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Abstract

The costs associated with electricity generation include costs that are indepen-
dent of their marginal output, including the cost of starting their units, and con-
straints such as minimum generation levels. Modelling these costs and con-
straints requires integer formulation of the units, and so they have typically been
ignored in electricity market modelling and simulation to date. We develop a
stochastic equilibrium model to include these costs and constraints in a Cournot
model and solve it using the Gauss-Seidel diagonalization algorithm. We apply
the model to the power system of the island of Ireland with varying levels of
variable renewable power generation. We find that the impacts of integer mod-
elling are non-trivial, and are heterogeneous across firms and wind levels. Fur-
thermore, excluding integer modelling exaggerates the impact of price-making
behaviour. We conclude that neglecting integer constraints in power system
market models leads to inaccurate results, particularly at high penetrations of
renewable energy sources.

OR in energy; Cournot modelling; Unit commitment;
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1 Introduction

Electricity markets have been liberalised since the 1990s, and are typically op-
erated under an auction-based framework to efficiently dispatch and compen-
sate electricity generators. Under these auction frameworks, firms submit price-
quantity pairs (Wolak, 2021), which can vary in their complexity from “plain
vanilla” to more complex bids that allow firms to embed technical and economic
constraints into their bids, such as limitations on how quickly a unit can change
its output (ramp rates) as well as extra costs such as the cost of starting a unit.
Market operators then dispatch generation and demand in a cost-minimising
manner. In a competitive market, the dispatch equates to market clearing on the
basis of short-run marginal costs.

In recent years, concerns over climate change have led to greatly increased
levels of renewable generation in electricity systems worldwide IEA (2023),
while the Ukrainian war and concerns over energy affordability and security
have prompted further acceleration in renewable generation by European pol-
icy makers via the “Fit for 55” package Commission (2021). Furthermore, in
an effort to reduce electricity bills to final consumers, attempts to reduce infra-
marginal rents to generators, including renewable generators, via instruments
such as contracts for differences and forward contracting, have been proposed
by the European Commission European Commission (2023b,a).

This increase in renewable generation poses new challenges for electricity
market design and modelling. These challenges include price cannibalisation,
optimal location of renewables, and network design. Newbery et al. (2018) and
M. Lynch et al. (2021) provide summaries of the market design challenges at
high penetrations of variable Renewable Energy Sources (v-RES). In general,
however, the interaction between v-RES penetration and non-marginal thermal
generator costs (including, for example, start up and no load costs) has received
less attention. This most likely stems from the fact that such costs make up a
small proportion of the total costs, both of the power system and of individual
firms’ cost functions. As such, these costs have generally been ignored in mar-
ket design discussions: the literature that focuses on the suitability of short-run
marginal cost pricing generally restricts its attention to the price cannibalisation
problem. Furthermore, electricity market operation itself does not always allow
for the incorporation of these costs into firms’ bids, particularly in EU markets.
While most electricity markets in the USA include start and no load costs in
the bids submitted by generators, EU markets generally require participants to
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internalise such costs in their bids, although fairly complex bidding patterns are
available in at least some markets Herrero et al. (2020).

Increased levels of v-RES have been shown to substantially change the opti-
mal dispatch when start costs are considered, compared to when such costs are
ignored Shortt et al. (2012). The incorporation of start costs and no-load costs
into power system dispatch models makes generators’ cost functions discontin-
uous and hence require integer (binary) decision variables. This is known as
the unit commitment problem, and has been widely studied in the engineering
literature. Tuohy et al. (2009) presented an early examination of the impact of
renewable generation on the unit commitment problem, and there is a vast liter-
ature on the topic, with many recent papers focusing on new efficient solution
techniques for the problem itself; see e.g., Wu et al. (2023); Ali et al. (2023);
Zhang et al. (2023). However, the incorporation of start and no-load costs into
electricity market models, particularly when the assumption of perfect compe-
tition is relaxed, has received little attention in the literature, and motivates this
paper.

Unit commitment models generally assume a cost minimization approach,
which aligns with perfect competition, but which cannot account for strategic
decisions by firms with price-making behaviour. Such strategic behaviour, also
known as market power, aligns with imperfect competition and occurs when
market players alter their decisions so as to increase market prices. For exam-
ple, a generating firm may withhold some generation in order to increase the
market price and hence their overall profits. One recent exception is Kumar et
al. (2023), which uses a monarch butterly algorithm to determine a profit-based
unit commitment, but this paper does not take an equilibrium-based approach
- many of the results associated with the price-making behaviour in game the-
oretic models are not captured. Previous work on start costs in oligopolistic
electricity markets was performed by Reguant (2014), based on an ex post anal-
ysis of bids made in the Spanish electricity market. The start costs, and their
subsequent impacts on bids and prices, is examined via an econometric analysis
of historical bids, and are found to limit the ability of firms to change output
levels over time and thus to exacerbate price volatility.

In contrast to unit commitment models, imperfect competition resulting in
price making behaviour in electricity market models is generally modelled ex
ante via oligopolistic game-theoretic models. For instance, Devine & Bertsch
(2022) use a Mixed Complementarity Problem (MCP) to examine the impact
that demand response has on price-making behaviour. MCPs allow one to model
the constrained optimisation problems of oligopolists as Cournot players. Other

3



examples of MCPs being used to model electricity markets include Devine &
Bertsch (2018), Koschker & Möst (2016), Lise & Kruseman (2008), and Liu et
al. (2007). Further examples of MCPs in the wider energy market modelling
literature include Egging-Bratseth et al. (2020), Baltensperger et al. (2016),
Egging (2013), and Gabriel et al. (2009). For a more comprehensive list of
such papers, we refer the reader to Egging-Bratseth et al. (2020).

In addition, several other equilibrium models have been used to model price-
making in power systems. Approaches include Betrand equilibrium (Lee &
Baldick, 2003), Supply Function Equilibria (Ruiz et al., 2011; Pozo & Contr-
eras, 2011), Stackelberg equilibrium (Fanzeres et al., 2019), Multi-leader-multi-
follower equilibrium (Devine & Siddiqui, 2023; Wogrin, Centeno, & Barquin,
2013; Wogrin, Hobbs, et al., 2013), and Generalised Hierarchical equilibrium
(Zerrahn & Huppmann, 2017; Huppmann & Egerer, 2015). For a comprehen-
sive review of equilibrium models in electricity systems, we refer the reader to
Pozo et al. (2017). None of the equilibrium models mentioned above incor-
porate discontinuous costs and hence unit-commitment constraints. Indeed, a
recent review of European electricity market design in light of the Ukrainian
crisis includes no mention of unit commitment or start costs Fabra (2023).

In recent years, equilibrium problems with integer variables have started to
gain attention in the Operations Research and wider literature, particularly for
applications in electricity systems. However, there are no tailored algorithms
for solving such problems (De Santis et al., 2022). One heuristic that has been
deployed is to relax integrality constraints and solve the resulting problem using
Karush-Kuhn-Tucker conditions in order to obtain initial solutions. Integrality
constraints are then re-added. This approach has been applied to stylized elec-
tricity markets in Gabriel, Siddiqui, et al. (2013); Gabriel, Conejo, et al. (2013)
and Ruiz et al. (2012). This approach leads to integer-value MCPs, but the so-
lutions do not necessarily represent equilibria. In Weinhold & Gabriel (2020)
and Huppmann & Siddiqui (2018) relaxation of integrality is first applied. Then
solutions that ensure incentive compatibility for each player are obtained. A
similar two-stage approach can be found in Fomeni et al. (2019). They con-
sider a Reformulation Linearization Technique (RLT) in the first phase and a
Mixed-Integer-Linear-Program in the second phase.

Gabriel et al. (2021) reformulate a Discreetly Constrained MCP as a purely
continuous problem. This allows them to utilise local Non-Linear Program-
ming (NLP) solvers and hence to obtain locally optimal solutions. Looking to
non-energy applications, De Santis et al. (2022) introduces a branch-and-bound
algorithm to solve a Mixed-Integer Linear Complementarity Problem (MILCP).
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Todd (2016) propose binary search and other algorithms to solve an integer con-
strained Cournot production problem. In contrast to the present work, Todd
(2016) does not consider maximum production constraints.

This paper considers the impact of discontinuous costs (integer variables) in
an imperfectly competitive market and furthermore, the extent to which the re-
sulting equilibrium deviates from that which would prevail under continuous,
non-integer, costs. This is, to the best of our knowledge, the first time this ques-
tion has been explored in the literature. Furthermore, the impact of variability
in the electricity supply via higher penetrations of v-RES is quantified. We
thus provide insight in two main areas. The first is the consideration of market
equilibria in a Cournot framework compared to a cost minimisation approach
including unit commitment: we provide evidence on the impact of ignoring
price-making behaviour modelled á la Cournot. The second main set of in-
sights concerns the impacts of including discontinuous costs such as start costs
and no-load costs, which require integer modelling, in firms’ profit-maximising
Cournot decisions, particularly as v-RES generation increases. Furthermore, we
provide insight on whether, and to what extent, these two mechanisms com-
pound: the impact of integer variables on market power exploitation, and vice
versa, can be shown. Thus, we provide evidence for policy makers and market
modellers alike on these impacts.

Furthermore, we make several methodological contributions. To the best
our knowledge, this is the first work in the equilibrium with integers literature
that solely uses the Gauss-Seidel diagonalization algorithm to find a Nash equi-
librium. Previous works seek solution points via model reformulations and/or
constraint relaxations. The Gauss-Seidel approach is commonly used to solve
Equilibrium Problem with Equilibrium Constraints (Devine & Siddiqui, 2023;
Pozo et al., 2017; Gabriel et al., 2012). It involves solving the individual con-
strained optimisation problem of each player individually and iteratively. When
one player’s problem is being solved, the decision variables for all other play-
ers are assumed fixed. The algorithm iteratively convergences to an equilibrium
and stops once no player has an optimal deviation. An advantage of the algo-
rithm is that it allows us to find a Nash equilibrium point in a computational
tractable manner, without having to consider any reformulations or constraint
relaxations. A disadvantage of the Gauss-Seidel algorithm is that the equilib-
rium point found is not guaranteed to be unique (Zerrahn & Huppmann, 2017;
Gabriel et al., 2012).

To help improve computational efficiency for the models presented, we com-
bine our solution techniques with a Rolling Horizon algorithm. In such an algo-

5



rithm, instead of solving the entire optimisation/equilibrium problem once over
all time periods, the problem is split into several smaller optimisation/equilibrium
problems whose time sets are overlapping subsets of the overall time set (Devine
et al., 2016) - see Section 2 for further details. Given the computational difficul-
ties associated with solving equilibrium problem with integers (De Santis et al.,
2022; Gabriel et al., 2021), this is a further contribution of the present work.

Furthermore, we present an advance on the literature by considering a real-
world example: specifically, the all-island Irish electricity market comprising 58
generating units spread across 16 generating firms. This is due to the availability
of a unique dataset produced and maintained system operators on the island of
Ireland. The dataset includes the technical and economic features of every gen-
erator in the market. In this manner, we avoid having to estimate the fixed and
marginal costs of each generator in the market via their bids and are instead able
to simulate their optimal generation decisions based on their technical charac-
teristics.

We introduce a game-theoretic unit-commitment model which allows for
price-making behaviour amongst the generating firms. We consider |F | gen-
erating firms, who each hold multiple generating units with discontinuous costs.
Each firm seeks to maximise its expected profits over several timesteps. The
first set of timesteps is split into two stages. In first stage, firms have perfect
information on wind capacity factors. For the second stage, they have uncertain
information. This uncertainty is modelled using |S| scenarios, each of which
have a probability associated with it. Thus, each firm’s optimisation problem is
a stochastic program. The overall model contains an inverse demand curve, and
we assume each firm has price-making ability, modelled á la Cournot. Conse-
quently, the solution technique seeks a Nash-Equilibrium.

To answer our research questions, we consider three further models, each
of which are simplifications of the equilibrium with integers model described
above. We consider an equilibrium model where all firms behave á la Cournot
but none of them have discontinuous costs. This model does not require in-
tegers and hence is solved as an MCP. Next, we consider a cost minimisation
model where all firms have unit commitment constraints and hence discontinu-
ous costs, but none behave á la Cournot. Instead, for this model, all the firms are
assumed to be price-takers and hence the market is perfectly competitive. This
model is solved as a Mixed Integer Quadratically Constrained Program. Finally,
we consider a model where all firms are price-takers and only have continuous
decision variables, i.e., there is no unit commitment constraints. This model is
solved using Quadratic Programming.
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The results show considerable heterogeneity across firms and installed wind
capacities, with integers and price-making behaviour giving rise to significantly
different equilibrium solutions compared to the models that neglect either or
both of these features. These findings generally, though not always, increase as
wind generation increases. We therefore present evidence of the importance of
considering market power and integer representations of generation constraints
in order to ensure accurate results at high RES-E levels.

Furthermore, several works in the literature examine the impact of price-
making behaviour by comparing the difference between solutions to models
formulated with and without market power (Devine & Bertsch, 2022; Egging
et al., 2017; Koschker & Möst, 2016). Our findings suggest that excluding in-
teger variables from such studies may overestimate the impact of price-making
behaviour.

The rest of this paper is structured as follows. Section 2 describes the method-
ology. Section 3 describes the dataset used. Section 4 outlines the results while
Section 5 provides a discussion. Section 6 concludes our paper.

2 Methodology

In this section we describe the four models used in this work:

1. Cournot equilibrium with integers model

2. Cournot equilibrium without integers model

3. Cost minimisation with integers model

4. Cost minimisation without integers model

For the four models we consider |F | generating firms, each of which have mul-
tiple generating units. Each firm decides how much electricity to generate from
their units over |P| (hourly) time steps. In the two equilibrium models, each firm
f behaves as a price-making Cournot player. Hence, these models represent
an oligopolistic market. In the two cost minimisation models, each firm exhibits
price-taking behaviour and hence these models represent a perfectly competitive
market.

Furthermore, each of the models take the form of a stochastic program con-
taining two stages. In the first-stage firms have perfect foresight of renewable
energy capacity factors and make ‘here-and-now’ generation decisions that they
commit to. In the subsequent second-stage, firms have uncertain information
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regarding renewable energy capacity factors and thus make ‘wait-and-see’ gen-
eration decisions that are scenario dependent. There are |S| scenarios in total
with each having a different time series of renewable energy capacity factors.

Each of the four models are also solved using a Rolling Horizon algorithm. In
such an algorithm, instead of solving the entire optimisation/equilibrium prob-
lem once over all time periods, the problem is split into several smaller opti-
misation/equilibrium problems whose time sets are overlapping subsets of the
overall time set (Devine et al., 2016). Each of these smaller problems are known
as a ‘roll’, with |R| rolls being solved in total for each model.

A rolling horizon has a number of advantages. Firstly, it can improve compu-
tational efficiency (Devine et al., 2016). Secondly, it can reflect decision making
in electricity markets more realistically as it allows parameters to be updated af-
ter each roll of the model (Devine et al., 2016, 2014; Tuohy et al., 2009). In this
work, the uncertain information firms have about renewable energy capacity fac-
tors are updated after each roll of the optimisation/equilibrium model is solved.
This reflects reality. For example, in the real-world, firms make generating de-
cisions today with uncertain information for the next day’s renewable capacity
factors. However, as time goes on and the next day arrives, the firms have up-
dated information for renewable capacity factors (for instance, through updated
weather forecasts) and can thus adjust their generation decisions accordingly.

Tables 1 - 4 describe the indices and sets, binary variables, continuous vari-
ables, and parameters of the models, respectively. For each of the models, there
are three time period subsets at each roll r: the fixed time period subset (PFIX

r ),
followed by the first-stage time period subset (PFS

r ), followed by the second-
stage time period subset (PSS

r ). The length of |PFIX
r | is LENFS. The decision

variables at all time periods in this subset for roll r must equal the correspond-
ing first-stage decision variables from the previous roll r− 1. This ensures, if
a firm decides to generate from a particular unit in the first-stage time periods
of roll r then those decisions are accounted for in the subsequent roll r + 1,
again showing how the rolling horizon can reflect reality more accurately. Thus,
the first-stage time period subset also has a cardinality of |PFS

r | = LENFS. The
length of the second-stage time period subset is |PSS

r |= LENSS. The time period
subsets change for each roll r and are defined as follows:

PFIX
r = {1+(r−1)×LENFS,2+(r−1)×LENFS, ...,r×LENFS}, ∀ r ∈ R, (1a)

PFS
r = {1+ r×LENFS,2+ r×LENFS, ...,(r+1)×LENFS}, ∀ r ∈ R, (1b)

PSS
r = {1+(r+1)×LENFS,2+(r+1)×LENFS, ...,LENSS +(r+1)×LENFS}, ∀ r ∈ R. (1c)
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Thus, the time periods for roll r are Pr = PFIX
r ∪PFS

r ∪PSS
r with length |Pr|=

2×LENFS +LENSS.
Throughout this paper the following conventions are used: lowercase letters

indicate indices or primal variables while upper-case letters represent parame-
ters or sets. Sections 2.1 - 2.4 describe each of the models enumerated above,
respectively, while Section 2.5 presents the Rolling Horizon algorithm.

Table 1: Indices and sets.

f ∈ F Generating firms
t ∈ T Unit
p ∈ P Time periods for entire model
p ∈ Pr ⊂ P Time periods for roll r
p ∈ PSS

r ⊂ Pr Time periods in second stage for roll r
p ∈ PFS

r ⊂ Pr Time periods in first stage for roll r
p ∈ PFIX

r ⊂ Pr Time periods in fixed time period for roll r
s ∈ S Scenarios
r ∈ R Rolls
k ∈ K Iterations for Gauss-Seidel diagonalization algorithm

Table 2: Binary decision variables.

zfs, on
f ,t,p Binary variable indicating if firm f ’s unit p is online or offline at time p of first-stage

zon
f ,t,p,s Binary variable indicating if firm f ’s unit p is online or offline at time p and scenario s of second-stage

zfs, su
f ,t,p Binary variable indicating if firm f ’s unit p is starting up at time p of first-stage

zsu
f ,t,p,s Binary variable indicating if firm f ’s unit p is starting up at time p and scenario s of second-stage

Table 3: Continuous variables.

Decision variables
gen f s

f ,t,p Generation from firm f ’s unit t in period p of the first-stage
genss

f ,t,p,s Generation from firm f ’s unit t in period p and scenario s of the second-stage

∆g f s
p Consumer load shedding for period p of the first-stage (cost minimisation models only)

∆gp,s Consumer load shedding for period p and scenario s of the second-stage (cost minimisation models only)

Other variables
γ

f s
p Electricity price for time period p of first-stage

γp,s Electricity price for time period p and scenario s of second-stage
π f ,r Firm f ’s expected profit in roll r
π

f s
f ,r Firm f ’s first-stage profit in roll r

πss
f ,r,s Firm f ’s profit in scenario s of second-stage in roll r
π∗f Firm f ’s optimal expected profit

π f ,r,k Firm f ’s expected profit at iteration k of Gauss-Seidel diagonalization algorithm (roll r)
ψr Overall system costs for roll r

ψ
f s

r Overall system costs for first-stage of roll r
ψss

r,s Overall system costs for scenario s of the second-stage of roll r
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Table 4: Parameters.

Ap Demand curve intercept for timestep p
B Demand curve slope

CM
f ,t Marginal generation cost curve intercept for firm f ’s unit t

CQ
f ,t Marginal generation cost curve slope for firm f ’s unit t

CON
f ,t Online cost for firm f ’s unit t

CSU
f ,t Start-up cost for firm f ’s unit t

GENFS
p,− f Combined generation for all firms except firm f at time p of first-stage

GENSS
p,− f ,s Combined generation for all firms except firm f at time p and scenario s of second-stage

LENFS Length of fixed and first-stage time periods
LENSS Length of second-stage time period

MAX CAPf ,t,p Maximum generating capacity for firm f ’s unit t at time p
MIN CAPf ,t,p Minimum generating capacity for firm f ’s unit t at time p

GENFIX
f ,t,p,r Firm f ’s fixed generation for unit t in period p and roll r

ZON, FIX
f ,t,p,r Firm f ’s fixed online decision for unit t in period p and roll r

ZSU, FIX
f ,t,p,r Firm f ’s fixed start-up decision for unit t in period p and roll r

NORMt,p,s Generating profile for technology t at time p and scenario s
PROBs Probability associated with scenario s
TOL Convergence tolerance for Gauss-Seidel diagonalization algorithm

2.1 Cournot Equilibrium with Integers Model

In the Cournot Equilibrium with Integers Model, each firm f behaves as a
Cournot player and chooses its generation levels for each unit t so as to max-
imise its profits over |Pr| timesteps. They have knowledge of the inverse demand
curve and how their generation levels can affect it. Thus, firm f knows that as it
reduces its generation levels the market price increases. Consequently, we con-
sider each firm f to be price-making. This is in contrast to the cost minimisation
models to be presented.

In the Equilibrium with Integers Model, firm f also has unit commitment
constraints and hence its optimisation problem contains binary variables in order
to represent online and start-up costs. This is in contrast to the Equilibrium
without Integers model (Section 2.2) where binary variables are excluded.

The Cournot Equilibrium with Integers Model contains |F | optimisation prob-
lems, one for each firm. The model is solved using the Gauss-Seidel diagonal-
ization algorithm (Section 2.1.1), which solves each the individual optimisation
problems iteratively until a (Generalised) Nash Equilibrium is found. When
firm f ’s optimisation is being solved the decisions variables of all other firms
are assumed fixed.

Because the firm f ’s problem contains binary variables, the Lagrangrian of its
objective function cannot be differentiated. Hence, Karush-Kuhn-Tucker deci-
sions cannot be obtained, and the model cannot be solved using a Mixed Com-
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plementarity Problem. As mentioned previously, the model is solved using a
Rolling Horizon algorithm (Section 2.5).

For each roll r, firm f seeks to maximise its profits by choosing when to have
each of its units start-up (zfs, su

f ,t,p , zss, su
f ,t,p,s), be online (zfs, on

f ,t,p , zss, on
f ,t,p,s), and the gener-

ation levels for each unit (gen f s
f ,t,p, genss

f ,t,p,s). Firm f ’s problem is a stochastic
program. In the both the first- and second-stage, its profits equal the revenue it
gains from generation less the cost of generation and less the costs associated
with starting-up and being online.

Its objective function at roll r is

maxπ f ,r = π
f s
f ,r + ∑

s∈S
PROBs×π

ss
f ,s,r, (2a)

where π
f s
f ,r represents firm f ’s profits from the first stage:

π
f s
f ,r = ∑

p∈PFS
r

∑
t∈T

(
(γ f s

p −CM
f ,t−CQ

f ,t×gen f s
f ,t,p)×gen f s

f ,t,p−CON
t ×zfs, on

f ,t,p −CSU
t ×zfs, su

f ,t,p

)
,

(2b)
while PROBs is the probability associated with scenario s and πss

f ,s,r represents
firm f ’s profit in the second stage for scenario s:

π
ss
f ,s,r = ∑

p∈PSS
r

∑
t∈T

(
(γp,s−CM

f ,t−CQ
f ,t×gen f ,t,p,s)×gen f ,t,p,s−CON

t ×zon
f ,t,p,s−CSU

t ×zsu
f ,t,p,s

)
.

(2c)
The constraints associated with the fixed time period (PFIX

r ) of firm f ’s prob-
lem for roll r are:

gen f s
f ,t,p = GENFIX

f ,t,p,r, ∀t ∈ T, p ∈ PFIX
r , (2d)

zfs,on
f ,t,p = ZFIX, ON

f ,t,p,r , ∀t ∈ T, p ∈ PFIX
r , (2e)

zfs,su
f ,t,p = ZFIX, SU

f ,t,p,r , ∀t ∈ T, p ∈ PFIX
r , (2f)

Constraints (2d) - (2f) ensure that the first-stage decisions of roll r− 1 are
accounted for in roll r. For instance, if firm f commits a unit t to be online at
the last time period of first-stage in roll r−1 and it is optimal for them to keep
that unit online in the first hour of the first-stage of roll r, then firm f does not
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have to pay an online cost to do so. In the absence of constraints (2d) - (2f), firm
f ’s objective function would include start-up costs for units that were already
online from the previous roll.

The constraints associated with the first-stage (PFS
r ) of firm f ’s problem at

roll r are

γ
f s
p = Ap−B× (GENFS

p,− f + ∑
t∈T

gen f s
f ,t,p), ∀p ∈ PFS

r , (2g)

gen f s
f ,t,p ≤ zfs, on

f ,t,p ×MAX CAPf ,t,p×∑
s∈S

PROBs×NORMt,p,s, ∀t ∈ T, p ∈ PFS
r ,

(2h)

gen f s
f ,t,p,s ≥ zfs, on

f ,t,p ×MIN CAPf ,t,p, ∀t ∈ T, p ∈ PFS
r , (2i)

zfs, su
f ,t,p = zfs, on

f ,t,p − zfs, on
f ,t,p−1, ∀t ∈ T, p ∈ PFS

r . (2j)

Equation (2g) represents the inverse demand curve for the first-stage. When
solving firm f ’s optimisation problem, the generation levels of all other firms
is assumed fixed. The parameter GENFS

p,− f represents the combined generation
levels of all firms, except firm f , for first-stage time periods. This parameter
updates after each optimisation problem are solved in the Gauss-Seidel diago-
nalization algorithm (Section 2.1.1). Equation (2h) provides maximum capacity
constraints. The capacity factors in this constraint are expected capacity factors
(∑s∈S PROBs×NORMt,p,s). Equation (2i) ensures that if unit t is online then it
must generate at least to minimum capacity level. Equation (2j) represent unit
commitment logic constraints for the first-stage.

The constraints associated with the second-stage (PSS
r ) of firm f ’s problem at

roll r are

γp,s = Ap−B× (GENSS
p,− f ,s + ∑

t∈T
gen f ,t,p,s), ∀s ∈ S, p ∈ PSS

r , (2k)

gen f ,t,p,s ≤ zon
f ,t,p,s×MAX CAPf ,t,p×NORMt,p,s, ∀t ∈ T,s ∈ S, p ∈ PSS

r , (2l)

gen f ,t,p,s ≥ zon
f ,t,p,s×MIN CAPf ,t,p, ∀t ∈ T, p ∈ PSS

r , (2m)
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zsu
f ,t,p+1,s = zon

f ,t,p+1,s− zon
f ,t,p,s, ∀t ∈ T,s ∈ S, p ∈ PSS

r (2n)

Constraints (2k) - (2n) follow from constraints (2g) - (2j), respectively. In
contrast to the first-stage constraints, they are scenario dependent and hence
contain a subscript s. In particular, the capacity factors in equation (2l) are not
expected values. For the data used in this work, capacity factors for renewable
energy vary across scenarios. The parameter GENSS

p,− f ,s represents the combined
generation levels of all firms, except firm f , for scenario s of the second-stage.
This parameter updates after each optimisation problem are solved in the Gauss-
Seidel diagonalization algorithm (Section 2.1.1).

Constraint (2o) includes variables from both the first-stage and the second-
stage. It ensures that if a unit t is committed to be on at the last time period of
the first stage (p = r×LENFS), then that must be accounted for in all scenarios
of the first time period of the second stage.

zsu
f ,t,p+1,s = zon

f ,t,p+1,s− zfs, on
f ,t,p , ∀t ∈ T,s ∈ S, p = r×LENFS. (2o)

Firm f ’s optimisation problem is to maximise objective function (2a) subject
to constraints (2g) - (2o). It is a Mixed Integer Quadratically Constrained Pro-
gram (MIQCP) with a convex objective function and linear constraints. Hence,
when firm f ’s optimisation is being solved in the Gauss-Seidel diagonalization
algorithm (Section 2.1.1), it can be solved using a standard MIQCP solver.

2.1.1 Diagonalization algorithm for Equilibrium with Integers

As firm f ’s optimisation problem (2) contains integer variables we cannot derive
Karush-Kuhn-Tucker optimality conditions. Instead, at each roll r, we solve the
equilibrium with integers model by implementing the following Gauss-Seidel
diagonalization algorithm (Gabriel et al., 2012). The algorithm iteratively solves
each firm f optimisation problem (2) by fixing all other firm decisions, until it
converges to a point where no firm has an optimal deviation.
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while ∑ f |π f ,r,k−π f ,r,k−1|> TOL and k < |K| do
for f = 1, .., |F | do

Assume firm− f ’s decision variables are fixed;

GENFS
p,− f ←− ∑ f̂∈F\{ f}∑t∈T gen f s

f̂ ,t,p
, ∀ p ∈ PFS

r ;

GENSS
p,− f ,s←− ∑ f̂∈F\{ f}∑t∈T gen f̂ ,t,p,s, ∀ s ∈ S, p ∈ PSS

r ;

Solve Firm f ’s MIQCP (2) ;

π f ,r,k ←− π∗f ;

k←− k+1 ;

end
end

Algorithm 1: Gauss-Seidel diagonalization algorithm.

The parameter TOL and the set K represent a pre-defined convergence toler-
ance and the set of iterations, respectively. The variable π f ,k represents firm f ’s
expected profits (objective function (2a)) at iteration k.

Algorithm 1 is based on Gauss-Seidel diagonalization, which is standard in
the literature (Gabriel et al., 2012). As described in the literature, if Algorithm
1 converges, the point it converges to is guaranteed to be a Generalised Nash
Equilibrium if each optimisation is solved to optimality in each iteration.

As the Equilibrium with Integer Model is solved using a Rolling Horizon,
Algorithm 1 is solved |R| times, once for each roll r.

2.2 Cournot Equilibrium without Integers model

The Cournot Equilibrium without Integers Model follows from the model pre-
sented in Section 2.1. As before each firm f is a Cournot player and chooses
its generation level for each unit t so as to maximise profits. In contrast to the
Cournot Equilibrium With Integers Model, start-up and online costs, and associ-
ated constraints, are excluded. Consequently, the Equilibrium Without Integers
Model only contains continuous decision variables. As previously, it is solved
using a Rolling Horizon Algorithm (Section 2.5) and for each firm’s optimisa-
tion problem takes the form of a stochastic program.
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Firm f ’s optimisation problem at roll r takes the following format:

max ∑
p∈PFS

r

∑
t∈T

(
(γ f s

p −CM
f ,t−CQ

f ,t×gen f s
f ,t,p)×gen f s

f ,t,p

)
+∑

s∈S
∑

p∈PSS
r

∑
t∈T

PROBs×
(
(γp,s−CM

f ,t−CQ
f ,t×gen f ,t,p,s)×gen f ,t,p,s

)
,

(3a)

subject to:

gen f s
f ,t,p = GENFIX

f ,t,p,r, ∀t ∈ T, p ∈ PFIX
r , (3b)

γ
f s
p = Ap−B× (∑

f∈F
∑
t∈T

gen f s
f ,t,p), ∀p ∈ PFS

r , (3c)

gen f s
f ,t,p ≤MAX CAPf ,t,p×∑

s∈S
PROBs×NORMt,p,s, ∀t ∈ T, p ∈ PFS

r , (3d)

γp,s = Ap−B× (∑
f∈F

∑
t∈T

gen f ,t,p,s), ∀s ∈ S, p ∈ PSS
r , (3e)

gen f ,t,p,s ≤MAX CAPf ,t,p×NORMt,p,s, ∀t ∈ T,s ∈ S, p ∈ PSS
r . (3f)

Furthermore, firm f ’s generation levels are constrained to be non-negative.
Because the Equilibrium without Integers model does not contain unit commit-
ment constraints and hence integer variables, the Lagrangrian of firm f ’s opti-
misation problem can be differentiated with respect to each of firm f ’s primal
and dual variables. Thus, in contrast to Section 2.1, the KKT conditions for each
firm can be derived.

In contrast to Section 2.1, the generation levels of all firms except firm f in
the inverse demand curves (equations (3c) and (3e)) are represented by decision
variables rather than parameters. This is because all |F | optimisation problems
are solved simultaneously via a Mixed Complementarity Problem and thus the
Gauss-Seidel diagonalization algorithm is not required.

As the optimisation problem of each firm f is convex, the KKT conditions
are both necessary and sufficient for optimality and thus the solution obtained
represents a (Generalised) Nash Equilibrium (Gabriel et al., 2012). In Section
4, the model is solved in GAMS using the PATH solver.

2.3 Cost minimisation with integers model

The cost minimisation with integers model follows from the model presented in
Section 2.1. In comparison to that model, it contains start-up and online costs,
as well as associated constraints. Hence it contains binary variables. In con-
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trast however, the generating firms in the cost minimisation with integers model
are not assumed to be price-making (Cournot) players. Instead, it is assumed
that no firm has knowledge of the inverse demand curve, and all firms exhibit
price-taking behaviour with all their generating units for all time periods. Con-
sequently, the market model as described in this section is perfectly competitive.

Modelling a market via a cost minimisation problem, whereby a central plan-
ner (real or implicit) chooses the firms’ generation levels so as to minimise over-
all system costs, the optimal results correspond to the perfectly competitive solu-
tion (Gabriel et al., 2012; Devine, 2012). Hence, there is no need to model each
firm f ’s optimisation problem individually, as in the Equilibrium with Integers
Model.

As in Sections 2.1 and 2.2, the cost minimisation with integers model is
solved using a Rolling Horizon Algorithm (Section 2.5) and, for each roll r,
it takes the form of a stochastic program. The (real or implicit) central planner
seeks to minimise system costs by choosing when to have each generation unit
start-up (zfs, su

f ,t,p , zss, su
f ,t,p,s), be online (zfs, on

f ,t,p , zss, on
f ,t,p,s), and the generation levels for

each unit (gen f s
f ,t,p, genss

f ,t,p,s). In addition, the central planner also chooses the

amount of electricity consumers shed (∆g f s
p , ∆gp,s).

The problem’s objective function is

minψr = ψ
f s

r + ∑
s∈S

PROBs×ψ
ss
s,r, (4a)

where ψ
f s

r are overall system costs for the first stage:

ψ
f s

r = ∑
p∈PFS

r

((
∑
f∈F

∑
t∈T

CM
f ,t×gen f s

f ,t,p+CQ
f ,t×(gen f s

f ,t,p)
2+CON

t ×zfs, on
f ,t,p +CSU

t ×zfs, su
f ,t,p

)
+

B
2
×(∆g f s

p )2
)
,

(4b)

while ψss
s,r represents overall system costs for scenario s in the second stage :

ψ
ss
f ,s,r = ∑

p∈PSS
r

((
∑
f∈F

∑
t∈T

CM
f ,t×gen f ,t,p,s+CQ

f ,t×(gen f ,t,p,s)
2+CON

t ×zon
f ,t,p,s+CSU

t ×zsu
f ,t,p,s

)
+

B
2
×(∆gp,s)

2
)
.

(4c)

The constraints of the cost minimisation with integers model at roll r are

∆g f s
p + ∑

f∈F
∑
t∈T

gen f s
f ,t,p =

Ap

B
, p ∈ PFS

r , (4d)
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∆gp,s + ∑
f∈F

∑
t∈T

gen f ,t,p,s =
Ap

B
, s ∈ S, p ∈ PSS

r , (4e)

Constraints (2d) - (2f), (2h) - (2j), (2l) - (2n) ∀ f . (4f)

Constraints (4d) and (4e) represent the demand balancing equations in the cost
minimisation with integers model. The load shedding variables (∆g f s

p , ∆gp,s)
represent the difference between the consumers’ demand, if the system price
were zero, and the optimal generation levels of the firms. They are also con-
strained to be non-negative and do not appear in either of the model presented in
Sections 2.1 and 2.2. The costs associated with these variables are B

2 × (∆g f s
p )2

and B
2 × (∆gp,s)

2, respectively, and represent the Value of Lost Load (VoLL) for
consumers. These terms follow from Devine & Bertsch (2018, 2022) and ensure
system prices in this model are consistent with those described in Sections 2.1
and 2.2.

By assuming the system price for the first-stage (γ f s
p ) is the Lagrange Mul-

tiplier associated with constraint (4d) and by differentiating the Lagrangian of

this model with respect to ∆g f s
p , leads us to the equation γ

f s
p
B = ∆g f s

p . Substituting
this value for load shedding into constraint (4d) ensures that, at optimality,

γ
f s
p = Ap−B× ( ∑

f∈F
∑
t∈T

gen f s
f ,t,p), ∀ p ∈ PFS

r , (5a)

which is consistent with equation (2g). Similar logic ensures

γp = Ap−B× ( ∑
f∈F

∑
t∈T

gen f ,t,p,s), ∀ s ∈ S, p ∈ PFS
r . (5b)

The remaining constraints (equation (4f)) follow from those in the Cournot
Equilibrium with Integers Model. In contrast to Section 2.1 however, at each
roll r, the generation levels of all firms are determined by a single optimisation
problem and hence the constraints of all firms are included in that problem.

The optimisation problem (4) has a strictly convex objective function and
linear constraints. Thus, for each roll r, its optimal solutions can be obtained
using a standard Mixed Integer Quadratically Constrained Program (MIQCP)
solver.
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2.4 Cost minimisation without integers model

The cost minimisation without integers model follows from the models pre-
sented in Sections 2.2 and 2.3. In comparison to the cost minimisation with
integers model, the market considered is assumed to be perfectly competitive
and thus all firms are assumed to be price-taking. Consequently, generation lev-
els can be obtained by assuming there is a central planner (real or implied) who
chooses the optimal levels so as to minimise overall system costs. In contrast
to cost minimisation with integers but in comparison to the equilibrium without
integers model, the cost minimisation without integers model excludes start-up
and online costs, and associated constraints. Thus, it only contains continuous
variables.

As in previous subsections, the cost minimisation without integers model is
solved using a Rolling Algorithm (Section 2.5) and, for each roll r, it takes the
form of a stochastic program. The central planner seeks to minimise system
costs by choosing the generation levels for each unit (gen f s

f ,t,p, genss
f ,t,p,s) the

amount of electricity consumers shed (∆g f s
p , ∆gp,s). Its optimisation problem at

roll r is

minψr = ∑
p∈PFS

r

((
∑
f∈F

∑
t∈T

(CM
f ,t +CQ

f ,t×gen f s
f ,t,p)×gen f s

f ,t,p

)
+

B
2
× (∆g f s

p )2
)

+ ∑
p∈PSS

r

((
∑
f∈F

∑
t∈T

(CM
f ,t +CQ

f ,t×gen f ,t,p,s)×gen f ,t,p,s
)
+

B
2
× (∆gp,s)

2
)
.

(6a)

subject to:
Constraints (4d), (4e), (3b), (3d), (3f). (6b)

The optimisation problem (6) has a strictly convex objective function and lin-
ear constraints. Thus, as it only contains continuous decision variables, its opti-
mal solutions can be obtained using a standard Quadratic Programming solver,
from each roll r.

2.5 Rolling Horizon Algorithm

We solve each of the four models presented in Sections 2.1 - 2.4 using a Rolling
Horizon algorithm. Instead of solving the entire optimisation/equilibrium prob-
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lem once over all time periods, the problem is split into several smaller optimisa-
tion/equilibrium problem whose time sets are overlapping subsets of the overall
time set. As mentioned previously, a Rolling Horizon algorithm improves com-
putational efficiency and brings added realism to energy market modelling.

for r = 1, ..., |R| do
Define time period subsets using equation (1) ;

Solve equilibrium/optimisation problem ;

GENFIX
f ,t,p,r+1←− gen f s

f ,t,p, ∀ f ∈ F, t ∈ T, p ∈ PFS
r ;

ZON, FIX
f ,t,p,r+1←− z f s,on

f ,t,p , ∀ f ∈ F, t ∈ T, p ∈ PFS
r ;

ZSU, FIX
f ,t,p,r+1←− z f s,su

f ,t,p , ∀ f ∈ F, t ∈ T, p ∈ PFS
r ;

end
Algorithm 2: Rolling Horizon algorithm.

Algorithm 2 describes the Rolling Horizon algorithm. Firstly, at the start
of each roll r the fixed, first-stage, and second-stage time period subsets are
updated using equation (1). Secondly, the optimisation/equilibrium problem of
interest is solved. Table 5 displays the solution for each of the model. Finally,
the fixed decisions for roll r+1 are set at the first-stage decisions for roll r.

Table 5: Summary of solution techniques for model

Model Solution technique
Cournot Equilibrium with integers Algorithm 1
Cournot Equilibrium without integers MCP (equations (2))
Cost minimisation with integers MIQCP (equations (4))
Cost minimisation without integers QP (equations (6))

3 Data

In this section we discuss the input parameters we apply to the models presented
in Section 2. In Section 3.1 we describe the data for |F | = 16 generation firms
while in Section 3.2 we discuss the wind capacity factor scenarios. All parame-
ter values not explicitly stated in this section can be found can be found Online
Appendix1.

1 https://figshare.com/articles/dataset/Input data Devine Lynch 2023 xlsx/24382018
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For each roll r, we assume the lengths of the fixed-stage, first-stage, and
second-stage are each 12 hours. Thus, the number of hourly timesteps for each
roll is 36. In total we consider |r| = 15 rolls. Hence, the model is solved over
|P|= 36+14×12 = 204 hourly time periods. The first roll considers 36 hours
and at each of the subsequent 14 rolls, the model moves forward 12 hours.

While we choose 15 rolls, we do not present the results from the roll r = 1
in Section 4. This is to avoid start-of-model effects as the fixed decisions for
the first roll are assumed to be zero. Hence, the results we present represent one
week.

The demand curve intercept values (Ap) we assume are based off reference
demand values taken from Devine & Bertsch (2022) and M. Á. Lynch et al.
(2019), scaled to ensure a peak demand of 7500MW. These values can be found
in our Online Appendix. The demand curve intercept value we choose is B =
−0.137, which was obtained assuming an arc price elasticity of 0.11 from Di Cosmo
& Hyland (2013), an average wholesale price from 2017-2021 of e67/MWh as
reported by www.sem-o.com, and an average hourly demand over the same time
period of 4456MW.

For the Gauss-Seidel diagonalisation algorithm, we set a convergence toler-
ance of TOL = 10−4 with maximum number of iterations of |K|= 102.

3.1 Generator and power system data

The data for the thermal generation available is based on the electricity market
of the island of Ireland. The regulatory bodies for the two power systems on the
island of Ireland provide a validated set of technical and economic characteris-
tics of every power plant on the system, and these data are publicly available
(CRU and UREGNI, 2021). The installed capacity, excluding wind and solar
generation, are shown by firm and by fuel type in Table 6. Exact values for each
unit’s maximum and minimum generating capacities can be found in the Online
Appendix.
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Gas Biomass /
Peat

GasOil Waste Coal Water Oil Waste
wood

Total
(MW)

Total (%)

Aughinish 162 - - - - - - - 162 2%
BGE 450 - - - - - - - 450 5%
BnM - 118 116 - - - - - 234 3%
Contour 12 - - - - - - - 12 0%
Covanta - - - 61 - - - - 61 1%
Data and Power 116 - - - - - - - 116 1%
Energia Generation 745 - - - - - - - 745 9%
EP 350 - 258 - 476 - - - 1,084 12%
ESB 1,992 - 53 - 570 508 285 - 3,408 39%
Evermore Energy - - - - - - - 18 18 0%
Grange 115 - - - - - - - 115 1%
Indaver - - - 21 - - - - 21 0%
iPower - - 58 - - - - - 58 1%
POWERNI 593 - - - - - - - 593 7%
SSE 464 - 208 - - - 592 - 1,264 14%
Tynagh 389 - - - - - - - 389 4%
Total (MW) 5,388 118 693 82 1,046 508 877 18
Total (%) 62% 1% 8% 1% 12% 6% 10% 0%

Table 6: Installed capacities by firm and fuel type, excluding wind capacity (MW)
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The validated dataset includes quantities of fuel required for start-up and no
load, as well as heat rates. In order to convert these into generator costs, we
utilise fuel and carbon prices as per the recommended parameters from the Eu-
ropean Commission Directorate-General for Climate Action, European Com-
mission (2022). Start costs, online costs, and marginal intercept costs we as-
sume can be found in the Online Appendix. In the models without integers, we
increase marginal costs by 20% to account for the absence of start-up and online
costs. Following Devine & Bertsch (2022), we assume a marginal slope cost of
CQ

f ,t = 0.000213, ∀ f , t.
In the numerical results presented in Section 4 we consider three different test

cases for total installed wind capacity; 0GW, 4GW, and 8GW. In the absence
of wind ownership data, we assume ownership is split evenly amongst the six
largest firms (ESB, EP, SSE, Energia, POWERNI, and BGE).

3.2 Wind Capacity Factors

We consider |S|= 3 scenarios at each roll and obtain hourly wind capacity factor
scenarios for NORMt,p,s by using the Simultaneous Backward Reduction algo-
rithm (Dupačová et al., 2003; Heitsch & Römisch, 2003) to reduce down to three
the six scenarios for south-west of Ireland used in M. Á. Lynch et al. (2019) and
Bertsch et al. (2018). We then choose the 8.5 days (204 hours) that have median
weighted average capacity factor, which works out at 33%. The probabilities
(PROBs) associated with scenarios s = 1 – 3 are 0.485, 0.4 and 0.115, respec-
tively. The values for NORMt,p,s can be found in the Online Appendix.

4 Results

In this section we present the results obtained from the models. We solve the
four models presented in Section 2 three times. That is, with installed wind
capacities of 0GW, 4GW, and 8GW. Thus, we present 12 test cases. The results
are obtained from the first-stage decisions (that is, the committed-to decisions)
from rolls r = 2 – 15. Consequently, the results represent 168 hours (one week).
As discussed previously, results for roll r = 1 are not included in order to avoid
start-of-model effects.
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Integers 0GW

Integers 4GW

Integers 8GW

No Integers 0GW

No Integers 4GW

No Integers 8GW

Figure 1: Decrease in firm profits from the introduction of integers

4.1 The impact of including integers with Cournot modelling

In this section, we analyse the impacts of including integer variables within a
Cournot framework. Figure 1 shows the change in profits for each firm2, in
percentage terms, from the inclusion of integers. The results are graphed as the
profits of each firm when integers are not modelled minus the profits of each firm
when integers are included, divided by their profits without integers. In other
words, Figure 1 shows the percentage decrease in profits from the inclusion of
integers. We model three installed capacities of wind energy and assume the
ownership of wind energy is distributed evenly amongst the firms. Table 11 in
the Appendix gives the values that are graphed in Figure 1.

Several points are of note. First, there is a substantial change in profits for
many firms from the inclusion of integers, for at least some test cases. Thus,

2 We exclude Energia and iPower as the percentage change in their profits was too large to graph; however, the relative values
for all firms are given in the Appendix.
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this suggests that market modelling that excludes integers will not yield accu-
rate results, particularly from the firm’s point of view. Furthermore, this result
is particularly strong under perfectly competitive modelling. We conclude that
while the impact of integers that was observed in Shortt et al. (2012) is repli-
cated here, this impact is dampened somewhat by the presence of price-making
behaviour, modelled á la Cournot.

The second observation is the strong heterogeneity of results across firms
(see Table 11). Aughinish, for example, sees a 5-9% increase in profits under
Cournot modelling as a result of including integers, and a 3-7% decrease in
profits under the assumption of perfect competition (cost minimisation) with 0
or 4GW of installed wind. Wind installations of 8GW, however, see a sharp in-
crease in Aughinish profits, by 42%. Furthermore, the decrease in Aughinish’s
profits increases monotonically in installed wind energy under Cournot mod-
elling, while under perfect competition there is no pattern. Grange, Data and
Tynagh, on the other hand, see their profits increase under every test case. For
Tynagh, the increase is monotonic in installed wind, while Data and Grange see
the highest increase at 4GW of wind under Cournot modelling, and at 8GW
under perfect competition.

In general, there is no consistent pattern to the impacts of the inclusion of
integers from the firms’ point of view. Across all firms, however, the impact of
the inclusion of integers generally (though not always) increases in wind gen-
eration. This result aligns with that of Shortt et al. (2012). From a regulatory
and policy perspective, neglecting the impact of discontinuous costs in market
design may therefore lead to inaccurate results and conclusions. From a mod-
elling perspective, there is no obvious heuristic to use to capture the impacts of
discontinuous costs without explicitly including integers in the modelling.

A third insight is the fact that the magnitude of the impact of the inclusion
of integers is much higher under perfect competition than under Cournot mod-
elling. This result stems from the fact that in general, Cournot modelling results
in higher equilibrium prices, and thus higher profits, than perfect competition.
The percentage decrease in profits as a result of the inclusion of integers is there-
fore smaller in the presence of Cournot modelling, as profits are much higher to
begin with. The absolute change in profits, however, shows different patterns
of variation within and between firms (see Figure 2). In general, however, the
impact of integers in absolute terms is proportional to the size of the firm, which
is intuitive, but the impact varies by firm under different penetrations of wind
energy. This underlines again the heterogeneity of the impact of integers at high
RES-E.
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Figure 2: Change in firm profits from the introduction of integers
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Table 7 shows the increase in consumer costs that arises as a result of in-
cluding integers, and finds a similar result: consumer costs are lower under
perfect competition, but including integer variables significantly increases con-
sumer costs relative to a model that excludes integers. Under Cournot mod-
elling, consumers already face high costs due to price mark-ups, and so there is
a smaller proportional increase in consumer costs from the inclusion of integers.

Cournot Perfect competition
0GW 5% 17%
4GW 6% 22%
8GW 6% 23%

Table 7: Percentage increase in consumer costs as a result of including integers

In order to determine the drivers of these results, we consider the make-up
of total costs that is accounted for by start costs, no load costs and incremental
costs. This is shown in Table 8.

Cournot Perfect competition
0GW 4GW 8GW 0GW 4GW 8GW

% Incremental Costs 69% 67% 65% 66% 66% 65%
% Start Costs 1% 3% 5% 1% 4% 5%
% No load Costs 31% 30% 30% 33% 31% 30%

Table 8: The contribution of start, no load and incremental costs to total system costs.

The results under perfect competition are in line with those reported in Shortt
et al. (2012). We note at this point that the total costs decrease as installed wind
capacity increases, due to wind displacing conventional generation (and due to
the fact that we consider operational costs only and do not consider investment
costs). Thus, discontinuous costs make up a greater proportion of total costs at
higher wind levels, but a lower absolute level of cost.

There are several insights from Table 8. The first has been mentioned already,
namely that start costs are higher at higher wind levels under perfect competi-
tion compared to Cournot modelling. In addition, incremental costs and no-load
costs decrease as wind increases under the perfect competition test case, al-
though under Cournot modelling, no load costs make up an equal proportion of
total costs at 4GW and 8GW of wind.

To examine these results further, Table 9 shows the number of times each of
the firms incurred a start cost, under each test case (Indaver and iPower incurred
no starts and so are omitted).

Considering first the total number of starts, there are more starts in general
under perfect competition versus Cournot modelling, and more starts with wind
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Cournot Perfect competition
0GW 4GW 8GW 0GW 4GW 8GW

Aughinish 0 0 0 0 0 8
BGE 7 8 5 7 7 6
BnM 7 7 17 28 22 18
Contour 0 11 9 14 14 14
Covanta 0 0 0 0 0 0
Data 0 12 16 14 13 11
Energia 7 5 2 7 2 0
EP 56 54 46 49 48 31
ESB 14 12 7 35 40 39
Evermore 0 0 0 0 0 0
Grange 0 5 7 7 7 5
POWERNI 7 15 17 7 19 18
SSE 49 34 35 35 49 69
Tynagh 0 6 7 0 0 0
Total 147 169 168 203 221 219

Table 9: Number of unit starts per firm

compared to no wind. There is no considerable increase in the total starts when
wind moves from 4GW to 8GW, under either perfect competition or Cournot.
Table 9 shows considerable variation in the number of starts both within and
between firms, with ESB (the legacy monopolist and the firm with the great-
est generation capacity) seeing considerably fewer starts under Cournot versus
perfect competition, while the opposite pattern holds for most other firms. This
could be because ESB starts their units once and is less likely to turn them off
and restart them under Cournot, thereby avoiding incurring start costs, or it could
be because ESB reduces starts because they are generally reducing their output
under Cournot in an effort to increase prices.

In order to determine which case holds, Table 10 shows the number of hours
each firm has a unit with non-zero output. Here we see that ESB has consid-
erably fewer output hours under Cournot versus perfect competition, with other
firms increasing their output. These results suggest that ESB is reducing power
output in order to increase prices, with this reduction in output only partly com-
pensated by other firms increasing their output. In other words, the reduction in
starts by the monopolist is driven primarily by an attempt to reduce output and
thus increase prices, rather than an attempt to avoid costly starts. Furthermore,
wind curtailment does not vary significantly across the test cases (results not
shown here), and so a reduction in thermal generation explains the reduction in
total generation.
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Cournot Perfect competition
0GW 4GW 8GW 0GW 4GW 8GW

Aughinish 336 336 336 336 336 211
BGE 224 263 224 119 248 214
BnM 504 413 349 406 288 223
Contour 168 153 121 168 60 37
Covanta 168 168 168 105 168 168
Data 257 281 226 126 100 49
Energia 28 190 173 14 172 168
EP 644 422 310 538 334 246
ESB 868 499 416 1443 1130 904
Evermore 133 0 0 140 0 0
Grange 168 146 115 168 50 19
Indaver 168 168 168 168 168 168
iPower 168 168 168 168 168 168
POWERNI 136 523 374 231 519 391
SSE 385 474 351 296 691 541
Tynagh 0 121 74 0 0 0

Table 10: Number of hours that each firm has a generation unit online.

4.2 The impact of Cournot behaviour with integer variables

We now consider the impact of price-making ability, modelled here à la Cournot,
on market outcomes, and on whether these impacts vary depending on whether
integers are considered in the modelling. Figure 3 shows the percentage change
in profits, by firm, which arises from Cournot modelling (compared to perfect
competition)3.

Figure 3 shows that the introduction of Cournot modelling has a substantial
impact on the profits of each firm (Table 12 in the Appendix shows the figures
graphed in Figure 3)4. Unsurprisingly, Cournot modelling increases profits for
every firm in all test cases.

Once again, we see heterogeneity in the results across firms. For some firms,
there is a greater increase in profits when integers are included, while others see
the opposite effect. Furthermore, some firms see their profits increase in wind
generation, with and without integers (e.g., Aughinish), some see the opposite
(e.g., PowerNI) and some see no pattern (e.g., SSE). Examining the absolute
levels of profit earned by each firm, shown in Table 13 in the Appendix, the
changes in profits in absolute terms is fairly constant within firms and within the
test cases (with or without Cournot, with or without integers) as wind increases.
In other words, increased wind leads to a relatively constant increase/decrease in

3 Energia is omitted from the graph as the changes in profits without wind generation as a result of increasing integers lead to
very large percentage changes.

4 Tynagh is omitted as Tynagh’s profits are 0 in the case of perfect competition with integers and are very low in the case of
perfect competition without integers, leading to the percentage increase in profits to be infinite or unrealistically high.
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No Integers 8GW

Figure 3: Change in profits from Cournot versus perfect competition

profits in absolute terms, for each firm, with the percentage increase or decrease
being higher with integers than without (in general).

This broad pattern notwithstanding, there is heterogeneity in the changes in
profits between firms as a result of Cournot modelling. In particular, the profit-
maximising level of wind varies between firms. Some firms see an increase in
profits as wind increases (e.g., Aughinish, Contour) while others see a decrease
(e.g., BGE, EP). For ESB, there is no large increase in profits in percentage
terms as a result of Cournot modelling.

The main result is that the impact of Cournot modelling is considerably
higher, in percentage terms, when integers are included: in general, Cournot
modelling leads to a higher percentage increase in profits with the inclusion of
integers. For some firms, this result increases in wind generation, while for
others the opposite holds. These results suggest again that ignoring the impact
of integers can give misleading results, particularly under Cournot modelling.
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Price-making behaviour impacts on market outcomes, but the percentage dif-
ference between perfect competition and Cournot modelling is magnified in the
presence of integer modelling.

Several works in the literature examine the impact of price-making behaviour
by solving a model that assumes such behaviour is present, then solving assum-
ing it is not present, and then comparing the difference (Devine & Bertsch, 2022;
Egging et al., 2017; Koschker & Möst, 2016). Figure 4a displays the increase
in total costs to consumers as a result of moving from perfect competition to
Cournot modelling, both in the presence and absence of integers.

(a) Impact on costs

0GW

4GW

8GW

(b) Impact on profits

Figure 4: Impact of integers when moving from cost min to Cournot

Figure 4a indicates that the difference between consumer costs under perfect
competition versus Cournot modelling is smaller when integers are considered
compared to a case with no integers. This result holds both in absolute and
percentage terms, and is stronger as wind increases. This suggests that excluding
integer modelling may overestimate the impacts of price-making behaviour on
consumer costs, to some degree. Given this, Figure 4b shows the impact of
integers on the increase in profits when moving from perfect competition to
Cournot, given in equation (7):

15

∑
r=2

(
π
∗,CournotIntegers
f ,r −π

∗,CostMinIntegers
f ,r

)− (
π
∗,CournotNoIntegers
f ,r −π

∗,CostMinNoIntegers
f ,r

) (7)

Figure 4b shows that in general, the increase in profits under Cournot mod-
elling versus perfect competition is greater, in absolute terms, when integers are
not modelled. In other words, excluding integer modelling exaggerates the im-
pacts of price-making behaviour modelled à la Cournot. It is noteworthy that
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one exception to this pattern is for the largest firm (ESB) with no wind gen-
eration: in this instance, the increase in profits under Cournot versus perfect
competition is greater with integers compared to without integers. Furthermore,
there is no obvious pattern observed across firms under different wind levels: the
impact of integers on the difference between perfect competition and Cournot
modelling peaks at 0, 4 and 8GW of wind for different firms.

5 Discussion

The results presented above indicate that integer modelling has a material impact
on firm profits. This result holds when modelling markets as perfectly competi-
tive and à la Cournot alike. Furthermore, the impact of integer modelling varies
under each test case, and also varies between firms within test cases. Finally, for
at least some results, the impact of integers increases in the presence of wind.
Thus, while integer modelling may not be required at low levels of wind pene-
tration, the delta between results with and without integers increases at higher
wind generation levels. This suggests that market designs and models that fail to
account for discontinuous costs may not allocate resources efficiently at higher
levels of renewable generation penetration. The importance of this result is com-
pounded by the cannibalization effect of renewable generation Cludius et al.
(2014); Brown & Reichenberg (2021); Prol et al. (2020).

The heterogeneity of results across firms is of particular significance. For
every metric considered here, the impact was heterogeneous across firms. This
means that the impacts of integer modelling cannot be easily approximated by a
general heuristic: the impacts are test case- and firm-specific.

These results also highlight the difference between market modelling, which
considers firms as profit-maximising decision makers (imperfect competition),
compared with power systems modelling, which typically takes a cost minimi-
sation approach. While cost minimisation models, which correspond to perfect
competition, did not deviate significantly from Cournot modelling on at least
some metrics at low wind levels, this did not hold at higher levels of wind
generation. Thus, the higher levels of wind generation projected for EU and
other electricity markets, for example, necessitate consideration of discontinu-
ous costs.

The above notwithstanding, Cournot modelling led to far higher equilibrium
prices than perfect competition, which is in line with the literature. Integer mod-
elling imposes new constraints on generators, either directly, via minimum gen-
eration levels, or by allowing the consideration of extra costs resulting from
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starting and stopping units. These extra constraints limit the decisions avail-
able to generators and therefore reduce their opportunities to increase prices by
varying their output. This means that ignoring discontinuous costs will lead
to an overestimation of the impacts of price-making behaviour, modelled à la
Cournot.

The results suggest that strong market power mitigation measures continue
to be required in order to protect consumers from anti-competitive pricing by
generation firms. However, these measures should be complemented by the
consideration of discontinuous costs, particularly at higher levels of renewable
generation. Furthermore, the impact of integer modelling often varied for the
largest firm (ESB) compared to other, smaller, market players. This suggests
that the impact of integer modelling depends on the price-making ability of each
firm.

This paper shows that it is possible to use the Gauss-Seidel algorithm (com-
bined with a Rolling Horizon Algorithm) to solve a unit commitment problem
where price-making behaviour is present. Moreover, we show this can be done
for a non-trivial real-world example, namely, the all-island Irish power system.
To the best of our knowledge, such contributions have not been previously seen
in the literature.

Modelling equilibrium investment decisions may also be impacted by the
consideration (or lack thereof) of discontinuous costs, particularly as renewable
generators have fixed costs only (while thermal generators have both fixed and
variable costs). The impacts of forward contracting on the energy market, and
of different renewable subsidy mechanisms, may also yield different equilibria
with and without integer modelling. We leave these considerations for future
work.

6 Conclusion

This paper models output decisions by electricity generation firms, modelled
under perfect competition and Cournot competition, with and without consider-
ing discontinuous costs such as start costs and no-load costs. The equilibrium
prices and subsequent consumer costs are determined and compared at increas-
ing levels of variable renewable generation. Modelling Cournot competition
with discontinuous costs require integer variables. We solve such a model using
the Gauss-Seidel diagonalization algorithm.

The results indicate that integer modelling yields different results for firms
and consumers alike, and that the modelling impact of integers is heterogeneous
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across firms and under different levels of renewable generation. These results
suggest that ignoring discontinuous costs, which is common in power and mar-
ket modelling exercises, yields inaccurate results, and furthermore that there is
no obvious heuristic that can readily be employed to estimate the impact of dis-
continuous costs in the absence of specific integer modelling. In addition, this
work suggests that excluding integer variables may overestimate the impact of
price-making behaviour.

Market power mitigation remains a priority for policymakers, but accurate
modelling of energy markets is also of increasing importance as renewable gen-
eration increases. Possible extensions of this work include the impacts of for-
ward contracting, renewable subsidisation, and investment decisions.

7 Appendix

Cournot Perfect Competition
0GW 4GW 8GW 0GW 4GW 8GW

Aughinish 5% 7% 9% -3% -7% 42%
BGE 18% 3% -4% -17% -27% -26%
BnM 2% 4% 6% -14% -27% -42%
Contour 0% 1% -2% -83% -150% -336%
Covanta -8% -8% -9% -20% -24% -25%
Data 24% 30% 29% 28% 29% 36%
Energia 18% -3% -7% -1415% -23% -24%
EP 37% 21% 7% 44% -13% -21%
ESB -18% -16% -15% -17% -28% -30%
Evermore 100% 100% 100% 100% 100% 100%
Grange 24% 30% 29% 28% 28% 34%
Indaver -8% -8% -9% -20% -24% -25%
iPower -19% -23% -28% -185% -384% -896%
POWERNI 5% 4% -1% -2% -16% -21%
SSE 0% -5% -6% -18% -24% -23%
Tynagh 1% 12% 30% 100% 100% 100%

Table 11: Percentage decrease in profits as a result of adding integers
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Integers No integers
0GW 4GW 8GW 0GW 4GW 8GW

Aughinish 165% 293% 1077% 189% 350% 613%
BGE 247% 242% 247% 397% 394% 353%
BnM 182% 232% 316% 228% 334% 504%
Contour 337% 718% 1407% 702% 1973% 6168%
Covanta 52% 62% 91% 70% 86% 117%
Data 392% 945% 2521% 362% 964% 2251%
Energia 2918% 123% 123% 55632% 170% 157%
EP 385% 123% 128% 331% 205% 184%
ESB 24% 24% 33% 24% 40% 43%
Evermore 0% 0% 0% 551% 1659% 4832%
Grange 390% 928% 2443% 363% 965% 2254%
Indaver 52% 62% 91% 70% 86% 117%
iPower 231% 421% 720% 690% 1946% 6032%
POWERNI 219% 217% 224% 242% 280% 298%
SSE 100% 97% 123% 136% 133% 152%

Table 12: Change in profits by firm from the introduction of Cournot modelling (compared to
perfect competition)

Integers No integers
Cournot Perfect competition Cournot Perfect competition

0GW 4GW 8GW 0GW 4GW 8GW 0GW 4GW 8GW 0GW 4GW 8GW
Aughinish 2.95 2.51 1.94 1.11 0.64 0.19 3.11 2.69 2.14 1.07 0.60 0.33
BGE 5.33 9.47 11.93 1.54 4.13 5.49 6.51 9.79 11.52 1.31 3.24 4.34
BnM 2.96 2.38 1.84 1.05 0.73 0.50 3.01 2.48 1.95 0.92 0.58 0.35
Contour 0.15 0.12 0.09 0.03 0.01 0.01 0.15 0.12 0.09 0.02 0.01 0.00
Covanta 2.01 1.85 1.64 1.32 1.14 0.92 1.86 1.71 1.50 1.10 0.92 0.73
Data 1.38 1.06 0.83 0.28 0.10 0.03 1.81 1.51 1.16 0.39 0.14 0.05
Energia 2.21 6.39 9.88 0.07 3.47 5.23 2.69 6.23 9.25 0.00 2.83 4.20
EP 6.18 8.86 11.29 1.27 4.03 5.42 9.75 11.16 12.08 2.26 3.58 4.46
ESB 27.33 25.99 24.15 21.96 19.76 16.76 23.24 22.49 21.05 18.77 15.42 12.89
Evermore 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.19 0.14 0.04 0.01 0.00
Grange 1.37 1.05 0.82 0.28 0.10 0.04 1.80 1.50 1.15 0.39 0.14 0.05
Indaver 0.69 0.64 0.56 0.45 0.39 0.32 0.64 0.59 0.52 0.38 0.32 0.25
iPower 0.86 0.71 0.55 0.26 0.14 0.08 0.72 0.57 0.43 0.09 0.03 0.01
POWERNI 9.42 11.77 13.15 2.95 4.87 5.89 9.95 12.31 13.08 2.91 4.21 4.85
SSE 13.14 16.17 16.57 6.56 8.29 8.33 13.16 15.36 15.67 5.57 6.67 6.77
Tynagh 2.89 1.87 1.06 0.00 0.00 0.00 2.92 2.12 1.50 0.14 0.01 0.00

Table 13: Profits in Mefor each firm with and without Cournot modelling and integers
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