbon matter as a fraction α

of the total substrate S that is available for the microorganisms (equation 4). This accounts for both the

readily biodegradable carbon (SS) and the particulate biodegradable carbon (XS), although its hydrolysis

is neglected. The remaining substrate (1−α)S consists of nitrogen compounds, which ASM1 divides into

ammonium and ammonia nitrogen (SNH), soluble biodegradable organic nitrogen (SND), and particulate

biodegradable organic nitrogen (XND). To maintain dimensional consistency while lumping carbon and

nitrogen compounds in the same state variable, it is necessary to take into account the stoichiometric

factor 4.57 gCOD/gN (equation 5).

α ·S = SS +XS (4)

(1−α) ·S = (SNH +SND +XND) ·4.57 gCOD/gN (5)

The biochemical reactions that consume carbon and nitrogen compounds are characterised by differ-

ent reaction rates. In particular, nitrogen removal by autotrophic biomass requires a significantly longer

time than the removal of carbon. Therefore, the model should be capable of differentiating between car-

bon and nitrogen substrates. Moreover, the ratio between carbon and nitrogen compounds in the liquid

phase is not constant, and can change substantially as the water flows through the WWTP. Hence, two α

factors are considered: the first one (α1) takes into account the carbon share in the plant influent, whereas

the second (α2) describes the carbon share in the reactor. These factors were calculated by averaging

the dynamically changing values in the influent and effluent (Figure A.1 in Appendix A) over a 14-days

simulation of BSM1.

ASM1 also distinguishes between heterotrophic biomass (XBH) and autotrophic biomass (XBA). These

two different microbial populations can be accounted for with a single state variable X , assuming that XBH

constitutes a certain fraction β of X (equation 6), whereas the remainder (1−β ) represents XBA (equation

7). Details on how we determine the value for β can be found in Appendix A.
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β ·X = XBH (6)

(1−β ) ·X = XBA (7)

The reaction rate in equations 1, 2 and 3 associated with each state variable can be express analogously

to the ASM1, with some adjustments to account for stoichiometry. For instance, the substrate reaction

rate is modelled on the basis of the ASM1 aerobic growth reaction rates, as shown in equation 8.

rS =− kT ·β ·X ·
(

α2 ·S
KS +α2 ·S

)
·
(

DO
KOH +DO

)
+

− kTa · (1−β ) ·X ·
(

(1−α2) ·S
4.57 ·KNH +(1−α2) ·S

)
·
(

DO
KOA +DO

)
+

+(1− fP) · kd ·X

(8)

The first term of equation 8 accounts for the carbon fraction of the substrate (α2 · S), which is con-

sumed through aerobic growth by the heterotrophic biomass (β ·X) that is present in the system. The

second term of equation 8 represents the nitrogen fraction of the substrate ((1−α2) ·S), which is used by

the aerobic growth of the autotrophic share ((1−β ) ·X). The kinetic constants of the growth processes are

kT and kTa, which are calculated as the ratio between µH and YH , and µA and YA respectively. Finally, the

last term describes the substrate originated by the cellular decay of both the heterotrophic and autotrophic

fractions on the microorganisms. The decay coefficient kd that is used here is the weighted combination

of the ASM1 heterotrophs (bH) and autotrophs (bA) decay coefficients, as shown in equation 9.

kd = β ·bH +(1−β ) ·bA (9)

In the ASM1, the biomass decay produces particulate biodegradable substrate (XS), as well as partic-

ulate biodegradable organic nitrogen (XND). Since our reduced-order model does not distinguish between

soluble and particulate compounds, we assume that the decay products directly increase the amount of

substrate S available to the microorganisms. Moreover, all the kinetic and stoichiometric parameters that

appear in the rS equation are directly derived from the ASM1, to facilitate interpretability and consistency

with the full ASM1.

Similarly, we obtain the reaction rates rX and rDO, reported in equation 10 and 11 respectively.

rX =kT ·YH ·β ·X ·
(

α2 ·S
KS +α2 ·S

)
·
(

DO
KOH +DO

)
+

+ kTa ·YA · (1−β ) ·X ·
(

(1−α2) ·S
4.57 ·KNH +(1−α2) ·S

)
·
(

DO
KOA +DO

)
+

− kd ·X

(10)
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rDO =− (1−YH) · kT ·β ·X ·
(

α2 ·S
KS +α2 ·S

)
·
(

DO
KOH +DO

)
+

− (4.57−YA) · kTa · (1−β ) ·X ·
(

(1−α2) ·S
4.57 ·KNH +(1−α2 ·S

)
·
(

DO
KOA +DO

) (11)

Additionally, the DO mass balance includes a term to account for the oxygen provided to the microor-

ganisms through aeration (oxygen transfer rate - OTR). In ASM1, the oxygen transfer rate is defined by

equation 12, which relies on the kLa factor to express the variations in the DO concentration produced

by the aeration system, as well as environmental factors. The amount of oxygen that is transferred to

the liquid phase in the reactors depends on the kLa coefficient and approaches zero when the dissolved

oxygen concentration in the tank reaches the saturation concentration DOsat .

OT R = kLa · (DOsat −DO) (12)

We use the correlation proposed by Rieger et al. (2006) to model the effect of air flow rate (which

is the controlled variable) on the reaction kinetics (see equation 13), neglecting the dependency of OTR

on temperature, as well as the different performance of the aeration system in clean water and wastewater.

OT R =
OU20 ·haer

V ·DOsat ·Qair · (DOsat −DO) (13)

In terms of plant layout, the model is developed considering a single aerated tank (figure 3b). Com-

pared to the standard design (figure 3a), the final clarifier and the return activated sludge stream are not

explicitly modelled, as their presence would introduce significant non-linearities in the model. Instead,

settling and underflow are described assuming that a constant share of biomass remains in the aerated

tank.

To simulate the biomass retention without explicitly modeling the final clarifier, we introduced the

efficiency factor ηX for capturing solids to the simplified model. Therefore only a fraction of the biomass

leaves the system with the effluent (equation 14).

Xout = ηX ·X (14)

Meanwhile, we assume that S and DO are completely soluble in the liquid phase, which means that

their concentration in the plant effluent is not affected by the presence of the settler. However, the sim-

ulated recycle flow contains a certain quantity of both substrate and dissolved oxygen, and to eliminate
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Aeration tank Final clarifier

Effluent

Blower

Return activated sludge Excess sludge

Wastewater

(a) Standard activated sludge layout with final
clarifier

Aeration tank

Effluent

Blower

Wastewater

Physical solids/liquid 

separation with high 

solids capture 

efficency

(b) Single-tank layout with implied settling and
recirculation flow

Figure 3: Comparison of standard tank layout and single-tank layout

this stream from the plant layout may have repercussions on the model results. Due to the fast consump-

tion rate of the substrate, the effect is negligible for the effluent substrate concentration. In contrast, the

decreased amount of oxygen that reaches the tank due to the lack of recycling flow results in a higher

expected aeration demand for the plant. To address this issue, an additional parameter γDO is introduced

in the DO mass balance equation, estimating its value to match the DO concentration in the tank. This pa-

rameter is only necessary to ensure that the results of the reduced order model and the reference model are

comparable: in practice, the biochemical reactions that take place in the final clarifier would deplete the

oxygen in the recycle flow. Equations 15, 16 and 17 report the final mass balances of the reduced-order

model.

dS
dt

=
Q
V
· 1+3.57 ·α1

4.57
· (Sin−S)+

− kT ·β ·X ·
(

α2 ·S
KS +α2 ·S

)
·
(

DO
KOH +DO

)
+

− kTa · (1−β ) ·X ·
(

(1−α2) ·S
4.57 ·KNH +(1−α2) ·S

)
·
(

DO
KOA +DO

)
+

+(1− fP) · kd ·X

(15)
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dX
dt

=
Q
V
· (X in−ηX ·X)+

+ kT ·β ·X ·YH ·
(

α2 ·S
KS +α2 ·S

)
·
(

DO
KOH +DO

)
+

+ kTa · (1−β ) ·X ·YA ·
(

(1−α2) ·S
4.57 ·KNH +(1−α2 ·S

)
·
(

DO
KOA +DO

)
+

− kd ·X

(16)

dDO
dt

=
Q
V
· (γDO ·DO+DOin−DO)+

+
OU20 ·h

V ·DOsat ·Qair · (DOsat −DO)+

− (1−YH) · kT ·β ·X ·
(

α2 ·S
KS +α2 ·S

)
·
(

DO
KOH +DO

)
+

− (4.57−YA) · kTa · (1−β ) ·X ·
(

(1−α2) ·S
4.57 ·KNH +(1−α2) ·S

)
·
(

DO
KOA +DO

)
(17)

2.2 The linear reduced-order model

In the following, we linearise the equations 15, 16 and 17. Instead of a classic Taylor series expansion, a

simplified linearisation technique introduced by Smets et al. (2006) is applied. They use weighted linear

combinations of the state variables to approximate the nonlinear system. The approach produces similar

results for the aerated tank compared to the Taylor series expansion, but provides improved modelling of

peak concentrations and a reduction of complexity (Smets et al., 2006).

The idea at the base of this approach is to utilise the average values of observable state variables over

a fixed simulation period in order to approximate interactions between state variables. We first apply this

to the dilution factor Q/V and the kinetic parameters of the model, such that

Q
V

= D̃ (18)

kT

(KS +α2S)(KOH +DO)
= δ (19)

kT a
(4.57KNH +(1−α2)S)(KOA +DO)

= θ (20)

All over-lined characters represent the average values of the state variable over the simulation period.

Inserting equations 18, 19, 20 into the system of balance equations yields
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dS
dt

= D̃ · 1+3.57α1

4.57
· (Sin−S)−δα2β ·S ·DO ·X

−θ(1−α2)(1−β )S ·DO ·X +(1− fP) · kd ·X
(21)

dX
dt

= D̃ · (Xin−ηX X)+δα2βYH ·S ·DO ·X

+θ(1−α2)(1−β )YA ·S ·DO ·X− kd ·X
(22)

dDO
dt

= D̃ · (DOin− (1− γDO)DO)+
OU20 ·h

V ·DOsat ·Air ·Dsat − OU20 ·h
V ·DOsat ·Air ·DO

−δα2β (1−YH) ·S ·DO ·X−θ(1−α2)(1−β )(4.57−YA) ·S ·DO ·X
(23)

Subsequently, we linearise the non-linear interaction between the state variables following Smets et

al. (2006), who approximate the product of the state variables S, X and DO according to equation 24.

S ·DO ·X ≈ z1SX ·DO+ z2XDO ·S+ z3DOS ·X (24)

Here, the over-lined characters represent the average values of the state variables over the full simulation

period, while zi are adjustment parameters. These adjustment or linearisation parameters are later esti-

mated in order to fit the results of the non-linear model. In the DO mass balance, the product of the airflow

Air and DO also requires linearisation. Following the approach by Smets et al. (2006), we introduce two

additional adjustment parameters w1 and w2.

Air ·DO≈ w1DO ·Air+w2Air ·DO (25)

Replacing all products of state variables according to this approach and rearranging the terms yields the

linear formulations of the mass balances (equations 26 to 28).
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dS
dt

= D̃q ·
1+3.57α1

4.57
·Sin,t

− (α2βδ +θ(1−α2)(1−β ))z1,qXS ·DOt

− (α2βδ +θ(1−α2)(1−β ))z2,qXDO ·St

− (α2βδ +θ(1−α2)(1−β ))z3,qDOS ·Xt

+(1− fP) · kd ·Xt

− D̃q ·
1+3.57α1

4.57
·St (26)

dX
dt

= D̃q ·Xin,t

+(α2βδYH +YAθ(1−α2)(1−β ))z4,qXS ·DOt

+(α2βδYH +YAθ(1−α2)(1−β ))z5,qDOX ·St

+(α2βδYH +YAθ(1−α2)(1−β ))z6,qSDO ·Xt

− kd ·Xt

− D̃q ·ηX Xt (27)

dDO
dt

= D̃q ·DOin,t

− (α2βδ (1−YH)+(4.57−YA)θ(1−α2)(1−β ))z7,qXS ·DOt

− (α2βδ (1−YH)+(4.57−YA)θ(1−α2)(1−β ))z8,qXDO ·St

− (α2βδ (1−YH)+(4.57−YA)θ(1−α2)(1−β ))z9,qSDO ·Xt

− OU20 ·h
V ·DOsat w1,qAir ·DOt

+(
OU20 ·h

V
− OU20 ·h

V ·DOsat w2,qDO) ·Airt

− D̃q · (1− γDO)DOt (28)

Smets et al. (2006) define the fraction Q
V as the dilution factor D̃. This dilution factor and the lineari-

sation parameters zi are only locally valid for a certain inflow range. Consequently, the system is linear

for a constant influent range q, but for a variable q, the dilution factor D̃q and the parameters zi,q become

integer variables. Since multiplication of variables is not possible in a mixed-integer linear program, a lin-

ear function is required to trigger the switch between these variables depending on the influent range and

therefore turn them into constant coefficients within that range. Therefore, a binary variable qq,t is intro-
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duced for each inflow segment. The balance equation 26 (exemplary, see the equivalent transformations

of equations 27 and 28 in Appendix B) then becomes

dS
dt

= D̃q ·qq,t ·
1+3.57α1

4.57
·Sin,t

− (α2βδ +θ(1−α2)(1−β ))z1,qXS ·qq,t ·DOt

− (α2βδ +θ(1−α2)(1−β ))z2,qXDO ·qq,t ·St

− (α2βδ +θ(1−α2)(1−β ))z3,qDOS ·qq,t ·Xt

+(1− fP) · kd ·Xt

− D̃q ·qq,t ·
1+3.57α1

4.57
·St (29)

The binary variables will be one only if the flow falls into the respective inflow range, between the

lower inflow bound lq and the upper inflow bound uq. This is assured by the following set of constraints:

Q∗q,t ≥ lq ·qq,t (30)

Q∗q,t ≤ uq ·qq,t (31)

∑qq,t = 1 (32)

The new variable Q∗q,t = Qt ·qq,t is the product of the continuous variables Qt and the binary qq,t . This

product can be linearised by using the big M approach (Cococcioni & Fiaschi, 2021). Therefore, a very

large number M is introduced. Then, the following constraints are implemented:

Q∗q,t ≤ qq,t ·M (33)

Q∗q,t ≤ Qt (34)

Q∗q,t ≥ Qt − (1−qq,t) ·M (35)

Q∗q,t ≥ 0 (36)

This assures that the new variable will equal Qt if the binary variable is one, and zero if the binary

variable is zero. Similarly, a new variable S∗q,t = St · qq,t which is limited in the same way as Q∗q,t is

introduced for every state variable S, X and DO, following equations 37 to 40.
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S∗q,t ≤ qq,t ·M (37)

S∗q,t ≤ St (38)

S∗q,t ≥ St − (1−qq,t) ·M (39)

S∗q,t ≥ 0 (40)

and accordingly for Xt and DOt and Sin,t , Xin,t and DOin,t .

Finally, the balance equation in 29 can be transformed into a linear form, assuming discrete time

steps:

St −St−1 = ∑
q∈Q

(
1+3.57α1

4.57
· D̃q ·S∗in,t

− (α2βδ +θ(1−α2)(1−β ))X ·S · z1,q ·DO∗q,t

− (α2βδ +θ(1−α2)(1−β ))X ·DO · z2,q ·S∗q,t
− (α2βδ +θ(1−α2)(1−β ))DO ·S · z3,q ·X∗q,t

−D̃q ·
1+3.57α1

4.57
·S∗q,t

)
+(1− fP) · kd ·Xt (41)

In order to arrive at a globally valid model, the parameters for the vector D̃q and the matrix Zi,q have

to be estimated for each inflow category q.

3 Results

3.1 Calibration results of the reduced-order model against the ASM1

In order to estimate the kinetic parameters for the reduced-order model, we compare the results of the

ASM1 and the reduced-order model for a representative data set of two weeks of influent data. The

influent data is obtained from the Benchmark Simulation Model No. 1 (BSM1, Alex et al. (2008)). The

data set contains the instantaneous flow rate and the concentrations of each influent component of the

ASM1 measured at a 15 minutes time resolution. There is a data set for dry, wet and storm weather

conditions. In this study, we use the dry weather influent data, because demand response can be provided

more easily, if the system is not under stress from high influent loads. The average influent flow rate is

18,446 m3.d−1 and the size of the aerated tank is 6000 m3. Table 1 gives an overview of all assumed

values of the model parameters, derived from the ASM1 and BSM1.
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Parameter symbol unit value
Average flow rate Q m3.d−1 18,446
Average airflow rate Air m3.d−1 144,000
Tank volume V m3 6000
Initial DO concentration DO0 g/m3 0.0076964
Initial substrate concentration S0 g/m3 190.37
Initial biomass concentration X0 g/m3 2703.78
DO saturation concentration DOsat g/m3 8.00
Fraction of biomass yielding particulate products fP no dimension 0.08
Immersion depth of diffusers in aerated tank h m 4.00
Oxygen utilisation rate OU20 g/(m3 ·m) 20
Nitrogen content in biomass iXB g N 0.086
Nitrogen content in products from biomass iXP g N 0.06
Ammonification rate ka m3 (g COD day)−1 0.08
Max. specific hydrolysis rate kh g slowly biodeg. COD (g cell COD day)−1 3.0
Ammonia half-saturation coefficient for autotrophs KNH g NH3−Nm−3 1.0
Nitrate half-saturation coefficient for denitrifying heterotrophs KNO g NO3-N m−3 0.5
Oxygen half-saturation coefficient for autotrophs KOA g O2 m−3 0.4
Half-saturation coefficient for heterotrophs KS g COD m−3 10.0
Half-saturation coefficient for hydrolysis of slowly biodegradable substrate KX g slowly biodeg. COD (g cell COD)−1 0.1
Oxygen transfer coefficient kLa d−1 240
Oxygen half-saturation coefficient for heterotrophs KOH g O2 m−3 0.2
Heterotrophic yield YH g cell COD formed (g COD oxidized)−1 0.67
Autotrophic yield YA g cell COD formed (g N oxidized)−1 0.24

Table 1: Parameter values of the linear reduced-order model, based on the ASM1 and BSM1

As stated before, the reduced-order model consists of lumped state variables for the substrate S and

the microorganisms X . In order to compare the results with the results of the ASM1, the observed state

variables of both models are expressed as BOD, TKN and dissolved oxygen consumption DOcon. In the

ASM1, BOD, TKN and DO consumption are defined as:

BOD = 0.25 · (Sout
S +Xout

S +(1− fP) · (Xout
B,H +Xout

B,A)) (42)

T KN = Sout
NH +Sout

ND +Xout
ND + iXB · (Xout

B,H +Xout
B,A) (43)

DOcon =
Qin

V
· (Sin

O −Sout
O )+ kLa · (DOsat −Sout

O )−dDO (44)

In comparison, BOD, TKN and DO consumption in the reduced-order model are given as:

BOD = 0.25 · (α2 ·S+(1− fP) ·X) (45)

T KN = ((1−α2) ·S)/4.57+ iXB ·X (46)

DOcon =
Q
V
· (DOin−DO)+

OU ·h
V ·DOsat ·Air · (DOsat −DO)−dDO (47)

The BOD formulation of the reduced-order model combines the organic carbon components SS and

XS into the organic fraction of the substrate αS (see Equation 4). In the reduced-order model, the con-

centration of microorganisms X represents both heterotrophs and autotrophs, such that X = XB,H +XB,A.
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Following equation 46, the TKN calculation consists of the nitrogenous part of S, (1−α)S and the ni-

trogen content in the effluent biomass iXBX . For these terms to be added up, the nitrogen concentration

has to be expressed in oxygen terms: 4.57 g oxygen is required to convert 1 g of ammonium nitrogen to

nitrate nitrogen. The DO consumption of the process is defined by the difference of the DO concentration

in the influent and the effluent, plus the additional DO supply by the aeration system, minus the change

in DO concentration in the reaction tank.

The parameters µA, µH , bH , bA, α1, α2, β , ηX and γDO of the reduced-order model are estimated by

minimising the sum of squared errors (SSE) between the results for the DO consumption, BOD and TKN

concentration of the ASM1 and of the reduced-order model. We perform the parameter estimation using

the Simulink Toolbox of the MATLAB software by The MathWorks, Inc. First, the software produces a

reference signal yre f (t) from the ASM1 for each component. Second, a simulated signal ysim(t) for the

reduced-order model is obtained based on a certain starting value for the parameters. For the parameters

derived from the ASM1, we chose the ASM1 values as starting points for the estimation. For the new

parameters α1, α2, β , ηX and γDO, we select a starting value of 0.5. Then, we perform the parameter

estimation with the nonlinear least squares method, minimising the sum of squared errors F(x) between

the model prediction ysim(t) and the reference values yre f (t) using a trust-region reflective algorithm

(equations 48 and 49).

min F(x) =
tN

∑
t=0

e(t)× e(t) , with (48)

e(t) = yre f (t)− ysim(t) (49)

The results for dissolved oxygen consumption, BOD and TKN of the effluent of the ASM1 compared

to the reduced-order model with estimated kinetic parameters are depicted in figure 4. The estimated

parameter values for the reduced-order model are given in table 2.

It can be seen in figure 4 that the reduced-order model is able to predict the DO consumption of the

process fairly accurate compared to the ASM1, although the DO consumption is slightly overestimated

in the valleys.

The differences in the prediction of BOD in the effluent is caused by the different dynamics that the

presence of the settler introduces to the model. The reduced-order model does not account for particulates

in the substrate, since the substrate is assumed to be fully soluble. Consequently, the ASM1 can predict

changes in the effluent BOD due to the degradation of particulate substrate, which the reduced-order

model cannot account for. However, the average BOD in the effluent is similar in both models and the

deviations from the full ASM1 behaviour remain within ± 1 g/m3, which is not so different from the

sensitivity of a typical BOD5 measurement.
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Figure 4: Effluent results of the reduced-order model against the ASM1

The baseline and dynamics of the TKN concentration in the effluent are captured well by the reduced-

order model. However, the model structurally underestimates nitrogen peaks. This is because the

reduced-order model does not fully capture the concentration of ammonia in the effluent, which is the

main driver of nitrogen peaks in the ASM1.

Overall, these results show that the proposed reduced-order model retains the most important features

of the full ASM1 for modelling DR from a WWTP with an activated sludge process while necessitating

only three states variable.

3.2 Calibration results of the linear reduced-order model against the non-linear reduced-
order model

Subsequently, we develop a Simulink implementation of the linearised mass balances illustrated in equa-

tions 26 to 28. We compare its results based on the BSM1 dry weather influent data to the results of the

nonlinear reduced order model. The linearisation parameters zi for the linear reduced-order model can

then be estimated by minimising the sum of squared errors between the two models using a trust-region
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Parameter symbol unit BSM1 reduced-order model
Growth rate of heterotrophs µH d−1 4.0 2.6202
Growth rate of autotrophs µA d−1 0.5 0.4295
Decay rate of heterotrophs bH d−1 0.3 0.3235
Decay rate of autotrophs bA d−1 0.05 0.0393
Average DO concentration DOave g/m3 3.5033 3.5033
Average substrate concentration Save g/m3 - 9.2015
Average biomass concentration Xave g/m3 - 5335.35
Share of carbonaceous biodeg. substrate in influent α1 no dimension - 0.55
Share of carbonaceous biodeg. substrate in tank α2 no dimension - 0.1543
Share of heterotrophs in biomass β no dimension - 0.9633
Share of biomass concentration in the effluent ηX no dimension - 0.0019
Correction factor for re-circulation of DO γDO no dimension - 48.9459

Table 2: Parameters of the ASM1 and the nonlinear reduced-order model

reflective algorithm (compare equations 48 and 49).

Each of the mass balance equations contains three linearisation parameters zi, which means that a

total of nine linearisation parameters is required to linearise the behaviour of system for each of the in-

fluent categories considered. Thus, the final number of required linearisation parameters is equal to the

product of the number of linearisation parameters in each interval and the number of influent categories

chosen. The number of intervals is thus critical in defining the complexity of the final linearised model:

a larger number of intervals means that each sub-model is linear over a smaller range of values, which

improves the results. It also implies a larger number of linearisation parameters to be estimated, which

increases the overall model complexity. Conversely, choosing less intervals means that the sub-models

are approximating the nonlinear system over a wider range of influent flow rate values. If this requires

a smaller number of linearisation parameters, it can also mean reduced model performance. Hence, the

number of intervals should be chosen looking for the best trade-off between these two competing aspects.

Multiple locally valid sub-models need to be estimated in order to obtain a globally valid model.

Each sub-model linearises the system behaviour in a limited range of influent flow rate values. Thus, the

first step of the process is the definition of such intervals. Dividing the influent data set into percentiles

ensures the definition of categories with the same number of data points. Here, we demonstrate results

for three inflow categories (low, medium and high).

With three inflow categories (low, medium and high) and a constant airflow rate, there are 9 lineari-

sation parameters to estimate in every inflow category, making up 27 parameters to estimate in total. The

limits of the inflow categories are determined based on the 0.33 and 0.66 percentiles of the influent flow

rate. The upper limit of category ’low’ (and lower limit of category ’medium’) is 15,403 m3/day, and the

upper limit of category ’medium’ (and lower limit of category ’high’) is 20,439 m3/day (see Figure C.1
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in Appendix C).

We perform a robustness check for the number of inflow categories since the fit of the linearised

model is likely to increase with the number of inflow categories. The respective percentiles of the inflow

rate determine the thresholds of the models: 0.5-percentile for the model with two categories, 0.33 and

0.66 for three categories and percentiles 0.25, 0.5 and 0.75 for four categories. The results show that

there is a trade-off between the fit of the model (measured by the SSE) and the number of parameters

to be estimated (table 3). The reduction in SSE between two and three categories is substantial (42 %

decrease), whereas the relative change between three and four categories is much smaller (5 % decrease).

Therefore, the model with three inflow categories seems to be a good choice in order to obtain a model

with a manageable number of linearisation parameters and a good fit.

Model inflow thresholds (m3/day) Number of SSE
1st 2nd 3rd linearisation parameters

2 categories 17,871 18 3.96
3 categories 15,403 20,439 27 2.30
4 categories 13,225 17,871 21,698 36 2.19

Table 3: Comparison of different number of inflow categories

The estimated values of the linearisation parameters are given in table 4. While we estimate the values

of the weighting matrix Zi, the parameters w1 and w2 can be calculated from equations 12 and 13. For

a constant airflow rate Airt , equation D.1 yields w1 = Airt/Air = 1 and w2 = 0 (see the supplementary

material for a systematic derivation).

(OU20 ·haer)

(V ·DOsat)
·Air · (DOsat −DO) = kLa · (DOsat −DO) (50)

Comparing the effluent results of all three models shows that the linear system with three inflow

categories is able to predict the BOD, TKN and DO consumption of the nonlinear reduced-order model

with very little loss of information. Peaks in the BOD and TKN concentration are slightly underestimated.

However, the peaks of the DO consumption are captured well by the linearised model, which is the most

important factor for predicting the energy consumption of the process accurately. The loss of accuracy

mainly stems from the reduction of the model complexity rather than the linearisation of the model (figure

5). As already highlighted in figure 4, the fit of the BOD concentrations is the weakest among the three

outcomes, because the model does not account for particulate substrate, unlike the ASM1. However,

deviations remain small and the average BOD concentration is similar in all models. The fit of the

TKN concentration is generally good, although peaks are structurally underestimated by 2 to 2.5 g/m3.
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inflow range
parameter low medium high

z1 0.0525 0.1145 0.0610
z2 0.7315 0.7082 0.4231
z3 0.1735 0.1591 0.5665
z4 0.0001 0.1919 0.3028
z5 0.5004 0.0046 0.4654
z6 0.3526 0.7892 0.3739
z7 0.0272 0.0827 0.0966
z8 0.4541 0.3820 0.3459
z9 0.4539 0.5070 0.5711
w1 1 1 1
w2 0 0 0

Table 4: Linearisation parameters of the linear reduced-order model

However, the DO consumption of the process is satisfactorily predicted both by the reduced-order model

and the linearised model.

The main objective of the reduction and linearisation of the ASM1 is to obtain a realistic estimate of

the DO concentration, because that is driving the energy consumption of the aeration process. Figure 6

shows that the DO concentration in the linear model matches the values of the nonlinear model well. As

mentioned before, the loss of detail mainly occurs because of the reduction process, since the nonlinear

reduced-order model does not capture the peaks of the DO concentration in the ASM1 in detail. However,

the dynamics of the process are captured well, although the amplitude is structurally underestimated in

the reduced-order model.

4 Discussion

In general, the reduced-order model and the linearised reduced-order model show a satisfactory fit to the

ASM1 in terms of process dynamics. Predictions for the BOD, TKN and DO concentrations are compa-

rable across the three models. The dynamics of the BOD concentration are different in the reduced-order

models, which is a direct result of omitting particulate substrate components. However, the differences

are small in scale and the average BOD concentrations are similar. The structural underestimation of

peak concentrations of BOD and TKN compared to the ASM1 results in a final model which yields more

conservative results for any DO control strategy. If a focus on very precise effluent quality control is

desired, the model could be extended to include more processes, in particular denitrification. However,

the application for an integrated energy-systems model requires first and foremost a realistic prediction

of the DO consumption profile and thereby the energy consumption profile of the process. The results

show that the model estimates the DO concentration and consumption of the activated sludge process
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Figure 5: Effluent results of the ASM1, the reduced-order model and the linear reduced-order
model compared

very well, and therefore proves to be suitable for further integrated energy-water system applications.

Since we do not model nitrate as a state variable, one limitation of the reduced-order model is the

exclusion of the denitrification process. In plants with denitrification, oxygen can be recovered via this

process, which reduces the aeration requirements by approximately 30 %. Consequently, the model de-

veloped in this article is applicable to plants that employ only nitrification, but overestimates the oxygen

demand for plants with denitrification. That means that the energy consumption by the aeration process

for these plants is likely overestimated as well. This has to be considered when applying the model to

plants that also use denitrification. In the future, a more sophisticated version of the model could include

the denitrification process, leading to a more accurate, but potentially more complex model.

Furthermore, the linearised reduced-order model is estimated for a constant airflow rate. Conse-

quently, the model is only valid for average airflow rates which are similar to the applied 144,000 m3/day.

This limits the applicability of the model in times when the airflow rate is particularly high or low, or even

zero. For demand response strategies, this implies that the model would yield misleading results for ef-
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Figure 6: DO concentration of the ASM1, the reduced-order model and the linear reduced-order
model compared

fluent concentrations when the aeration is shut down. Instead, the model is suitable for load shedding in

a smaller range around the assumed average airflow rate. The inclusion of different airflow categories,

similar to the approach taken for inflow categories, could be a future advancement of the model in order

to allow for a wider range of operational flexibility of the aeration control. However, this comes with a

proportional increase in linearisation parameters to be estimated and further mathematical complications

within the integrated energy-systems model. An advantage of the linearised reduced-model presented

here is its reduced complexity compared to the ASM1, which is why adding more complexity to the

model should be well considered and justified.

Finally, the model has been estimated for a particular plant layout and specific process conditions,

based on the benchmark model BSM1. The model parameters are specific to this plant model and weather

conditions and would need to be re-evaluated in case of changes. However, the modelling algorithm

introduced in figure 2 can easily be reapplied for a different data set in order to represent a different

plant layout or different inflow conditions (for example, calibrating the model for storm weather influent

conditions instead of dry weather).
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5 Conclusion

Wastewater treatment process models such as the standard model ASM1 are generally characterised by a

high degree of non-linearity and complexity. The aim of this paper is the complexity reduction and lin-

earisation of such a model in order to enable its integration into a mixed-integer linear program often used

in energy system modelling. Although some attempts at linearised reduced-order versions of the ASM1

have been made in the literature, this model is the first with a particular focus on the oxygen consumption

and thereby the energy consumption of the process. It is also unique in its aggregation of observable

state variables into only three components (substrate, biomass and oxygen), which makes it relatively

simple, easily replicable for different data sets and suitable for the integration into a mixed-integer linear

energy system optimisation framework. Although the model reduction leads to some model limitations,

such as disregarding denitrification or variations in the airflow rate, the linear reduced-order model yields

satisfactory results for the effluent concentration of BOD, TKN and the DO consumption. In particular,

it captures the dynamics of the DO concentration and consumption well, which are the main predictors

for the energy consumption of the aeration process.

Since the purpose of the linear reduced-order model is to provide more operational detail of the

wastewater treatment process when evaluating potential demand response strategies, the next step of the

research is to integrate the model as process constraints into an elaborate energy system optimisation

model. The inclusion of the linear reduced-order model assures that load shedding or shifting does not

lead to undesirable effects on the effluent quality and thereby provides a more realistic assessment of the

flexibility potential of WWTP than traditional black-box approaches.

Future improvements of the model could include a wider representation of operational conditions,

such as a more flexible variation in airflow rate, and weather conditions, such as wet and storm weather

inflows. In order to represent a wider configuration of WWTPs, denitrification could be added to the

model as well. In order to test the fit of the model for real-life plant conditions, the evaluation of model

parameters for real WWTP data instead of benchmark data would also be a valuable task for future

research.
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Appendix A Alpha and beta factors

The value of the parameter α can be determined analysing the composition of the plant influent. Figure

A.1 shows that the ratio between carbon and nitrogen compounds in the plant influent did not significantly

vary from the average value (α = 0.55) in our case study. Furthermore, all data points fall within 30%

of the average value. However, the biochemical reactions that consume carbonaceous compounds are

characterised by different reaction rates (e.g. nitrogen removal by autotrophic biomass requires a much

longer time than the removal of carbon matter). Thus, the carbon fraction of the total substrate S may

change after the treatment process, invalidating the use of a constant α factor in the reduced order model.

Figure A.1 also shows the α factor calculated for the settler effluent: as expected, the fraction of carbon

compounds is much lower than in the plant influent. While this suggests that one single α factor is not

sufficient to properly capture the dynamics of the entire system, the variability exhibited by the α profile

in the settler effluent is comparable to the one seen in the plant influent. For this reasons, two α factors

are considered: the first one (α1) takes into account the carbon share in the plant influent, whereas the

second (α2) describes the carbon share in the reactor.

Figure A.1: Comparison between the carbon compounds fraction in the plant influent (α1), and
the carbon compounds fraction in the settler effluent (α2).

Figure A.2 shows the β values when the ASM1 kinetics are implemented. As expected, given the

slower growth rate of autotropic biomass, heterotrophs constitute the largest microorganism population

in the system. Changes in microbial population generally require a long time, usually several sludge ages,

when the plant is operated at stable operating conditions. As depicted in Figure A.2, the variations of the

share of heterotrophic biomass in the total microorganisms concentration are even smaller than the ones
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observed for α , which suggests that the use of a constant value for β is a good approximation.

Figure A.2: Share of heterotrophic biomass in the reactor tank using ASM1 as kinetic model, and
its average value.

Appendix B Transformation of balance equations

Equations B.11 and B.12 give the nonlinear reduced-order equations for the biomass concentration X and

the dissolved oxygen concentration DO, including the binary flow variables:

dX
dt

= D̃q ·qq,t ·Xin,t

+(α2βδYH +YAθ(1−α2)(1−β ))z4,qXS ·qq,t ·DOt

+(α2βδYH +YAθ(1−α2)(1−β ))z5,qDOX ·qq,t ·St

+(α2βδYH +YAθ(1−α2)(1−β ))z6,qSDO ·qq,t ·Xt

− kd ·Xt

− D̃q ·qq,t ·ηX Xt (B.1)
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dDO
dt

= D̃q ·qq,t ·DOin,t

− (α2βδ (1−YH)+(4.57−YA)θ(1−α2)(1−β ))z7,qXS ·qq,t ·DOt

− (α2βδ (1−YH)+(4.57−YA)θ(1−α2)(1−β ))z8,qXDO ·qq,t ·St

− (α2βδ (1−YH)+(4.57−YA)θ(1−α2)(1−β ))z9,qSDO ·qq,t ·Xt

− OU20 ·h
V ·DOsat w1,qAir ·DOt

+(
OU20 ·h

V
− OU20 ·h

V ·DOsat w2,qDO) ·Airt

− D̃q ·qq,t · (1− γDO)DOt (B.2)

In order to linearise these equations, the new variables X∗q,t = Xt · qq,t and DO∗q,t = DOt · qq,t are

introduced and constrained according to Equations B.3-B.6 and B.7-B.10:

X∗q,t ≤ qq,t ·M (B.3)

X∗q,t ≤ Xt (B.4)

X∗q,t ≥ Xt − (1−qq,t) ·M (B.5)

X∗q,t ≥ 0 (B.6)

DO∗q,t ≤ qq,t ·M (B.7)

DO∗q,t ≤ DOt (B.8)

DO∗q,t ≥ DOt − (1−qq,t) ·M (B.9)

DO∗q,t ≥ 0 (B.10)

Furthermore, the assumption of a constant airflow yields w1 = 1 and w2 = 0 (see section D). Assuming

discrete time steps, the resulting set of linearised equations is:
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Xt −Xt−1 = ∑
q∈Q

(
D̃q ·X∗in,t

+(α2βδYH +YAθ(1−α2)(1−β ))z4,qXS ·DO∗t

+(α2βδYH +YAθ(1−α2)(1−β ))z5,qDOX ·S∗t
+((α2βδYH +YAθ(1−α2)(1−β ))z6,qSDO− D̃q ·ηX)X∗t

− kd ·Xt

(B.11)

DOt −DOt−1 = ∑
q∈Q

(
D̃q ·DO∗in,t

− ((α2βδ (1−YH)+(4.57−YA)θ(1−α2)(1−β ))z7,qXS− D̃q · (1− γDO))DO∗t

− (α2βδ (1−YH)+(4.57−YA)θ(1−α2)(1−β ))z8,qXDO ·S∗t
− (α2βδ (1−YH)+(4.57−YA)θ(1−α2)(1−β ))z9,qSDO ·X∗t

− OU20 ·h
V ·DOsat Air ·DOt

+
OU20 ·h

V
·Airt

(B.12)

Appendix C Inflow categories

Appendix D Derivation of w1 = 1 and w2 = 0

The premise for including the airflow rate as an input to the reduced order model is that the resulting

oxygen transfer rate (OTR) matches the OTR calculated for the full ASM1 using the oxygen transfer

coefficient kLa:

(OU20 ·haer)

(V ·DOsat)
·Air · (DOsat −DO) = kLa · (DOsat −DO) (D.1)

The left-hand side of this equation can be simplified according to Equations :

(OU20 ·haer)

(V ·DOsat)
·Air · (DOsat −DO) =

(OU20 ·haer)

V
·Air− (OU20 ·haer)

(V ·DOsat)
·Air ·DO (D.2)

According to Smets et al. (2006), the product of the DO concentration and the Airflow can be approx-

imated as:
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Figure C.1: Limits of influent flow categories in the linear reduced-order model

DO ·Air ≈ (w1AirDO+w2AirDO) (D.3)

Which then yields for the second term on the right-hand side of Equation D.2:

(OU20 ·haer)

(V ·DOsat)
·Air ·DO≈ (OU20 ·haer)

(V ·DOsat)
· (w1AirDO+w2AirDO) (D.4)

Replacing this on the left-hand side of Equation D.1 and writing the terms explicitly yields:

(OU20 ·haer)

(V ·DOsat)
·Air ·DOsat − (OU20 ·haer)

(V ·DOsat)
· (w1AirDO+w2AirDO) = kLa ·DOsat − kLa ·DO (D.5)

Isolating the terms that are a function of DO yields:

− (OU20 ·haer)

(V ·DOsat)
· (w1AirDO+w2AirDO) =−kLa ·DO (D.6)

Following this, w1 is

w1 =
kLa ·V ·DOsat

Air ·OU20 ·haer
(D.7)

According to Rieger et al. (2006), kLa can be defined as:
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δ · kLa = δ
(OU20 ·haer)

(DOsat ·V )
·Air (D.8)

Substituting kLa in Equation D.7 yields

w1 =
Air
Air

(D.9)

With the model assumption of a constant airflow Air, this finally yields w1 = 1.
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