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Abstract 

Air pollu�on is well recognised as a major risk factor for disease and premature mortality worldwide. 

In Ireland, fine par�culate mater (PM2.5), which originates largely from burning solid fuel for hea�ng, 

and nitrogen dioxide (NO2), derived from road transport, are the main sources contribu�ng to poor air 

quality. Although average annual air pollu�on concentra�ons have decreased in Ireland over the past 

two decades, there are concerns about exceedances above WHO air quality guidelines (AQGs) in many 

ci�es and towns in Ireland. In this paper, we es�mate the acute healthcare costs of air pollu�on in 

Ireland, using data on emergency inpa�ent hospital admissions and costs over the period 2016-2019 

from the Hospital In-Pa�ent Enquiry (HIPE) system, supplemented with data on popula�on atributable 

frac�ons for specific condi�ons with causal links to air pollu�on (e.g., asthma). Quan�fying the 

poten�al impact of air pollu�on on healthcare costs is important for future policy and resource 

planning and for targe�ng of mi�ga�on measures and public health campaigns. Over the four-year 

period we examine, the acute healthcare costs of trea�ng five condi�ons atributable to ambient air 

pollu�on (asthma in children, and chronic obstruc�ve pulmonary disease, ischaemic heart disease, 

stroke and asthma in adults) amounted to €56.0m (range €15.0m to €105.8m). Hospitalisa�ons 

atributable to air pollu�on (mainly PM2.5) for these five condi�ons accounted for 63,572 bed days 

(range 17,767 to 115,996) over the period 2016-2019. In terms of the policy response, the recent Clean 

Air Strategy commits to achieving the final WHO air quality guideline (ACQ) values by 2040. Achieving 

these targets will require con�nued policy focus on measures such as moving away from the burning 

of solid fuels. In addi�on, policy measures to mi�gate the impacts of climate change, such as 

decarbonising home hea�ng, promo�ng ac�ve travel and transi�oning to electric vehicles, will have 

concomitant benefits for air quality and popula�on health. 

 
1 This research was funded by the Environmental Protec�on Agency (grant reference number: 2022-HE-1109). 
The author thanks the Healthcare Pricing Office for providing access to Hospital In-Pa�ent Enquiry (HIPE) data, 
and Greta Mohan and Brendan Walsh (ESRI), and Eoin Riordan (Department of Environment, Climate and 
Communica�ons) for helpful comments on an earlier dra�. 



1. Background 

Air pollu�on is well recognised as a major risk factor for disease and premature mortality worldwide 

(European Environment Agency 2022; Murray et al. 2020; Vos et al. 2020). Global assessments of 

ambient (outdoor) air pollu�on suggest that between 4 million and 9 million deaths annually and 

hundreds of millions of lost years of healthy life can be atributed to ambient air pollu�on (WHO 2021). 

The global burden of disease atributable to air pollu�on is now es�mated to be comparable with other 

major health risks such as unhealthy diet and tobacco smoking, and was in the top five out of 87 risk 

factors for male and female deaths in 2019 (Murray et al. 2020).2 As a result, air pollu�on is now 

recognised as the single largest environmental threat to public health (WHO 2021).  

 

Ambient air pollu�on is a complex mixture of par�cles and gases. Their concentra�ons and 

composi�on vary from place to place, depending on what sources are present, weather condi�ons, 

and how they mix in the atmosphere (Burns et al. 2020). The European Union (EU) Ambient Air Quality 

Direc�ves (currently under review) set EU air quality standards for 12 air pollutants: sulphur dioxide, 

nitrogen dioxide/nitrogen oxides, par�culate mater (PM10, PM2.5), ozone, benzene, lead, carbon 

monoxide, arsenic, cadmium, nickel, and benzo(a)pyrene. In 2021, the World Health Organiza�on 

(WHO) published new air quality guidelines (AQGs) for par�culate mater (PM2.5 and PM10), ozone, 

nitrogen dioxide, sulfur dioxide and carbon monoxide following a systema�c review of the latest 

scien�fic evidence demonstra�ng how air pollu�on damages human health (WHO 2021).3  

 

In Ireland, fine par�culate mater (PM2.5), which originates largely from burning solid fuel for hea�ng, 

and nitrogen dioxide (NO2), derived from road transport, in par�cular from diesel engines, are the 

main sources contribu�ng to poor air quality (EPA 2022). Although air pollu�on has decreased in most 

 
2 The global burden of disease (GBD) methodology has a risk factor hierarchy. Level 1 risk factors are behavioural, 
environmental and occupa�onal, and metabolic; Level 2 risk factors include 20 risks or clusters of risks (e.g., air 
pollu�on); Level 3 includes 52 risk factors or clusters of risks; and Level 4 includes 69 specific risk factors (e.g., 
ambient par�culate mater). Coun�ng all specific risk factors and aggregates computed in GBD 2019 yields 87 
risks or clusters of risks. In the GBD methodology, air pollu�on is a level 2 risk, comprised of par�culate mater 
air pollu�on (level 3) and ozone pollu�on (level 3). Par�culate mater pollu�on is further comprised of ambient 
par�culate mater pollu�on (level 4) and household par�culate mater pollu�on (level 4) (Murray et al. 2020). 
However, it is important to note that, as of 2021, global disease burden es�mates are limited to PM2.5 and ozone. 
Other common pollutants such as nitrogen dioxide and sulphur dioxide are not yet included and, therefore, these 
figures based on exposure to PM2.5 and ozone are likely to underes�mate the full health toll from air pollu�on 
(WHO 2021). 
3 For example, the WHO updated guidelines for PM2.5 are: 

− annual average of 5 µg/m3 (previous limit was 10) 
− daily average of 15 µg/m3 (previous limit was 25) 



European countries over the past two decades, including Ireland, levels of ambient air pollu�on remain 

above WHO AQGs in many ci�es and towns in Ireland (EPA 2022). For example, in 2021, 61/81 PM2.5 

monitoring sta�ons exceeded the new WHO daily AQG for PM2.5 and 65/81 sta�ons exceeded the new 

WHO annual AQG (EPA 2022). In Ireland, the current Clean Air Strategy commits to achieving the 

interim WHO AQG IT34 target by 2026, the IT4 target by 2030 and the achievement of final WHO AQG 

values by 2040 (Government of Ireland 2023). 

 

As noted, air pollu�on is now well recognised as a major risk factor for disease and premature mortality 

worldwide. The greatest health damage from ambient air pollu�on is caused by chronic exposure to 

par�culate mater, in par�cular to PM2.5 which increases the risk of heart diseases, stroke, lung cancer 

and many respiratory diseases including asthma, bronchi�s, chronic obstruc�ve pulmonary disease 

(COPD) and respiratory infec�ons (Brook et al. 2010; Cohen et al. 2017; OECD 2016, 2020). Air pollu�on 

exposure may increase the incidence of, and mortality from, a larger number of diseases and 

condi�ons than those currently considered, such as cogni�ve impairment and demen�a (Ailshire and 

Crimmins 2014; Peters et al. 2019; Weuve et al. 2012; Wood et al. 2022), lung cancer (Pimpin et al. 

2018), type 2 diabetes and neonatal mortality (Murray et al. 2020). There is also a growing evidence 

base linking air pollu�on (par�cularly PM2.5) with poorer mental health and wellbeing, including 

depression and anxiety (Braithwaite et al. 2019; Power et al. 2015), suicide (Gładka et al. 2021), bipolar 

disorder (Hao et al. 2022) and life sa�sfac�on (Orru et al. 2016).5 Air pollu�on may also exacerbate 

exis�ng condi�ons; for example, it can worsen the prognosis of pneumonia pa�ents (Yee et al. 2021). 

Certain popula�on subgroups are par�cularly vulnerable to the effects of air pollu�on, such as children 

and older people (Neidell 2004; Nhung et al. 2017). In addi�on, for a given level of air pollu�on, those 

in more disadvantaged socioeconomic posi�ons may be more suscep�ble to the nega�ve health 

consequences of air pollu�on (due to pre-exis�ng health condi�ons, poorer housing condi�ons, etc.) 

(European Environment Agency 2018; OECD 2020). 

 

In addi�on to the mortality and morbidity burden, air pollu�on also imposes a significant economic 

burden, in terms of healthcare costs, lost produc�vity, impact on agricultural crops and damage to 

buildings and infrastructure  (OECD 2020; WHO 2021). The OECD es�mate that the total welfare losses 

 
4 There are four Interim Targets (IT) iden�fied (IT1, IT2, IT3, IT4) for each pollutant. For example, for annual PM2.5, 
IT3 is 15 µg/m3 and IT4 is 10 µg/m3. 
5 (Aguilar-Gomez et al. 2022) survey the growing literature within economics that has begun to inves�gate the 
causal effects of air pollu�on on numerous ‘non-health’ outcomes, such as worker produc�vity, school 
performance, decision-making, and even crime. 



from ambient air pollu�on (PM2.5 and ground-level ozone) in the EU-27 in 2017 amounted to €601bn, 

or approximately 4.9 per cent of GDP. While the majority (88 per cent) of the welfare losses were 

accounted for by premature mortality, healthcare costs6 amounted to €15bn (or 2.5 per cent of the 

total welfare losses). In Ireland, the healthcare costs were es�mated at €0.15bn, or 0.06 per cent of 

GDP7 (OECD 2016, 2020). In England, it was es�mated that the total health and social care costs of 

PM2.5 in 2017 were £41.2m (based on data where there is more robust evidence for an associa�on), 

increasing to £76.1 million when diseases are included where the evidence is associa�ve or emerging 

(Pimpin et al. 2018; Public Health England 2018).8  

 

The exis�ng literature uses a variety of methods to examine the link between air pollu�on and 

healthcare u�lisa�on in order to inform analyses of the healthcare costs of air pollu�on. Using 

individual-level data, a large body of evidence has assessed the associa�on between air pollu�on and 

healthcare (usually hospital) u�lisa�on. A common approach is the use of daily �me-series data on 

outcomes, such as hospitaliza�ons, linked with contemporaneous and lagged levels of pollu�on and 

poten�al confounding variables, such as weather (Anderson et al. 2003; Carugno et al. 2016; Chen et 

al. 2022; Dominici et al. 2006; Liu et al. 2018; Xu et al. 2016; Zanobe� and Schwartz 2006; Zhou et al. 

2023).9 In Ireland, (Clancy et al. 2002) and (Dockery et al. 2013) used this approach to examine the 

impact of the so-called ‘smoky coal bans’ on mortality and hospitalisa�ons during the 1990s.10 

However, analyses of the hospital admissions data at that �me were hampered by substan�al 

 
6 Healthcare costs relate to the cost of trea�ng lung cancer, cardiovascular and respiratory diseases due to high 
concentra�ons of PM2.5 and ozone (OECD 2016). 
7 Cau�on must be exercised in making interna�onal comparisons of data using GDP as the denominator for 
Ireland, as GDP figures for Ireland are heavily influenced by the ac�vi�es of global mul�na�onal companies 
loca�ng in Ireland (Wren and Fitzpatrick 2020). 
8 They examined primary care visits, prescrip�ons, secondary care (inpa�ent and outpa�ent) visits, and social 
care. Asthma, COPD, coronary heart disease, stroke, type 2 diabetes, and lung cancer were included within the 
model based on es�mates of associa�ons between exposure to the pollutants and risk of developing the 
diseases, which were obtained from meta-analyses of prospec�ve cohort studies. Low birth weight and demen�a 
were also included, although the evidence was less well established for these condi�ons. 
9 See (Adar et al. 2014), (Yee et al. 2021), (Zheng et al. 2015) and (Zhu et al. 2020) for meta-analyses, and (Brook 
et al. 2010) for an overview of studies examining cardiovascular mortality and hospitalisa�ons. 
10 The two studies found divergent results for cardiovascular mortality. (Dockery et al. 2013) found that 
respiratory mortality decreased significantly, by 17 per cent, a�er the 1990 ban (confirming the earlier study by 
Clancy et al., 2002) and, to a lesser extent, a�er the 1995 and 1998 bans. However, unlike the earlier study, they 
did not find a reduc�on in total or cardiovascular mortality a�er either the 1990 ban or the later bans. The 
authors concluded ‘we now believe the previous analyses (Clancy et al. 2002) overes�mated the Dublin ban’s 
effects on mortality rates for those causes with substan�al long-term trends, that is, total and cardiovascular 
mortality’. 



underrepor�ng issues and the absence of data from a reference popula�on to account for long-term 

background trends.11 

 

An alterna�ve approach is the use of cohort data that follows individuals over �me and compares 

pollu�on measures aggregated over �me with health outcomes (and healthcare u�lisa�on) (Gan et al. 

2013; Wood et al. 2022). Both the �me-series and cohort approaches have been cri�cised as ambient 

air pollu�on is not randomly assigned across the popula�on, leading to an increasing interest in quasi-

experimental techniques to isolate exogenous changes in pollu�on (see (Alexander and Schwandt 

2022; Brook et al. 2010; Deryugina et al. 2019; Lleras-Muney 2010; More� and Neidell 2011; Neidell 

2004, 2009; Ward 2015) for good examples).12 A recent quasi-experimental analysis of the extension 

of smoky coal bans to smaller towns in Ireland over the period 2010-2018 found significant nega�ve 

effects of the bans on the incidence of chronic lung disease among the older popula�on, but non-

significant effects on all-cause mortality (Lyons et al. 2023). 

 

In this paper, we build on this literature to es�mate the acute healthcare costs of air pollu�on in 

Ireland, using data on hospital admissions and costs over the period 2016-2019. Quan�fying the 

poten�al impact of air pollu�on on healthcare costs is important for future policy and resource 

planning and for targe�ng of mi�ga�on measures and public health campaigns (Pimpin et al. 2018). 

We use an approach that does not rely on the availability of the data summarised above, such as linked 

high-frequency data on air pollu�on concentra�ons and healthcare u�lisa�on. In Ireland, while the 

number of air quality monitors is now at 116 (much increased from just a few years ago) (EPA 2022), 

the challenge is being able to link these data to appropriate high-frequency spa�ally-coded 

administra�ve data on healthcare u�lisa�on and costs. Low monitor coverage may also mean that 

there may be significant varia�on in local air pollu�on concentra�ons within the area covered by a 

single monitoring sta�on. In addi�on, the �me series approach can only iden�fy the short-term effects 

of air pollu�on, while cohort-based approaches largely focus on the longer-term impacts. Previous 

research has also highlighted the difficulty in atribu�ng ambient air pollu�on data to individuals; in 

 
11 Regular repor�ng of hospital admissions began in 1990; no data were available before the 1990 coal ban in 
Dublin, and only limited amounts of data were available before the 1995 and 1998 bans. 
12 (Aguilar-Gomez et al. 2022) also discuss the trade-offs involved in using data on air pollu�on in empirical 
research; they note that in general, the finer the temporal scale, the coarser is the spa�al scale (and vice versa). 
For example, reliable daily global measures of air pollu�on are available at a 50x62.5km grid, and global annual 
surface PM2.5 available at resolu�ons as fine as 1kmx1km grid (van Donkelaar et al. 2016; Hammer et al. 2022). 



par�cular, personal exposure will also depend on indoor pollu�on as well as on individual behaviour 

(mobility and �me spent outdoors) (Lleras-Muney 2010).  

 

Our approach, using data on hospital admissions and costs, supplemented with data on the burden of 

ill-health atributed to air pollu�on for specific condi�ons with causal links to air pollu�on (e.g., 

asthma), circumvents these types of issues.13 The approach is similar to that used in cost-of-illness 

studies, in which the costs to society of a par�cular disease are quan�fied. However, while a full cost-

of-illness study would include the direct costs of trea�ng the disease such as healthcare costs for 

diagnosis, treatment and management of disease progression and pa�ents’ own costs (travel, over-

the-counter medica�on)14, as well as indirect costs such as produc�vity loss resul�ng from �me off 

employment, we focus here on the acute hospital care costs only. Sec�on 2 describes the data and 

methodology in greater detail, Sec�on 3 presents the empirical results, while Sec�on 4 discusses the 

results and implica�ons for policy.  

 

2. Data and Methods 

a. Hospital In-Pa�ent Enquiry (HIPE) 

The main source of data used in this paper is sourced from the Hospital In-Pa�ent Enquiry (HIPE) 

database, administered by the Healthcare Pricing Office (HPO). The HIPE is a health informa�on system 

designed to collect clinical and administra�ve data on discharges from, and deaths in, acute public 

hospitals in Ireland. The data cover day and inpa�ent (elec�ve, emergency and maternity) discharges 

for all public hospitals in Ireland (n=53 in 2019).15 A HIPE discharge record is created when a pa�ent is 

discharged from (or dies in) hospital. This record contains administra�ve, demographic and clinical 

informa�on for a discrete episode of care. An episode of care begins at admission to hospital, as a day 

or inpa�ent, and ends at discharge from (or death in) that hospital. Due to the absence of a unique 

pa�ent iden�fier in the Irish healthcare system, it is not possible to follow ac�vity at the pa�ent level 

(that is, atribute mul�ple discharges to the same pa�ent) across hospitals (Keegan et al. 2020).  

 
13 A similar approach has been used to es�mate the acute hospital costs of water-related diseases in Ireland 
(Griffin and Walsh 2022). 
14 htps://yhec.co.uk/glossary/cost-of-illness/  
15  Private hospital ac�vity is not captured in HIPE. Most (over 90 per cent) of private hospital ac�vity in Ireland 
is financed by private health insurance. In 2018, it was es�mated that  the  three  main private health  insurers  
together  paid  almost  500,000  day  pa�ent  claims  and  110,000  in-pa�ent  claims (Keegan et al. 2022). In 
2018, the HIPE system reported 1.1m day pa�ents, and 0.651m in-pa�ents (Healthcare Pricing Office 2019).  

https://yhec.co.uk/glossary/cost-of-illness/


 

For each discharge, a principal diagnosis and up to 29 secondary diagnoses are recorded. At the start 

of 2020, the classifica�on used to code clinical informa�on in Ireland was updated from the 8th edi�on 

(in use since 1st January 2015) to the 10th edi�on of the Interna�onal Sta�s�cal Classifica�on of 

Diseases and Related Health Problems, Australian Modifica�on (ICD-10-AM), Australian Classifica�on 

of Health Interven�ons (ACHI) and Australian Coding Standards (ACS).16 ICD-10-AM codes are 

organised into 22 chapters, which reflect the main underlying disease category. For example, 

respiratory diseases are coded to chapter ‘J’, with further disaggrega�on to a three character code to 

iden�fy specific diagnoses (e.g., asthma is iden�fied using the code ‘J45’).  

 

In order to analyse the acute healthcare costs of air pollu�on-related hospital discharges, the Diagnosis 

Related Group (DRG) scheme enables the disaggrega�on of discharges into homogenous groups, 

which undergo similar treatment processes and incur similar levels of resource use (such as staff, 

equipment and overheads) (Healthcare Pricing Office 2022). The first step in the assignment of a 

discharge to a DRG is the classifica�on of discharges by Major Diagnos�c Category (MDC). There are 

23 MDCs reflec�ng major systems of the body, e.g., MDC 4 represents diseases of the respiratory 

system. Within MDC, cases are further par��oned into surgical, medical and other categories17, and 

by complexity (Bane 2015). In 2019, there were 807 DRGs in use (Healthcare Pricing Office 2020). Costs 

for each DRG are available from the price lists set by the Health Service Execu�ve (HSE) as part of the 

Ac�vity-Based Funding (ABF) ini�a�ve (see below for further informa�on). 

 

b. Analy�c Sample 

The HPO provided the research team with a datafile of all HIPE discharges over the period 2016-2021 

that included the following ICD-10-AM chapters as either a principal or secondary diagnosis: 

− Diseases of the circulatory system (I00 – I99) 

− Diseases of the respiratory system (J00 – J99) 

− Exposure to air pollu�on (Z58.1) 

 
16 Use of ICD-10-AM, ACHI and ACS is complemented by the Irish Coding Standards (ICS); these are revised as 
required to reflect changing clinical prac�ce and to ensure the classifica�on and its applica�on are relevant to 
the Irish healthcare system (Healthcare Pricing Office 2022).  
17 The DRGs are iden�fied by a 4-character code. The first character in the code is alphabe�c and refers to the 
MDC that the DRG belongs to. The second and third characters are numeric and iden�fy whether the DRG is 
surgical, medical or other. The fourth character iden�fies the complexity level associated with the DRG (Bane 
2015). 



We focus on these diagnos�c categories as the evidence base for causal impacts of air pollu�on on 

circulatory and respiratory disease is most robust (Anderson et al. 2003; Brook et al. 2010; Murray et 

al. 2020; OECD 2020). In ICD-10-AM, there is a specific diagnos�c code for ‘exposure to air pollu�on’, 

although it is rarely used and no discharges were assigned this code as a principal diagnosis. Table A1 

in the Appendix details the full list of variables available on the HIPE datafile provided to the research 

team that are used in this analysis. Due to the sensi�vity of the data, informa�on on many variables is 

either presented in aggregated form (age) or not available (county of residence). We analyse the data 

over the full four-year period in order to have sufficient sample size across some variables (e.g., 

hospitals). 

 

We make a number of adjustments to the datafile in order to derive our sample for analysis. First, we 

focus only on discharges with a principal diagnosis of circulatory or respiratory disease. Second, we 

exclude the last two years (2020 and 2021), as public hospital ac�vity was severely affected by the 

COVID-19 pandemic in these years. This exclusion also ensures that a consistent clinical coding system 

(8th revision of ICD-10-AM) is used for the sample period 2016-2019.18 Third, we focus on emergency 

in-pa�ent discharges only, i.e., those admited for elec�ve care as a day pa�ent, or for maternity care, 

are excluded. Fourth, we exclude HIPE discharges with a length of stay (LOS) of over 365 days, and 

those in hospitals with very few circulatory or respiratory discharges.19 Finally, we exclude a very small 

number of observa�ons with missing informa�on on key variables of interest (e.g., medical card 

status). This results in a final sample size of 464,639 discharges over the four-year sample period 2016-

2019. To put these figures in context, this represents just over 25 per cent of all emergency inpa�ent 

discharges over the period 2016-2019 (Healthcare Pricing Office 2020).   

 

Figure 1 illustrates how the distribu�on of discharges by principal diagnosis code varies over the 

sample period. Over the period 2016-2019, discharges with a primary diagnosis of circulatory disease 

accounted for 41 per cent of the total, and respiratory discharges 59 per cent. As noted, no discharges 

had a principal diagnosis of related specifically to air pollu�on (Z58.1).20  

 

 
18 From 1st January 2020, the coding system was updated to the 10th revision.  
19 We exclude hospitals in which the number of discharges is less than the 1 percen�le number of observa�ons 
per hospital over the period 2016-2019 – these are likely to be specialised hospitals (e.g., orthopaedics, 
maternity) which would not typically treat circulatory or respiratory pa�ents.  
20 Just 14 discharges over the en�re four-year period had a secondary diagnosis of Z58.1. 



[insert Figure 1 here] 

 

Table A2 in the Appendix presents addi�onal clinical informa�on on the analy�c sample. Most 

discharges occurred in the winter months, par�cularly for respiratory discharges. For example, 42 per 

cent of respiratory discharges occurred in the four months November, December, January and 

February. The Charlson co-morbidity index is a score based on all secondary diagnoses (using ICD 

codes) that predicts the risk of death within 1 year of hospitalisa�on (Charlson et al. 1987). On average, 

discharges in our sample had a score of 1.2 on the Charlson comorbidity index (range 0-17). The 

average length of stay for circulatory discharges was 7.9 days, and 6.7 days for respiratory discharges.21 

Discharges were spread widely across HIPE hospitals and hospital groups, including the three 

paediatric hospitals (see Figures A1 and A2 in the Appendix). Although not presented in Table A2, the 

data indicate that most common principal diagnosis among the circulatory diagnoses was I50 (heart 

failure), accoun�ng for 13 per cent of circulatory primary diagnoses. The most common principal 

diagnosis among the respiratory diagnoses was J22 (unspecified acute lower respiratory infec�on), 

accoun�ng for 21 per cent of respiratory primary diagnoses. The median number of addi�onal 

diagnoses was 3 for discharges with a principal diagnosis of circulatory disease, and 2 for discharges 

with a principal diagnosis of respiratory disease.  

 

Table A3 in the Appendix presents data on the demographic and socioeconomic characteris�cs of the 

discharges included in our sample over the period 2016-2019. The data in Table A3 illustrate that 55 

per cent of circulatory and respiratory discharges were aged 65+ (with discharges for respiratory 

disease more concentrated in younger age groups) and 46 per cent were female. As medical cards are 

primarily allocated on the basis of an income means test, medical card status can act as a useful proxy 

for socioeconomic status; in our sample, 67 per cent of discharges had a medical card. Similarly, 

public/private status refers to whether the pa�ent saw the consultant on a public or private basis. It 

does not relate to the type of bed occupied nor is it an indicator of private health insurance (Keegan 

et al. 2020). Over the period 2016-2019, 85 per cent of discharges were classified as public.  

 

 
21 In 2018, the length of stay assigned for same day inpa�ents changed from one bed day to 0.5 bed days. This is 
based on an analysis of hospital data which shows that, on average, 0.5 days is a more appropriate measure of 
length of stay for this cohort of pa�ents. Therefore, cau�on must be taken if comparing the average length of 
stay data before and a�er 2018 (Healthcare Pricing Office 2020, 201). 



c. Iden�fica�on of Discharges due to Air Pollu�on 

With the excep�on of one dedicated ICD-10-AM code (Z58.1 ‘exposure to air pollu�on’)22, HIPE does 

not determine whether a discharge occurred due to (or was exacerbated by) exposure to air pollu�on. 

We use a variety of sources to es�mate, for principal diagnoses in the circulatory and respiratory 

disease chapters, the propor�on of discharges that may be atributed to air pollu�on. We gather data 

on es�mates of the popula�on atributable frac�on (PAF), i.e., the propor�on of total cases that can 

be atributed to air pollu�on.23 As data on PAFs for (emergency) hospitalisa�ons related to air pollu�on 

are not widely available, we rely instead on data on PAFs for morbidity due to ambient air pollu�on. 

Most es�mates focus on atributable cases from ambient fine par�culate mater (PM2.5). 

 

The main source is from work for the European Environment Agency (EEA) that es�mates the 

morbidity-related health burden associated with exposure to three key air pollutants: fine par�culate 

mater (PM2.5), nitrogen dioxide (NO2) and ozone (O3) for 41 European countries in 2019 (Kienzler et 

al. 2022). Ten risk-outcome pairs, for which evidence for robust causal rela�onships were available, 

were considered by the EEA.24 In this report, we use the data for Ireland from seven of those risk-

outcome pairs that relate to circulatory and respiratory disease. We also use the high and low bounds 

to reflect uncertainty in the underlying assump�ons.25 For each risk-outcome pair, we iden�fy the 

relevant sample of discharges using the ICD-10-AM codes (and apply any relevant age restric�ons). 

The seven risk-outcome pairs examined in this paper are documented in Table 1 below.  

 

 
22 There are a series of ICD codes to account for condi�ons ‘caused’ by problems related to the physical 
environment (e.g., air, noise, soil pollu�on, etc.). A US study found that there were 341 pa�ents in Florida who 
visited an ED due to environmental pollu�on exposure from 2016 to 2019 and 159 pa�ents in Florida who were 
hospitalized (Ryan 2022). Pa�ents exposed to air pollu�on frequently were diagnosed with asthma or other 
chronic obstruc�ve pulmonary disease.  
23 The popula�on atributable frac�on represents the share of the environmental burden of disease atributable 
to the relevant environmental exposure (e.g., PM2.5). It is a func�on of the rela�ve risk (RR) associated with a 
par�cular exposure and is expressed as: 𝑃𝑃𝑃𝑃𝑃𝑃 =  (𝑅𝑅𝑅𝑅−1)

𝑅𝑅𝑅𝑅
 .  

24 Other work by the same consor�um for the EEA calculated the all-cause mortality impact of PM2.5, NO2 and O3 
exposure for 41 European countries in 2019 (González Or�z et al. 2021), and in 2020 (Soares et al. 2022) . 
However, studies increasingly show that ambient air pollu�on is not only associated with mortality but also with 
morbidity due to several short-term and chronic condi�ons (Kienzler et al. 2022). 
25 Similar es�mates are available from the Global Burden of Disease (GBD) study for 2019 (Murray et al. 2020). 
The risk-outcome pairs are slightly different to those used in the EEA analysis. Another poten�al source of data 
is from a recent report that assessed the burden of PM2.5 air pollu�on on the island of Ireland, using updated 
es�mates of rela�ve risk to those used in the 2019 GBD calcula�ons (Goodman et al. 2023). The report focused 
on deaths due to circulatory disease, and es�mated that 7.6 per cent of premature deaths in Ireland and 8.6 per 
cent of deaths in Northern Ireland could be atributed to PM2.5 in 2019.  



[insert Table 1 here] 

 

d. Assessment of Resource Use of Discharges due to Air Pollu�on 

For discharges in each risk-outcome pair, we assess resource use using two metrics: bed days and DRG 

costs. Bed days are defined as the sum of length of stay for all discharges in each risk-outcome pair, as 

follows: 

𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟,𝑜𝑜 =  ��𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟,𝑜𝑜 

where 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 represents the length of stay for each discharge 𝑖𝑖 in risk-outcome pair (𝑟𝑟, 𝑜𝑜). For each risk-

outcome pair, the total is then scaled by the PAF parameters presented in Table 1 (i.e., the share of 

morbidity atributable to air pollu�on) to derive mean, and lower and upper bounds, for total bed 

days.  

 

In order to assess the costs of discharges due to air pollu�on, we use data from the ABF system for 

2021. The ABF system determines funding to hospitals based on the number and mix of pa�ents that 

they treat. In an ABF scheme a hospital receives a payment for each pa�ent encounter. The exact 

payment for a given encounter depends on the type and complexity of the individual case (Bane 

2015).26 As the cost of care in emergency departments (EDs) is currently not included in the ABF 

system, and as all emergency inpa�ents will have been processed via an ED, and thereby incur hospital 

costs prior to their inpa�ent hospital stay, we appor�on the average ED cost (€298 per ED atendance 

in 2018) (Keegan et al. 2020)27 to all air pollu�on-related hospitalisa�ons in this analysis. Total costs 

for all discharges in each risk-outcome pair are calculated as follows: 

𝑡𝑡𝑜𝑜𝑡𝑡𝑑𝑑𝑡𝑡 𝑐𝑐𝑜𝑜𝑑𝑑𝑡𝑡𝑑𝑑𝑟𝑟,𝑜𝑜 =  ��𝑃𝑃𝐴𝐴𝑃𝑃𝑖𝑖 + 𝐸𝐸𝐸𝐸𝑖𝑖 
𝑛𝑛

𝑖𝑖=1

�  × 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟,𝑜𝑜 

where 𝑃𝑃𝐴𝐴𝑃𝑃𝑖𝑖 + 𝐸𝐸𝐸𝐸𝑖𝑖 represents the ABF and ED cost for each discharge in each risk-outcome pair (𝑟𝑟, 𝑜𝑜). 

For each risk-outcome pair, total costs are then scaled by the PAF parameters presented in Table 1 (i.e., 

 
26 ABF is currently in opera�on at 43 hospitals across Ireland, which account for approximately 90 per cent of 
na�onal acute hospital ac�vity. However, due to the COVID-19 pandemic, the previous system of block-grant 
funding of hospitals was re-introduced for 2021, 2022 and 2023 (Healthcare Pricing Office 2023). 
27 Expressed in 2021 prices using the CPI (€307).  



the share of morbidity atributable to air pollu�on) to derive mean, and lower and upper bounds, for 

total costs.  

 

3. Results 

The data in Tables A2 and A3 presented a broad overview of the key clinical, demographic and 

socioeconomic characteris�cs of all emergency discharges with a principal diagnosis of circulatory or 

respiratory disease over the period 2016-2019. In this sec�on, we focus in greater detail on the 

diagnoses iden�fied in the EEA analysis, quan�fying the resource u�lisa�on (bed days and cost) 

associated with each of these diagnosis groups in turn. Before doing so, in Table 2, we present some 

key informa�on on the clinical, demographic and socio-economic characteris�cs of the discharges 

included in each of the seven risk-outcome pairs. Not surprisingly, the largest number of discharges 

relates to the risk-outcome pair O3 and respiratory hospitalisa�ons for those aged 65+, as this risk-

outcome pair encompasses the en�re respiratory diagnosis ICD-10-AM chapter (J00-J99). On average, 

length of stay is substan�ally lower for children hospitalised for asthma than it is for adults. The longest 

average length of stay relates to hospitalisa�ons for adults aged 25+ for diagnoses related to stroke. 

Hospitalisa�ons for respiratory diagnoses such as COPD are concentrated among the older popula�on, 

with a consequent higher average comorbidity score.   

 

[insert Table 2 here] 

 

In Figure 2, we show how discharges in each of the risk-outcome pairs are distributed across quarters 

of the year, and hospital groups.28 Note that the data refer to all discharges for each risk-outcome pair, 

as individual discharges cannot be atributed air pollu�on. The data show that for the circulatory risk-

outcome pairs (IHD and stroke), there is litle varia�on across quarters of the year. However, the 

number of discharges for these condi�ons varies substan�ally across hospital groups. While some of 

this varia�on may be due to differences in air pollu�on exposure among those atending these 

hospitals, it is likely that this varia�on is also due to the general size and catchment area of different 

hospitals. For COPD discharges, and respiratory discharges for those aged 65+, the seasonal varia�on 

is much more apparent, with higher numbers of discharges in Q1 and Q4. Asthma discharges (for both 

 
28 See Table 1.1 in (Healthcare Pricing Office 2022) for a list of hospitals and corresponding hospital groups in 
Ireland. 



children and adults) are distributed rela�vely evenly across the year, although there is evidence of 

higher admissions for both children and adults in Q4 (October – December).  

 

[insert Figure 2 here] 

 

Table 3 shows how resource use (total bed days, total DRG costs) vary across the seven risk-outcome 

pairs examined. The most resource-intensive risk-outcome pairs are both related to PM2.5 air pollu�on. 

Hospitalisa�ons for COPD that can be atributed to PM2.5 air pollu�on accounted for an average of 

36,776 bed days, and cost an average of €29.3m over the period 2016-2019. Hospitalisa�ons for stroke 

that can be atributed to PM2.5 air pollu�on accounted for an average of 21,759 bed days, and cost an 

average of €20.1m over the period 2016-2019. Other risk-outcome pairs (e.g., hospitalisa�ons for 

asthma for children aged 0-14) account for much smaller shares of total resources. For the five risk-

outcome pairs that contain mutually exclusive ICD-10-AM diagnosis codes, total bed days for 

condi�ons related to air pollu�on accounted for 63,572 bed days (range 17,767-115,996) over the 

period 2016-2019.29 In terms of total costs, the costs ranged from €15.0m to €105.8m, with an average 

total cost of €56.0m. To put these figures in context, in 2019, total expenditure on acute hospital 

services in Ireland (emergency and elec�ve inpa�ent, as well as day- and outpa�ent, care) amounted 

to €6.8bn (Health Service Execu�ve 2020), and total emergency inpa�ent bed days amounted to 2.8m 

(Healthcare Pricing Office 2020). 

 

The varia�on in resource use across risk-outcome pairs reflects differences in the number of 

discharges, the atributable share, LOS, DRGs and associated ABF costs for each risk-outcome pair. For 

bed days, resource use for each risk-outcome pair is a func�on of the atributable share, the number 

of discharges and the average LOS. For example, while a similar share of hospitalisa�ons for asthma 

for children aged 0-14 and hospitalisa�ons for COPD for adults aged 25+ are es�mated to be 

atributable to PM2.5 air pollu�on (see Table 2), the combina�on of shorter average LOS and fewer 

discharges means that the total bed days for asthma hospitalisa�ons for children aged 0-14 are 

considerably less than for COPD discharges for adults aged 25+. Similarly, the higher share of asthma 

hospitalisa�ons atributable to air pollu�on among children aged 0-14 (compared with adults aged 

25+) means that total costs for the treatment of hospitalisa�ons for asthma for children aged 0-14 and 

 
29 To put these figures in context, total emergency inpa�ent bed days amounted to 2.8m in 2019 alone 
(Healthcare Pricing Office 2020). 



for adults aged 25+ are broadly similar, despite the fact that fewer children are hospitalised for asthma 

overall than adults.  

 

[insert Table 3 here] 

 

4. Discussion 

In comparison with other European countries, levels of ambient air pollu�on in Ireland are amongst 

the lowest; for example, in 2017, Ireland had the sixth lowest annual concentra�on of PM2.5 of 37 

European countries (European Environment Agency 2019). However, the WHO note that there is no 

safe level of air pollu�on (WHO 2021), and there are concerns over exceedances of various pollutants 

at local level in Ireland, in par�cular a�er the revision of WHO ACQs in 2021 (EPA 2022). While there 

have been some assessments of the mortality burden associated with ambient air pollu�on in Ireland 

(European Environment Agency 2019, 2022; Goodman et al. 2023)30, there is a lack of evidence on the 

broader healthcare costs associated with ambient air pollu�on in Ireland.  

 

In this paper, we es�mated the healthcare costs of air pollu�on in Ireland, using data on emergency 

inpa�ent hospital admissions and costs over the period 2016-2019 from the Hospital Inpa�ent Enquiry 

(HIPE) system, supplemented with data on popula�on atributable frac�ons for specific condi�ons 

with causal links to air pollu�on (e.g., asthma). The next phase of this research project will incorporate 

non-acute healthcare costs associated with air pollu�on in Ireland. The results indicate that the most 

resource-intensive risk-outcome pairs are both related to PM2.5 air pollu�on. Hospitalisa�ons for COPD 

that can be atributed to PM2.5 air pollu�on accounted for an average of 36,776 bed days, and cost an 

average of €29.3m over the period 2016-2019. Hospitalisa�ons for stroke that can be atributed to 

PM2.5 air pollu�on accounted for an average of 21,759 bed days, and cost an average of €20.1m over 

the period 2016-2019. Other risk-outcome pairs (e.g., hospitalisa�ons for asthma for children aged 0-

14) accounted for much smaller shares of total resources. For the five risk-outcome pairs that 

contained mutually exclusive ICD-10-AM diagnosis codes, total bed days for condi�ons related to air 

 
30 Using data for 2019, (Goodman et al. 2023) es�mate that approximately 1,700 premature deaths (680 from 
cardiovascular disease) per annum in Ireland can atributable to exposure to PM2.5. These premature mortality 
es�mates for PM2.5 are higher than those published by the European Environment Agency (EEA) or the Global 
Burden of Disease study which ranged from 535 to 1,300 (European Environment Agency 2019, 2022; Murray et 
al. 2020). This reflects the authors’ use of updated dose response func�ons based on growing research evidence 
that exposure to PM2.5 is more harmful than previously thought. 



pollu�on accounted for 63,572 bed days (range 17,767-115,996) over the period 2016-2019.31 In terms 

of total costs, the costs ranged from €15.0m to €105.8m, with an average total cost of €56.0m. To put 

these figures in context, in 2019, total expenditure on acute hospital services in Ireland (emergency 

and elec�ve inpa�ent, as well as day- and outpa�ent, care) amounted to €6.8bn (Health Service 

Execu�ve 2020), and total emergency inpa�ent bed days amounted to 2.8m (Healthcare Pricing Office 

2020). 

 

Addi�onally, the costs of trea�ng stroke cases atributed to NO2 pollu�on amounted to €9.4m (range 

€4.9m – €13.5m), and the costs of trea�ng all respiratory hospitalisa�ons among those aged 65+ 

atributable to O3 air pollu�on was €3.0m (range €0.5m - €5.6m). A previous analysis by the OECD 

es�mated that the healthcare costs of trea�ng lung cancer, circulatory disease and respiratory diseases 

due to ambient exposure to PM2.5 and O3 in 2017 amounted to €0.15bn (OECD 2016, 2020). In England, 

it was es�mated that the total health and social care costs (i.e., acute as well as non-acute costs) of 

PM2.5 in 2017 were £41.2m (rising to £76.1m when diseases were included for which the evidence base 

was less well established) (Pimpin et al. 2018; Public Health England 2018).  

 

As with any analysis of this type, there are inevitable strengths and limita�ons. As the evidence base 

for harmful effects of air pollu�on is most robust for circulatory and respiratory diagnoses, the analysis 

in this paper focused on these condi�ons. However, there is an emerging evidence base for harmful 

effects of ambient air pollu�on on other aspects of physical and mental health (see Sec�on 1), and 

that could be incorporated in future analyses. In addi�on, the current analysis focused only on 

emergency inpa�ent hospitalisa�ons in public hospitals, which necessarily omits other hospitalisa�ons 

(e.g., outpa�ent visits, atendances in private hospitals) which may also be atributable to air pollu�on. 

The lack of a unique pa�ent iden�fier in HIPE means that we cannot examine the extent to which 

circulatory and respiratory diagnoses are concentrated among a cohort of pa�ents who repeatedly 

atend hospital, or are more widely distributed.32 With data such as HIPE, it is not possible to 

dis�nguish the short- and long-term effects of exposure to air pollu�on on emergency inpa�ent 

hospitalisa�ons. For instance, for a diagnosis such as asthma, symptoms can arise from 

 
31 This equates to approximately 43 emergency inpa�ent hospital beds per annum for air pollu�on-related 
discharges. This resource use occurs in the context of a healthcare system with severe capacity constraints. 
Overall, it is es�mated that 300 extra hospital beds per annum are required to keep up with demand and 
demographic pressures (McQuinn et al. 2023).  
32 In a study of pa�ents admited as emergency inpa�ents using HIPE data for one major teaching hospital in 
Dublin over a 13-year period, (Cournane et al. 2016) found that just under 30 per cent of the respiratory pa�ents 
were admited at least five �mes, while approximately 10 per cent were admited 10 �mes. 



contemporaneous exposure (in as quickly as one hour of exposure), from cumula�ve exposure over 

several days, or several days a�er exposure (Neidell 2009). In addi�on, if people respond to higher 

pollu�on levels by increasing avoidance behaviour, then the es�mated effect of pollu�on on health 

and healthcare u�lisa�on can be biased downwards, and the full cost of pollu�on exposure will 

therefore be underes�mated (More� and Neidell 2011).33 Finally, while we use PAF es�mates from 

the EEA to es�mate the share of discharges within each risk-outcome pair atributable to the various 

air pollutants (and use ranges to account for uncertainty), there is a wide variety of PAF es�mates in 

the available literature.34 While there is now a dedicated ICD-10-AM code for ‘exposure to air 

pollu�on’, just 14 discharges over the period 2016-2019 had a secondary diagnosis of ‘exposure to air 

pollu�on’ in Ireland. (Ryan 2022) discuss the many reasons why this code may be underu�lised by 

clinicians (e.g., the clinician would need to know about and document the pa�ent’s pollu�on exposure, 

and about the pathways linking air pollu�on and health). 

 

Despite these limita�ons, the approach taken in this paper, using hospital discharge and cost data to 

iden�fy the resource costs associated with air pollu�on, circumvents the need for high-frequency 

monitoring data on air pollu�on that can be linked to hospitalisa�ons. Most of these studies using 

ambient air pollu�on concentra�on levels, which may not be a good indicator of personal exposure.35 

Personal exposure is influenced by the different microenvironments or ac�vi�es an individual 

experiences (e.g., �me in traffic, indoor sources, second-hand tobacco smoke, occupa�onal exposure, 

and degree of penetra�on of ambient air pollu�on into homes, etc.) (Brook et al. 2010). 

 

In terms of the policy response, the recent Clean Air Strategy commits to achieving the final WHO ACQ 

values by 2040 (Government of Ireland 2023), and at EU level, the proposed revision to the Ambient 

Air Quality Direc�ve will set interim 2030 EU air quality standards, aligned more closely with WHO 

guidelines, and set Europe on a trajectory to achieve zero pollu�on for air by 2050. Achieving these 

targets will require con�nued policy focus on measures such as moving away from burning of solid 

fuels. In addi�on, policy measures to mi�gate the impacts of climate change, such as decarbonising 

home hea�ng, promo�ng ac�ve travel and transi�oning to electric vehicles, will have concomitant 

 
33 Indeed, (Neidell 2004, 2009) show how individuals respond to ‘smog alerts’ in California by reducing outdoor 
interac�ons, with the result that the es�mated effects of O3 concentra�ons on hospitalisa�ons for children and 
older people in par�cular are biased downwards.  
34 See Box 2.5 in (OECD 2020) for a good discussion of the implica�ons of differences in PAF es�mates for 
differences in es�mates of the mortality burden of air pollu�on across Europe. 
35 See (Lleras-Muney 2010) for a good discussion of the difficul�es in atribu�ng air pollu�on exposure to 
individuals using data from pollu�on monitors. 



benefits for air quality and popula�on health (van Daalen et al. 2022). In addi�on, those in more 

disadvantaged social posi�ons may be more likely to live in areas that are exposed to harmful 

environmental condi�ons, or to work in jobs that involve increased environmental risks (European 

Environment Agency, 2018). Certain popula�on groups (e.g., children, older people, those in more 

disadvantaged social posi�ons, etc.) may also be more vulnerable to the health-damaging effects of 

environmental exposures such as air pollu�on, due to other characteris�cs such as poor housing 

condi�ons, chronic disease, etc. (European Environment Agency, 2018; OECD, 2020). In this context, 

further policy measures will be required in order to ensure that the targeted reduc�ons in air pollu�on 

benefit those who are most exposed and/or most vulnerable to its effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tables and Figures 

 

Figure 1  Number of Discharges by Primary Diagnosis, 2016-2019  
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Table 1  Popula�on Atributable Frac�ons for Air Pollu�on Risk-Outcome Pairs  
 

Risk-outcome pair ICD-10-AM code Popula�on atributable frac�on1 

  lower bound mean upper bound 
1. PM2.5  
Asthma (aged 0-14) 

J45-J46 0.026 0.075 0.119 

2. PM2.5  
COPD (aged 25+) 

J40-44; J47 0.031 0.079 0.124 

3. PM2.5  
IHD (aged 25+) 

I20-I25 0.000 0.011 0.049 

4. PM2.5  
Stroke (aged 25+) 

I60-69 
 

0.005 0.049 0.095 

5. NO2 
Asthma (aged 15+) 

J45-46 
 

0.028 0.044 0.061 

6. NO2 
Stroke (aged 25+) 

I60-69 
 

0.012 0.023 0.033 

  Atributable hospital cases2 

  lower bound mean upper bound 
7. O3  
Respiratory (aged 65+) 

J00-J99 2 14 25 

Notes:  
1 The popula�on atributable frac�on represents the share of the environmental burden of disease atributable to the respec�ve risk factor (e.g., PM2.5). 
2 Unlike the other risk-outcome pairs, a rela�ve risk es�mate is not available. This means that the PAF could be calculated for this risk-outcome pair. Alterna�vely, atributable 
hospital admission cases were calculated. 
Source: (Kienzler et al. 2022) 
 
 
 
 
 
 
 
 
 
 



Table 2  Emergency Inpa�ent Hospital Clinical and Demographic Characteris�cs for Condi�ons related to Air Pollu�on, 2016-2019  

Risk-outcome pair ICD-10-AM 
code 

Total number 
of discharges 

Average length 
of stay 

% aged 0-14 % aged 65+ % male Average 
Charlson 

morbidity 
score  

1. PM2.5  
Asthma (aged 0-14) 

J45-J46 6,112 1.8 100.0 0.0 62.4 1.0 

2. PM2.5  
COPD (aged 25+) 

J40-44; J47 60,975 7.6 0.0 75.3 48.9 1.7 

3. PM2.5  
IHD (aged 25+) 

I20-I25 46,448 5.7 0.0 57.6 70.4 1.2 

4. PM2.5  
Stroke (aged 25+) 

I60-69 
 

28,276 15.7 0.0 71.4 55.6 2.3 

5. NO2  
Asthma (aged 15+) 

J45-46 
 

9,688 3.1 0.0 22.3 33.3 1.2 

6. NO2  
Stroke (aged 25+) 

J45-46 
 

28,276 15.7 0.0 71.4 55.6 2.3 

7. O3  
Respiratory (aged 65+) 

J00-J99 137,087 9.6 0.0 100.0 50.7 1.6 

Notes: 
1 As PAFs are not taken into account yet, the clinical and demographic/socioeconomic informa�on for the two risk-outcome pairs related to stroke is iden�cal.  

 

 

 

 

 

 



Table 3  Emergency Inpa�ent Hospital Resource Use for Condi�ons related to Air Pollu�on, 2016-2019  

Risk-outcome pair ICD-10-AM 
code 

Bed days atributable to air pollu�on DRG cost atributable to air pollu�on (€) 

  lower bound mean upper bound lower bound mean upper bound 
1. PM2.5  

Asthma (aged 0-14) 
J45-J46 281 811 1,287 492,709 1,421,277 2,255,093 

 
2. PM2.5  

COPD (aged 25+) 
J40-44; J47 14,431 36,776 57,725 11,498,105 

 
29,301,622 

 
45,992,420 

 
3. PM2.5  

IHD (aged 25+) 
I20-I25 0 2,914 12,980 0 3,727,667 16,605,063 

4. PM2.5  
Stroke (aged 25+) 

I60-69 
 

2,220 21,759 42,186 2,046,870 20,059,322 38,890,523 

5. NO2  
Asthma (aged 15+) 

J45-46 
 

835 1,312 1,819 925,149 1,453,805 2,015,502 

Total  17,767 63,572 115,996 14,962,833 55,963,694 105,758,601 
6. NO2  

Stroke (aged 25+) 
J45-46 

 
5,329 10,214 14,654 4,912,487 9,412,487 13,509,340 

7. O3  
Respiratory (aged 65+) 

J00-J99 575 3,567 6,751 479,345 2,971,939 5,624,315 

Notes: 
1See Table 1 for data on the popula�on atributable frac�on (or atributable hospital cases) for each risk-outcome pair. 
2 In order to focus on discharges with unique ICD-10-AM codes, the total includes the first five risk-outcome pairs only (i.e., we cannot add NO2 stroke es�mates to the total 
as these ICD-10-AM codes are already used in the es�mates for PM2.5 stroke).  
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Figure 2 Distribu�on of discharges for each risk-outcome pair by hospital group36 and quarter 
of the year 

 
a) PM2.5  

Asthma (aged 0-14) 

 Q1 Q2 Q3 Q4 
% 

discharges 
Ireland East 153 143 119 196 10.0 
Dublin Midlands 47 60 47 87 3.9 
RCSI Group 97 119 96 133 7.3 
Childrens Group 398 454 406 528 29.2 
South Southwest 249 244 235 311 17.0 
UL Group 115 74 78 96 5.9 
Saolta 362 382 413 470 26.6 

 

b) PM2.5  

COPD (aged 25+) 

 Q1 Q2 Q3 Q4 
% total 

discharges 
Ireland East 3,941 3,479 3,032 4,070 23.8 
Dublin Midlands 3,220 2,397 2,184 2,865 17.5 
RCSI Group 2,565 2,213 1,869 2,594 15.2 
South Southwest 3,087 2,390 2,173 2,763 17.1 
UL Group 1,680 1,348 1,186 1,516 9.4 
Saolta 3,067 2,361 2,184 2,791 17.1 

 
 
c) PM2.5  

IHD (aged 25+) 

 Q1 Q2 Q3 Q4 
% total 

discharges 
Ireland East 2,613 2,641 2,574 2,699 22.7 
Dublin Midlands 2,415 2,270 2,414 2,320 20.3 
RCSI Group 1,449 1,549 1,499 1,405 12.7 
South Southwest 2,010 2,114 2,171 1,971 17.8 
UL Group 1,000 921 940 884 8.1 
Saolta 2,166 2,195 2,158 2,070 18.5 

 
 
 
 
 
 

 
36 See Table 1.1 in (Healthcare Pricing Office 2022) for a list of hospitals and corresponding hospital groups in 
Ireland. 
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d) PM2.5 /NO2 

Stroke (aged 25+) 

 Q1 Q2 Q3 Q4 
% total 

discharges 
Ireland East 1,484 1,465 1,478 1,570 21.2 
Dublin Midlands 1,028 1,064 940 1,041 14.4 
RCSI Group 1,676 1,636 1,659 1,710 23.6 
South Southwest 1,402 1,316 1,380 1,360 19.3 
UL Group 501 468 447 475 6.7 
Saolta 1,029 1,017 1,080 1,050 14.8 

 

e) PM2.5  

Asthma (aged 15+) 

 Q1 Q2 Q3 Q4 
% total 

discharges 
Ireland East 533 495 457 609 21.6 
Dublin Midlands 386 330 327 477 15.7 
RCSI Group 421 392 402 520 17.9 
Childrens Group 6 5 8 7 0.3 
South Southwest 445 396 368 482 17.5 
UL Group 296 217 240 293 10.8 
Saolta 389 388 378 421 16.3 

 
 
f) O3 

Respiratory hospitalisa�ons (aged 65+) 

 Q1 Q2 Q3 Q4 
% total 

discharges 
Ireland East 9,198 7,305 6,174 8,767 22.9 
Dublin Midlands 6,428 4,854 4,199 5,817 15.5 
RCSI Group 6,296 5,020 4,281 6,041 15.8 
South Southwest 7,584 5,627 4,809 6,612 18.0 
UL Group 3,533 2,684 2,222 2,991 8.3 
Saolta 7,872 6,168 5,509 7,096 19.4 
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Table A1  HIPE Variable Defini�ons 

Variable Defini�on 
Clinical information  
Month of admission January - December 
Year of admission 2016, 2017, 2018, 2019 
Type of admission Emergency, emergency readmission, newborn 
Diagnosis code for principal diagnosis1 ICD-10-AM code  
Comorbidity Charlson comorbidity score2 
Hospital Group Broad hospital group (e.g., Ireland East, Dublin 

Midlands, etc.) 
Length of stay Length of inpa�ent hospital stay in days 
DRG Diagnosis-related group 
ABF cost ABF cost of DRG (2021 prices) 
  
Demographic/socioeconomic information  
Age Age in ten-year age bands, up to 85+3 

Sex Male, female 
Medical card Medical card status (yes, no) 
Public pa�ent Public consultant (yes, no) 

Notes: 
1 ICD-10-AM codes are also available for up to 29 secondary diagnoses 
2 The Charlson co-morbidity index is a score based on all of a pa�ent’s diagnoses (using ICD codes) that predicts 
the risk of death within 1 year of hospitalisa�on (Charlson et al. 1987). 
3 Children aged under 15 are grouped into one composite group, aged 0-14. 
 

Table A2  Clinical Characteris�cs of Full Analy�c Sample2  

 Circulatory Disease1 
(ICD: I00-I99) 

Respiratory Disease1  
(ICD: J00-J99) 

All Circulatory and 
Respiratory Diseases1 

Month of admission    
January  8.5 11.6 10.4 
February 7.8 9.0 8.5 
March 8.7 8.9 8.8 
April 8.3 7.9 8.1 
May 8.7 7.6 8.1 
June 8.1 6.7 7.3 
July 8.4 6.3 7.1 
August 8.5 5.8 6.9 
September 8.2 7.0 7.5 
October 8.5 7.9 8.1 
November 8.3 9.1 8.8 
December 8.0 12.3 10.5 
    
Year of admission    
2016 24.2 24.9 24.6 
2017 24.9 23.9 24.3 
2018 25.3 25.4 25.4 
2019 25.6 25.8 25.7 
    
Hospital Group    
Ireland East 22.8 20.8 21.6 
Dublin Midlands 16.3 13.6 14.7 
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RCSI 16.1 14.7 15.3 
Children 0.4 5.9 3.6 
South Southwest 18.4 17.8 18.0 
UL 7.9 7.9 7.9 
Saolta 18.0 19.4 18.8 
    
Type of admission    
Emergency 98.9 98.1 98.4 
Emergency readmission 1.1 1.4 1.3 
Newborn 0.1 0.5 0.3 
    
Comorbidity (Charlson score) 1.3 1.1 1.2 
    
Length of stay (days) 7.9 6.7 7.2 

 Notes: 
1 Refers to principal diagnosis based on ICD-10-AM codes  
2 With the excep�on of length of stay (which is presented as average number of days) and comorbidity (which is 
presented as average Charlson score), the data here refer to the percentage of total discharges in each group. 

 

Table A3 Demographic and Socioeconomic Informa�on of Full Analy�c Sample2   

 Circulatory Disease1 
I00-I99 

Respiratory Disease1 
J00-J99 

All Circulatory and 
Respiratory Diseases1 

Age Category    
Age 0-14 2.2 20.2 12.8 
Age 15-24 1.3 4.2 3.0 
Age 25-34 2.0 3.6 2.9 
Age 35-44 4.8 5.0 4.9 
Age 45-54 9.9 6.3 7.8 
Age 55-64 16.7 10.7 13.2 
Age 65-74 24.6 18.5 21.0 
Age 75-84 25.5 19.9 22.2 
Age 85+ 13.1 11.7 12.3 
    
Sex    
Male 59.0 50.7 54.1 
Female  41.1 49.3 45.9 
    
Medical Card    
No  34.7 31.0 32.5 
Yes  65.3 69.0 67.5 
    
Public Pa�ent    
No 83.1 85.9 84.8 
Yes 16.9 14.1 15.3 

 Notes: 
1 Refers to principal diagnosis based on ICD-10-AM codes  
2 The data here refer to the percentage of total discharges in each group. 
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Figure A1 Distribu�on of Circulatory and Respiratory Discharges by Hospital1 (2016-2019) 

 

Notes: 
1 Hospital codes are anonymised, although the hospitals marked in green indicate the three paediatric hospitals 
in Ireland (Crumlin, Tallaght, Temple St). 
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Figure A2 Distribu�on of Circulatory and Respiratory Discharges by Hospital Group (2016-2019) 
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