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Abstract

Small area poverty estimates are important for social and economic pol-

icy, however the required data are often unavailable. This paper presents a 

Small Area Estimation (SAE) technique called Conditional Monte Carlo 

(CMC). CMC provides robust estimates of small area poverty rates, subject to 

fewer restrictive assumptions than existing methods. We present a the-

oretical derivation followed by a numerical validation. Using Mexican data, 

CMC replicates small area poverty rates with precision, successfully control-

ling for unobserved heterogeneity in the relationship between predictor and 

outcome variables through discriminate microdata sampling. CMC produces 

spatially-referenced microdata, providing a platform for agent-based modelling 

and microsimulation analysis.
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1 Introduction

Small area poverty estimates are required to effectively target economic and social

policy. They are the basis for federal funds apportionment in the United States

(Ghosh et al., 1994; Tarozzi and Deaton, 2009), social policy decisions in many Eu-

ropean countries (Simler, 2016) and poverty interventions in the developing world

(Devarajan, 2013; Pokhriyal and Jacques, 2017). There is a growing requirement for

small area estimates of economic and social outcomes. For instance, spatially-explicit

poverty data will be required to target climate policy towards the microregions and

socioeconomic groups that are most negatively affected by the impacts of climate

change (Hallegatte and Rozenberg, 2017; Rao et al., 2017).

Poverty data at the small area level are often not readily available. This may

be due to resource limitations or privacy concerns; survey microdata are frequently

designed to be representative at the national or aggregated regional level. Small Area

Estimation (SAE) methodologies exist to overcome this limitation, however common

methodologies are subject to restrictive distributional assumptions (e.g. Elbers et al.,

2003; Tarozzi and Deaton, 2009; Molina and Rao, 2010). This paper introduces a

Conditional Monte Carlo (CMC) simulation-based SAE methodology. This method

differs from many of those in the SAE literature as it provides poverty estimates by

simulating a spatially representative population of households, building on methods

from the spatial microsimulation literature (for a review, see O’Donoghue et al., 2014).

This provides a number of advantages.

First, this method provides greater flexibility in the estimation procedure, rela-

tive to pre-existing methods. Many SAE procedures first estimate the conditional

distribution of an outcome variable (such as income) using nationally or regionally-

representative survey microdata. The small area distribution of this outcome variable
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is then imputed according to the census distribution of predictors. Under conditions

of homogeneity in the relationship between outcome and predictor variables, these

models give insight into the conditional expectation of a poverty outcome, accompa-

nied by an estimate of precision. Discussed in Section 1, unobserved heterogeneity in

this relationship at small area, sampling cluster or other spatial scales can bias esti-

mates. Corrective procedures have been developed (e.g. Salvati et al., 2012), however

many of these require user-defined parameters that are difficult to specify correctly.

Unlike many SAE methods, the CMC procedure estimates small area poverty rates

through selective sampling of households. Discriminate sampling of households for

whom the relationship between outcome and predictor variables is shared with the

small area of interest provides a less-restrictive means to overcome this restriction.

Second, this platform allows one to estimate the incidence of multiple indicators of

deprivation and their likely coincidence within a household. Third, this method pro-

vides a platform with which one may apply microsimulation or agent-based methods

to capture the complex interaction of policies, behaviours and economic shocks on the

distribution of welfare, a policy priority identified in the literature (see Bourguignon

and Spadaro, 2006; Cardaci, 2018; Farmer and Foley, 2009; Happe et al., 2008).

CMC is a population synthesis method building on those present in the spa-

tial microsimulation literature. Many population synthesis methods to date employ

computationally-intensive combinatorial optimisation methodologes (O’Donoghue et al.,

2014). This yields a single snapshot simulation subject to sampling error. We employ

a computationally efficient sampling method known as quota sampling (Farrell et al.,

2013). This allows for multiple population snapshots through which one may estimate

an expected rate of poverty, alongside a margin of error, providing estimates robust

to sampling error.

This paper is structured as follows. Section 2 reviews the literature and motivates
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the development of the CMC methodology. This is followed by an overview of the

theoretical problem in Section 3, where the CMC procedure is outlined. We present

two validation exercises. First, we apply the CMC methodology to synthetic data

in Section 4. A Monte Carlo experiment demonstrates the validity of the procedure

in a general setting. In Section 5, we apply the method to an empirical case study.

Using 2015 census data, we estimate small area poverty rates in Mexico and compare

model performance against a known poverty distribution. We find that the method

estimates small area poverty rates with precision. Section 6 offers some concluding

comments.

2 Previous research and motivation

This section reviews the literature on poverty and small area estimation techniques,

motivating the need for a robust microdata-based estimation procedure. Methods to

estimate poverty incidence at the small area level may be categorised according to

two research strands; Small Area Estimation (SAE) and Survey reweighting (SRW).

SAE combines the micro-level power of survey data with the spatial information of

census data in a multi-level modelling framework. SAE has been used in a wide

range of applications. First proposed by researchers at the World Bank (Elbers et al.,

2003), these methods have been employed in estimating the spatial distribution of

poverty in over 60 countries (Elbers and van der Weide, 2014). Bedi et al. (2007) give

an overview of applications in the developing world while Simler (2016) apply these

methods to range of European countries. Further applications of note include the

charting of spatial poverty incidence in Ecuador (Hentschel et al., 2000) and Vietnam

(Minot, 2000).

Generally speaking, SAE procedures first estimate the conditional distribution of
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an outcome variable (such as income) using survey microdata. The spatial distribu-

tion of this outcome variable is then predicted according to the census distribution

of predictors. Under specific distributional conditions, outlined below, these models

give insight into the conditional expectation of a poverty outcome accompanied by an

estimate of precision. This method was first proposed by Elbers et al. (2003). Often

referred to as the ELL procedure (Tarozzi and Deaton, 2009), this is a simulation-

based imputation procedure. The ELL model estimates a nested error-regression

model. Random effects are controlled for at the sampling cluster level. While this

controls for heterogeneity in the relationship between outcome and predictor variables

at the sampling cluster level, it carries an implicit assumption that between-area vari-

ation in this relationship is negligible. Violation of this assumption will bias estimates.

Tarozzi and Deaton (2009) argue that between-area variation in the relationship be-

tween predictor and outcome variables is likely in many circumstances, demonstrating

the magnitude of potential bias.

The ELL model has been developed by subsequent methods in an attempt to

overcome the limitations quantified by Tarozzi and Deaton (2009). Molina and Rao

(2010) have created the Empirical Best Prediction (EBP) method, whilst Salvati

et al. (2010) have introduced a method known as the M-Quintile (MQ) approach.

The EBP method is similar to the ELL method but instead assumes heterogeneity

in between-area variation, captured through a normally-distributed random effect

at the area level. While the ELL model accounts for unobserved heterogeniety at

the cluster level through a random effect, the EBP model requires the assumption

of cluster homogeneity. Initially this method was sensitive to deviation from the as-

sumption of Guassian random errors. Diallo (2014) and a paper by Elbers and van der

Weide (2014) have developed augmented sampling procedures, such as a logarithmic

or power transformation, to account for this. The M-quintile model, developed by
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Chambers and Tzavidis (2006), is a further development that overcomes a number

of the outlined deficiencies; it does not require any specific distributional assump-

tions, however correct implementation requires that the user specifies the parameters

that should vary spatially, with no established diagnostic test in place to identify a

definitive choice (Salvati et al., 2012).

To date, SAE methods have commonly been employed in the estimate of poverty

as quantified by income, with some studies applying the method in the estimation

of multidimensional poverty. Pham et al. (2020), use SAE methods to estimate sub-

national distributions of multidimensional poverty for Vietnam. These estimates are

at regional level - small area distributions are not estimated. Pratesi et al. (2021)

estimate the small area incidence of multidimensional educational poverty in Italy,

with general poverty incidence not assessed.

Recently, SAE procedures have been augmented by the use of ‘big data’ sources,

with Hall et al. (2023) providing a review. Of particular note is the work of Pokhriyal

and Jacques (2017), who use data sources such as phone records and satellite imagery

to predict important dimensions of poverty at the regional level. The spatial incidence

of health, education, and standard of living have been estimated according to a Pear-

son correlation of 0.84–0.86. Machine Learning and Artificial Intelligence methods are

also useful in this regard. Yeh et al. (2020), for instance, train machine learning algo-

rithms to predict asset wealth across 20,000 African villages using publicly-available

multispectral satellite imagery. Models explain 70% of the variation in village wealth

for countries where the model was not trained.

SAE estimates such as these are useful but are restrictive with respect to the

insight offered. First, these methods estimate headline poverty rates, one does not

obtain insight into the micro-level distribution of poverty and its determinants. The

small area covariance of poverty with unemployment, health outcomes or educational
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attainment, for instance, provides important information into the depth of deprivation

in a given small area. This cannot be estimated with traditional SAE methods and

is of particular importance given the move towards the characterisation of poverty

on a multidimensional scale. There has been an increasing recognition that poverty

and deprivation exists on many dimensions not wholly captured by income alone

(e.g. Atkinson, 2003; Alkire and Foster, 2011; OPHI, 2013; Permanyer, 2014) and

that poverty metrics should quantify incidence on multiple dimensions. Indeed, Sen

(1999) has stated that ‘the role of income and wealth. . . has to be integrated

into a broader and fuller picture of success and deprivation’ (Atkinson, 2003). A

strong applied literature advocates for the use of multidimensional poverty indicators

(Aaberge et al., 2019; Alkire and Foster, 2011; Atkinson, 2003; Curtis, 2018; Narayan-

Parker and Patel, 2000; Permanyer, 2014; Sen, 1983, 1992, 2009; Santos and Villatoro,

2018; Stiglitz et al., 2009; Reddy and Pogge, 2002).

An estimation procedure that provides the distribution of relevant outcome vari-

ables, as opposed to the expected mean of a single metric, can provide insight into

both the breadth and depth of poverty incidence, alongside a platform to investigate

the dimensions most responsible for driving prevalence. This is valuable, given the

importance of measuring poverty across multiple dimensions. In addition, under-

standing the distribution of relevant outcome variables - and their within-household

coincidence - allows one to apply microsimulation or agent-based methods to capture

the complex interaction of policies, behaviours and economic shocks. In doing so,

this provides a platform to assess the effect that certain policies may have on the

spatial distribution of welfare. This is a policy priority identified in the literature

(see Bourguignon and Spadaro, 2006; Cardaci, 2018; Farmer and Foley, 2009; Happe

et al., 2008).

Survey reweighting (SRW) methods overcome many of the aforementioned defi-
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ciencies, providing insight into micro-level distribution of determining variables. SRW

reweighs survey microdata according to small area census totals. This provides in-

sight into the coincidence of various outcomes while also providing a platform for

spatially-explicit microsimulation and agent-based analyses (Tanton and Edwards,

2012; O’Donoghue et al., 2014; Rahman and Harding, 2016; Harding, 2017). This

procedure is similar to SAE whereby a poverty estimate is produced using a mi-

crodata sample, reweighted conditional on known distributions at the small area

level. While SAE methods estimate the conditional expectation of poverty rates us-

ing regression-based methods, SRW methods estimate a microdata distribution for

each small area.

Many SRW methodologies exist and these may be categorised as either probabilis-

tic and deterministic reweighting methods (for a full review of methods, see Tanton

and Edwards, 2012; O’Donoghue et al., 2014; Rahman and Harding, 2016; Harding,

2017). These methods share two common deficiencies. First, all SRW techniques

to date carry an implicit assumption of between-area homogeneity. Probabilistic

reweighting methodologies such as simulated annealing operate by sampling indis-

criminately from the survey data such that the simulated population of predictor

variables corresponds to known distributions contained within census data at the

small area level (for applications, see Ballas et al., 2006; Morrissey et al., 2014). As

Tarozzi and Deaton (2009) discuss, the relationship between outcome and predictor

variables is not necessarily homogeneous between areas and this can lead to a bias in

estimation.

Second, common SRW methods present a single snapshot population from the

conditional distribution and do not provide a robust measure of estimate precision.

Probabilistic reweighting methodologies such as Simulated Annealing are computa-

tionally intensive (Rahman et al., 2010), and one cannot estimate multiple snapshots
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such that an estimate of precision may be approximated. Farrell et al. (2013) intro-

duce the Quota Sampling method which is less computationally-intensive. However,

this method provides a single snapshot and while applications to date involve the

precision of this estimator has not been quantified.

‘Deterministic’ procedures, such as Iterative Proportional Fitting (IPF) create

wholly synthetic tables of socioeconomic totals for a small area population, condi-

tional on census distributions of predictor variables (for a full discussion, see Nor-

man, 1999). Much research has applied this method, including Ballas and Clarke

(2001); Ballas et al. (2005); Smith et al. (2009); Lovelace and Ballas (2013). The

algorithm presents a number of deficiencies. The estimates produced are entirely

synthetic and comprise a table of cross-tabulated population totals; insight into the

within-household coincidence of outcome variables cannot be estimated, nor does the

procedure provide a platform for agent-based or microsimulation analysis. In addi-

tion, the procedure is deterministic; the algorithm produces the same output each

time the method is implemented (Lovelace and Ballas, 2013) and while estimates of

precision have been traditionally therefore an estimate of precision is difficult to ob-

tain. However, attempts have begun to incorporate an estimate of precision into these

deterministic methods, with Whitworth et al. (2017) offering a method that borrows

explanatory power from a multi-level regression. Rahman and Harding (2016) present

a Markov-Chain Monte-Carlo method which provides this estimate of variance. The

performance of these methods has not been validated to the author’s knowledge.

The following section presents a survey reweighting methodology named Con-

ditional Monte Carlo (CMC) which overcomes many of the outlined deficiencies of

existing SRW methodologies. Discriminate sampling allows for area homoegenity to

be overcome, while a bootstrapping methodology provides an estimate of precision. In

doing so, the microdata format of the CMC output provides an approprate platform
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to (i) estimate spatial deprivation on a multidimensional scale, including estimates

of the coincidence of various outcomes, and (ii) provide a foundation through which

one can estimate the covariance of important socioeconomic outcomes or use as a

platform for microsimulation or agent-based modelling.

3 The Theoretical Problem

3.1 Overview

Within Region C there is a small area i. The objective is to estimate the expected

value of a statistical moment, W , which details the small area distribution of an

outcome variable y for small area i, where i ⊂ C. yi, where yi ∈ MH×1(R), is a

vector detailing the distribution of the outcome variable of interest for small area

i. An example of such an outcome variable is the vector of household-level incomes

or health status indicator for residents of small area i. W may be any statistical

moment describing the distribution of the population in area i, such as the poverty

index, crime index or the socioeconomic gradient of a health outcome. li is an estimate

of the expected value of W (yi):

li = E[W (yi)] (1)

xi is a matrix of K predictor variables correlated with the yi outcome variable,

where xi ∈MH×K(R). For instance, should yi be the distribution of income for small

are i, xi may be a matrix detailing the distribution of predictors such as education

status or employment status. Using conditional expectations, we can transform the li

estimator to the expected value forW , conditional on the observedX matrix equalling

that observed for small area i, xi:
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li = E[W (yi)|X = xi]. (2)

li may be estimated using Monte Carlo sampling:

li = E

[
W (yi)|X = xi

]
=

1

J

J∑
j

[
Wj(yi)|Xj = xi

]
(3)

where Xj and Wj(y
i) are the jth Monte Carlo replication of the X covariate

matrix and W estimate, respectively. Each Monte Carlo replication is a sample of

households drawn from region C. The sample of households drawn from region C must

be chosen such that the the X distribution of covariates corresponds to the known

xi distribution. Sampling a set of observations that exactly matches the xi vector

is a combinatorial optimisation problem. As Farrell et al. (2013), O’Donoghue et al.

(2013) and Morrissey et al. (2014) discuss, combinatorial optimisation algorithms

are often computationally intensive. This can preclude the Monte Carlo estimation

outlined in equation (3). To overcome this constraint, the Conditional Monte Carlo

estimator employs a computationally efficient rejection sampling procedure known as

Quota Sampling developed by Farrell et al. (2013), which will now be outlined.

3.2 Rejection sampling

The rejection sampling procedure draws on the quota sampling algorithm first intro-

duced by Farrell et al. (2013) and O’Donoghue et al. (2013). This procedure will now

be outlined, with a full discussion in Farrell et al. (2013). As outlined in the previous

section, the objective is to sample an X matrix which details the household-level co-

variate distribution from the sampled population, where X ∈MH×K(R). Each h row

of the X matrix represents the household-level distribution of key predictor variables,
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detailed according to the K columns. The X matrix is therefore an appending of xh

row vectors.

The Quota sampling procedure is the process by which these row vectors are

sampled and appended such that X = xi. This involves sampling H observations

(e.g. households) from a microdata population C such that X vector outlining the

covariate distribution for sampled households approximates the known xi distribution

for small area i:

X ≈ xi, (4)
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Figure 1: Quota sampling rejection sampling procedure

Quota Sampling procedure first introduced by Farrell et al. (2013). Please see Farrell et al. (2013)
for a full discussion of this procedure.

The practical implementation of this quota sampling concept is illustrated in Fig-

ure 1 and discussed at length in Farrell et al. (2013). As previously discussed, house-

holds are sampled according to K covariates. Z is the set of K covariate specifications

13



which may be employed in the estimation process, where Kζ represents the concur-

rent covariate set (i.e. Z = Kζ , ..., KZ)
1. The specification of multiple covariate sets

is required to overcome practical limitations to convergence. As Farrell et al. (2013)

outline, the sampling procedure does not replace households that have already been

assigned to small area i. This improves efficiency relative to other combinatorial op-

timisation algorithms such as simulated annealing. While this brings computational

efficiency, facilitating the implementation of the Conditional Monte Carlo procedure,

there are practical limitations to convergence. Given the intra-household distribution

of covariates, the final household to be assigned may be required to have character-

istics that do not exist to perfectly satisfy the distribution represented by a given

set of K covariates.2 While this introduces some additional noise to the estimate,

this should not bias the estimate under the assumption that the households assigned

under all sets of constraints are randomly allocated, conditional on X = xi. This

hypothesis is tested in Section 4.

The procedure operates as follows. We first specify a number of vectors to facilitate

algorithm operation. The algorithm allocates households to small area i one at a time.

An xr vector logs the concurrent count of attributes for the set of households that

have been already assigned to small area i at a given point in algorithm operation.

For a given K set of predictor variables, xr is a vector of zeroes at the initiation of

each algorithm loop: xr ∈ 01×K(R). At initiation, X is an empty matrix.

Within each algorithm loop, the N set of households in the candidate sample

dataset are sorted randomly. Household h is extracted from the N sample population,

with an xh vector of covariate attributes, where xh ∈ M1×K(R). The algorithm then

1For simplicity, we refer to the set of constraints in each simulation iteration asK, whereK = Kζ .
See Figure 1

2For instance, we may be controlling for occupation and education status, with the final household
requiring a scientist without a third level qualification. This may not be present in the dataset.
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compares the concurrent count in addition to the addition of household h to the

constraint counts for small area i. Household h is allocated to small area i if an

elementwise addition of vectors xh + xr produces a value less than or equal to the

corresponding elements from xi, for all k vector elements:

xr,k + xh,k ≤ xi,k,∀k (5)

If equation (5) is satisfied, household h is allocated to small area i. Vector xr is

updated to reflect the new quota counts. Matrix X is then updated, by concatenating

the xh values with the pre-existing X matrix, which contains previously assigned

households.

If Equation (5) is not satisfied, then household h is not allocated to xr. The

‘quota’ of socioeconomic attributes for at least one attribute has been exceeded. The

algorithm continues without updating the X matrix or the xr vector and household

h+ 1 is evaluated. Households are evaluated consecutively until xr ≈ xi.

Should the algorithm fail to allocate households a set F number of times, then

a subsequent K constraint set is invoked, whereby K = Kζ+1. Kζ+1 corresponds to

fewer constraining variables. This imposes fewer constraints on the statistical match

than Kζ , facilitating the allocation of additional households to small area i.3 The

algorithm continues in this fashion until the required number of households have

been allocated. Once the X matrix of household attributes is constructed, this is

matched with the corresponding yi outcome variable. The specification of the small

area poverty distribution is then complete.

3Without such a step, the intra-household distribution of constraints may result in the algorithm
failing to allocate additional observations. Ex-ante, one would expect that allocating additional
households subject to fewer constraints should improve the precision of the estimate relative to an
estimate based on fewer households. We test this hypothesis in Section 4.
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3.3 Unbiased inference and area homogeneity

Having outlined the CMC estimation procedure, and reviewing the quota sampling

subroutine first introduced by Farrell et al. (2013), the next step is to consider the

assumptions that are important for unbiased inference. Small area i is a subset of

region C. Elbers et al. (2003) and Tarozzi and Deaton (2009) show that estimating

E[W (yi)|X = xi] can yield unbiased results should the covariance betweenW (yi) and

x remains consistent throughout region C. In other words, there must be homogeneity

in the relationship between predictor and outcome variables for households located

in all small areas within region C. If small area-specific effects are present, then this

relationship will not hold. Formally, the requirement for area homogeneity may be

characterised as:

E[W (yi)|X = xi], h ∈ C = E[W (yi)|X = xi], h ∈ i (6)

Equation (6) implies that if there is regional variability, such as a lack of access

to certain resources in certain locations, indiscriminate geographical sampling may

fail to capture the full degree of spatial heterogeneity and estimates will be biased.

The CMC sampling algorithm can overcome this constraint in many circumstances by

discriminately sampling from regions where area homogeneity holds. This is explored

in Section 5.

4 Monte Carlo Experiments

This section is the first step in evaluating the Conditional Monte Carlo procedure.

First, we carry out a set of Monte Carlo experiments to test the performance of the

model using a synthetic data generation process. The focus of this process is to test
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the impact that estimation choices have on model performance.

A number of propositions are tested. First, we validate the procedure as an

unbiased estimator of a statistical moment of interest. Second, we test the added

precision introduced by the sequential quota sampling procedure.4 Third, we evaluate

the impact of unobserved spatial heterogeneity on the precision of the estimated

statistical moment. We follow Tarozzi and Deaton (2009) and introduce an area-

specific fixed effect to capture this. Finally, we test sensitivity to the number of Monte

Carlo iterations chosen, informing practical application. We consider the precision

and bias of the estimate when measuring estimator performance.

4.1 Data Generation Process

The Monte Carlo experiment proceeds as follows. We adapt the Data Generation

Process of Tarozzi and Deaton (2009), to simulate a set of households. Each household

belongs to a small area i, where the small area may have a region-specific fixed effect.

Two covariate variables, x1,ih and x2,ih predict the yih poverty indicator for household

h. uih denotes the household-specific error which comprises an observation-specific

error ϵih and a small area-specific error ηi. We assume the constant β0 is equal to 10.

Given these parameters, yih is simulated according to the following Data Generation

Process (DGP):

yih = β0 + β1x1,ih + β2x2,ih + uih

... = 10 + x1,ih + x2,ih + ψ · ηi + ϵih

4As outlined in Section 3, a ζ = 1, ..., Z set of constraint specifications may be specified. We
compare estimator performance under a single set of constraints to performance when there are
multiple sets of predictor variables.
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where:

x1,ih = 0.5 ∗ (5 + z1,iw1,ih + z2,i), w1,ih ∼ N(0, 1),

x2,ih = 0.5 ∗ (5 + z2,iw2,ih + z4,i), w2,ih ∼ N(0, 1),

z1,i, z2,i, z3,i, z4,i ∼ U(0, 1),

z1,i ⊥ z2,i ⊥ z3,i ⊥ z4,i,

ηi ∼ N(0, .01), ϵih ∼ N(0, σ2(x))

σ2(x) =
eα1x+α2x2

1 + eα1x+α2x2 .

In addition, α1 = 0.05 and α2 = 0.01. Following Tarozzi and Deaton (2009),

the idiosyncratic errors ϵih are assumed to be heteroskedastic. ψ denotes scaling

parameter for the small area-specific error and is assumed to be 2 in our baseline

model specification. We vary this to test the sensitivity of estimation performance to

unobserved spatial heterogeneity.

The validation procedure proceeds as follows. First, we simulate census distribu-

tions for each variable according to the outlined DGP. We simulate a population of

4,500 households divided into 15 small areas of 300 households each. Many census

datasets present their data according to discrete categorisations for relevant variables.

To implement the CMC procedure five discrete categorisations for both x1,ih and x2,ih

variables are specified.5 As with the x1,ih and x2,ih variables, we match according to

a discrete ψ · ηi variable, which is split into 7 discrete categories.6 The second step is

5These categories are as follows: category 1: x < 4; category 2: 4 < x ≤ 5; category 3: 5 < x ≤ 6;
category 4: 6 < x ≤ 7; category 5: 7 < x

6In the baseline specification, where ψ = 2, the ψ · ηi discrete categorisations take the following
values: category 1: ψ · ηi ≤ −0.644; category 2: −0.644 < ψ · ηi ≤ −0.275; category 3: −0.275 <
ψ · ηi ≤ −0.145; category 4: −0.145 < ψ · ηi ≤ 0.025; category 5: 0.025 < ψ · ηi ≤ 0.248; category 6:
0.248 < ψ · ηi ≤ 0.420; category 7: 0.420 < ψ · ηi
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to generate a psuedo survey, from which the CMC estimator may select observations

to emulate the identified census distributions. we generate a 10% survey sample of

450 households, from which we sample using the CMC algorithm.

The final step is to implement the CMC procedure. The CMC estimation proce-

dure selects observations from the survey subsample to emulate the known discrete

census distributions, calculated earlier. The baseline CMC specification has two Z

constraint sets and 250 Monte Carlo iterations. Should the algorithm fail to allocate

10 households in sequence, the algorithm moves to the subsequent constraint set. Fol-

lowing Tarozzi and Deaton (2009), all Monte Carlo replications use the same artificial

census population, which is therefore treated as non-random. We test the sensitivity

to these parameterizations.

For each household, the yih variable may be interpreted as a metric of income

or well-being. We follow Tarozzi and Deaton (2009) and estimate the head count

poverty ratio as the statistical moment of interest, calculated as the percentage of

the population living below a given poverty line, P (ych). We choose yih = 14 as the

poverty line. In our baseline specification this yields a headcount poverty rate of

around 41%, a benchmark that is suitable for evaluating model performance.

We calculate a number of statistics to give insight into estimation performance.

First, we inspect any bias in the algorithm by calculating relative bias as:

∑J

J
· ( ˆyihj − yih)

yih
, (7)

where yih is the true value of the welfare measure, and ˆyihj is the estimate obtained

in the J − th Monte Carlo replication. Second, we calculate an estimate of precision
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using Root Mean Square Error (RMSE). The RMSE is estimated as:

√∑J( ˆyihj − yih)

J
(8)

Finally, we calculate the fraction of simulation replications which lie within one or

two standard deviations of the population mean (i.e. µ+1σ & µ+2σ). According to

the empirical rule, 68% of estimated means should lie within one standard deviation

of the mean, whilst 95% of estimated means should lie within two standard deviations

of the mean.

4.2 Monte Carlo experiment results

The first proposition we wish to test is the performance of the CMC algorithm in

accurately estimating the poverty headcount for a fictional small area population.

We do so according to the data generation process previously outlined with baseline

parameter values. Outlined in Table 1, we include a number of Z constraint set

specifications to give insight into performance under various constraint specifications.

Each specification varies the presence of constraints in step two (ζ = 2) in the sim-

ulation procedure. We first consider a scenario where all constraints are present in

both steps (Specification A), then we test the performance of the algorithm when we

remove one constraint in step two (Specifications B-D).
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Table 1: CMC constraint specifications

Specification
Constraints

ζ = 1 ζ = 2

A (All) x1, x2, ψ · ηi x1; x2; ψ · ηi

B (No x1 when ζ = 2) x1; x2, ψ · ηi x2; ψ · ηi

C (No x2 when ζ = 2) x1; x2; ψ · ηi x1; ψ · ηi

D (No ψ · ηi when ζ = 2) x1; x2; ψ · ηi x1; x2

E (No ψ · ηi when ζ = 1 & ζ = 2) x1; x2; x2

Table defines constraint specifications employed in Table 2. Each specification varies the presence
of constraints in step two (ζ = 2) in the simulation procedure. We first consider a scenario where all
constraints are present in both steps (Specification A), then we test the performance of the algorithm
when we remove one constraint in step two (Specifications B-D).

Table 2 reports the results of this examination. For all constraint specifications,

bias and RMSE is small relative to the true value being estimated. Specifications

B and C perform better than specifications A and D. Relative to specifications B

and C, specification A presents a greater bias and a marginally lower number of

simulation iterations which fall within the interval predicted by the empirical rule.

This is because the removal of constraints in specifications B and C allows for further

households to be added and closer convergence with the true poverty rate. As results

show, this procedure reduced bias, although there is an insignificant effect on RMSE.

Simulation performance is best when either x1 or x2 are removed from the second

simulation step in Specifications B and C. The proportion of simulation iterations that

fall within the intervals µ+1σ & µ+2σ converges on those predicted by the empirical

rule. Specification D demonstrates a poorer performance relative to specifications B

and C. The performance is comparable to Specification A. This is because removal of

ψ · ηi results in a loss of control of spatial heterogeneity in the estimation procedure.
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This has a greater impact than the removal of either x1 or x2.

In addition to the findings of Table 2, we wish to explore the extent with which

unobserved spatial heterogeneity may bias CMC estimates. In the results of Table

2, we control for spatial heterogeneity through the explicit incorporation of the ψ · ηi

parameter in the CMC estimation. To test for the influence of unobserved hetero-

geneity, we apply the CMC algorithm to Specification E in Table 1, whereby we do

not control for the small area heterogeneity component. We test the varying influence

of spatial heterogeneity by varying the ψ · ηi parameter.

These experimental findings are demonstrated in Table 3which shows that the

introduction of uncontrolled spatial heterogeneity results in poor model performance.

A number of ψ parameter specifications are chosen, ranging from 0.1 to 1. We see

that small degrees of spatial variation, where ψ ≤ 0.2, result in negligible impacts

on model performance. Indeed, model performance is marginally better than the

results of Table 2, due to less variation in parameter specification. However, once

ψ ≥ 0.5, the spatial heterogeneity becomes a large predictor of the outcome variable

and model performance diminishes significantly. When ψ = 1.0, the model is unable

to predict income. This result corresponds to that of Tarozzi and Deaton (2009) show,

incorporation of regional heterogeneity is of importance for adequate performance of

the CMC algorithm.

The final analysis of this section is to consider model sensitivity to further model

specification choices. In particular, we wish to test performance relative to the number

of simulation iterations. The results of this exercise are shown in Table 4, where we see

that once the algorithm is applied to carry out 100 iterations, performance converges

with that expected.
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Table 2: Comparing CMC specification in estimating P0(14) poverty rate

Specification Detail Bias RMSE
Interval

µ+ 2σ µ+ 1σ

A All constraints -0.045 0.106 0.924 0.648

B no x1 when ζ = 2 -0.023 0.107 0.948 0.696

C no x2 when ζ = 2 -0.020 0.111 0.960 0.676

D no ψ · ηi when ζ = 2 -0.037 0.103 0.936 0.652

Results of CMC algorithm employed according to baseline specification with 250 Monte Carlo it-
erations. P0(14) represent the head count poverty rate for poverty line of 14. According to the
empirical rule, 68% of estimated means should lie within one standard deviation of the mean (i.e.
µ+ 1σ), whilst 95% of estimated means should lie within two standard deviations of the mean (i.e.
µ+ 2σ).

Table 3: CMC algorithm performance: Influence of unobserved spatial heterogeneity
when estimating P0(14) poverty rate

ηi True value Bias RMSE
Interval

µ+ 2σ µ+ 1σ

0.1 7.000 0.003 0.027 0.956 0.644

0.2 7.667 -0.004 0.027 0.968 0.736

0.5 11.000 -0.037 0.046 0.724 0.288

1 21.667 -0.140 0.143 0.008 0.004

Results of CMC algorithm employed according to baseline specification with 250 Monte Carlo itera-
tions. P0(14) represents head count poverty rate for poverty lines of 14. According to the empirical
rule, 68% of estimated means should lie within one standard deviation of the mean (i.e. µ + 1σ),
whilst 95% of estimated means should lie within two standard deviations of the mean (i.e. µ+ 2σ).
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Table 4: CMC algorithm performance: Comparing Monte Carlo iteration specifica-
tions when estimating P0(14) headcount poverty rate

Monte Carlo iterations Bias RMSE
Interval

µ+ 2σ µ+ 1σ

10 -0.049 0.107 0.900 0.700

50 -0.034 0.095 0.940 0.640

100 -0.013 0.108 0.980 0.590

250 -0.023 0.107 0.948 0.696

500 -0.019 0.104 0.954 0.670

1000 -0.018 0.102 0.953 0.673

Results of CMC algorithm employed according to baseline specification with 250 Monte Carlo itera-
tions. P0(14) represents head count poverty rates for poverty line of 14. According to the empirical
rule, 68% of estimated means should lie within one standard deviation of the mean (i.e. µ + 1σ),
whilst 95% of estimated means should lie within two standard deviations of the mean (i.e. µ+ 2σ).

5 Empirical application

The second stage of the CMC validation process is an empirical application. We

construct a quasi-validation procedure using a Mexican case study. The focus of this

step is to demonstrate an empirical application while exploring the performance of

discriminate sampling to capture unobserved spatial heterogeneity.

5.1 Data and Methods

We use data from the 2015 census of Mexico Integrated Public Use Micro Sample

(IPUMS). IPUMS is a 9.5% random extract from the 2015 Census of Mexico, totalling

11,344,365 observations. These data are chosen for two reasons. First, the Mexican
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census exhibits considerable between-area heterogeneity, as demonstrated by Tarozzi

and Deaton (2009), and we wish to evaluate the performance of the CMC estimation

procedure in capturing this variation. Second, IPUMS data allows for the estimation

of spatially-referenced multidimensional poverty indicators. This demonstrates the

analytical insight possible with the CMC microdata-based estimation procedure.

The validation procedure proceeds as follows. First, a psuedo-census is created.

The 9.5% census sample is replicated according to household weights, with each house-

hold replicated accordingly. This provides a psuedo population for all of Mexico. Each

state is subdivided into municipios (municipalities), which we take to be the small

areas of our analysis. For each small area/municipio i, we calculate the distribution

of the xi vector of predictor variables associated with the yi outcome variable and the

W population moment of interest.

A psuedo survey is then constructed to emulate the Small Area Estimation pro-

cedure. The psuedo-survey is calculated as a random sample of 2000 households

from the entire population census. Following the findings of Section 4, we implement

the CMC procedure with 100 Monte Carlo replications. From these 100 simulation

iterations, estimates of poverty are calculated for each small area.

Tarozzi and Deaton (2009) have shown that unobserved between-area heterogene-

ity exists between Mexican municipailities, driving bias in estimates using standard

SAE techniques. As section 3 has outlined, we postulate that this bias may be over-

come through discriminate sampling from regions where unobserved factors driving

the population moment of interest are homogenous between candidate households.

We test this hypothesis in the following way. Mexico is divided into states and,

within each state, into municipios (municipalities). When implementing the CMC

estimation procedure for a given municipio, candidate households comprise those

sourced from the same state as that municipio. This carries an implicit assumption
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that there is a homogenous relationship between outcome and predictor variables for

all municipios within a given state.

5.2 Metrics of analysis

We use metrics to measure estimator precision and to quantify poverty incidence

by small area. In addition, we wish to investigate the socioeconomic drivers most

responsible for observed poverty rates. We use the concentration index to illustrate

this. The metrics employed for each of these objectives will now be outlined.

5.2.1 Metrics of estimator precision

Estimate precision is quantified using 3 metrics: correlation; average small area

RMSE; and average small area relative bias, as outlined in Section 4. While Sec-

tion 4 considered the proportion of simulation iterations that fall within thresholds

of the population mean to identify estimate bias, we wish to complement this insight

with an estimate of estimator precision. As such, we identify the proportion of small

areas for whom the actual poverty value falls within s standard deviations of the

simulated mean. In other words, we estimate the proportion of small areas where the

actual poverty value is contained within reported confidence intervals. We consider

two confidence interval thresholds: s = 2 (i.e. actual poverty rate falls within simu-

lated range 95% of the time) and s = 3 (i.e. actual poverty rate falls within simulated

range 99% of the time).

5.2.2 Measuring poverty using a Multidimensional Poverty Index

For this application, we calculate household welfare according to multidimensional

poverty metric. We define multidimensional poverty using the MPI for Latin Amer-
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ica index (MPI-LA) proposed by Santos and Villatoro (2018). Reviewed in Section 1,

a strong applied literature advocates for the use of poverty indicators that characterise

poverty on many dimensions (Aaberge et al., 2019; Alkire and Foster, 2011; Atkin-

son, 2003; Curtis, 2018; Narayan-Parker and Patel, 2000; Permanyer, 2014; Sen, 1983,

1992, 2009; Santos and Villatoro, 2018; Stiglitz et al., 2009; Reddy and Pogge, 2002),

while the UN have formally acknowledged multidimensional poverty in the achieve-

ment of their sustainable development goals.7 While the definition of poverty on

multiple dimensions may seem unnecessarily complex for the neoclassical economist8,

markets do not necessarily function optimally in many circumstances and not all

services are acquired through market transactions. This is particularly true in a de-

veloping world context. Participatory studies back up the importance of multiple

dimensions, showing that the poor themselves describe their deprivations in terms

beyond a lack of income (Naraya et al., 2000; UNDP, 2013; Santos and Villatoro,

2018).

There are a number of MPI metrics. The most common being the Alkire-Foster

(AF) (Alkire and Foster, 2011) method which, among other traits, generates a poverty

measure that is sensitive to the depth of deprivation (i.e. the number of dimensions

through which deprivation is experienced). This allows for deprivation to be broken

down according to dimension and the joint distribution of various deprivations to be

estimated. Critical dimensions of housing, health, education, material deprivation

and employment are accounted for (Burchi et al., 2019). This method is applied at

a global scale with the Oxford Poverty and Human Development Institute (OPHDI)

7Target 1.2 of the Sustainable Development Goals extends poverty beyond the dimension of
income and calls for a reduction in ‘poverty in all its dimensions according to national definitions’
(UN, 2015).

8The ability to attain a given standard of living is a function of resources at one’s disposal. Re-
sources, in turn, are acquired through market transactions. Conditional on well-functioning markets,
income or expenditure may indeed provide sufficient metrics of access to marketable resources.
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and the UNDP publishing an annual report of the Global MPI (e.g. Alkire et al.,

2019).

Variants of the AF procedure exist. Santos and Villatoro (2018) have developed

a variant of the AF method for Latin American countries. Dubbed MPI-LA, this

better captures poverty in this region for a number of reasons. Firstly, it borrows

from basic needs, capability and rights-based approaches in the incorporation of in-

dicators. Secondly, it combines monetary and non-monetary indicators and aligns

deprivation cutoffs with Latin American living standards. Furthermore, it accounts

for deprivations in employment, social protection and schooling. These are indica-

tors unaccounted for in metrics of unmet basic need, heretofore commonly employed

(Santos and Villatoro, 2018).9

The MPI-LA poverty metric is contructed in the following way. There are two

constituent components: MPI poverty headcount (PH) and MPI poverty depth (PI).

Let xh ∈ R+ be the vector of predictor variables for household h. For each predictive

variable k, the household is considered deprived in that variable should the observed

xh,k value be less than a γk cutoff, where k ∈ ζ: 1 · (xh,k < γk), k ∈ ζ

To calculate the MPI-LA poverty index, one must first calculate whether a house-

hold is in poverty. Denoting poverty status as yh, the outcome variable of interest is

calculated as a weighted sum of each 1 · (xh,k < γk), k ∈ ζ poverty indicator:

yh =
∑
k

Kwk · xh,k, k ∈ ζ (9)

where wk is the weight for predictor variable k

The poverty headcount for small area i (PHi) is defined as the proportion of

households within small area i for whom the yh indicator is greater than the theta

9For further information on the MPI-LA approach, see Santos and Villatoro (2018).
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poverty cutoff:

PHi =

∑
H 1 · (yh > θ)

H
, (10)

where H is the number of households in small area i. Poverty depth is defined as

the average deprivation score conditional on the deprivation score being greater than

the poverty threshold θ:

PIi =

∑
H yh · 1 · (yh > θ)∑

H 1 · (yh > θ)
, (11)

the MPI-LA poverty indicator is then the product of poverty intensity and the

poverty headcount:

(”MPI − LA”)i = PHi · PIi, (12)

Following the definition of MPI-LA, the xk dimensions characterised by Santos and

Villatoro (2018) are adopted for this paper in the characterisation of multidimensional

poverty and outlined in Table 5.

For the CMC simulation procedure, Z = 3 constraint sets are employed. 13

constraints are chosen that correlate with the MPI-LA dimensions of Table 5. All 13

constraints are present when ζ = 1. 7 constraints are removed when ζ = 2. These are

removed as they are highly correlated with variables retained in the simulation, and

therefore reduce simulation complexity while retaining strong predictive power. The

ζ = 3 simulation iteration corresponds to a close to random allocation of remaining

households, with only precarious roof controlled for. In many simulation iterations,

the required number of households have been allocated and this stage is skipped.
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Table 5: Multidimensional poverty dimensions and indicators

Dimension (xk) Detail Weight (wk)

Housing
Housing materials Dirt floor, precarious roof or wall materials1 7.40%
People per room 3+ per room 7.40%
Housing tenure Illegally occupied, ceded or borrowed house 7.40%
Basic services
Improved water source Not piped to house 7.40%
Improved sanitation No unshared plumbed toilet in dwelling 7.40%
Energy No electricity or cook with wood/coal/dung 7.40%
Living standards
Monetary resources Insufficient income for food & nonfood needs 14.8%
Durable goods No car, refridgerator, washing machine. 7.40%
Education
Children’s school attendance Child/adolescent not attending school 7.40%
Schooling gap Child/adolescent 2+ yrs delayed schooling grade 7.40%
Adult school achievement Nobody 18+ w/ primary & secondary educ 7.40%
Employment and social protection
Employment 1+ member employed 7.40%
Social protection Nobody w/ social protection2 3.70%

Poverty cutoff η 25

1 Waste, carboard, tin, cane palm, straw, other
2 health insurance, contributing to social security system, receiving pension/retirement income
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Table 6: Constraints used in CMC simulation: empirical application

Constraint used for each ζ
Description ζ = 1 ζ = 2 ζ = 3

Housing
Precarious roof in dwelling1 Yes Yes Yes
3+ people per room Yes Yes No
Urban location Yes Yes No
Dirt floor in dwelling Yes No No
Illegally occupied, ceded or borrowed house Yes No No
Basic services
Water not piped to house Yes No No
No unshared plumbed toilet in dwelling Yes Yes No
Education
Nobody 18+ w/ primary & secondary education Yes No No
Child/adolescent not attending school Yes Yes No
Child/adolescent 2+ yrs delayed schooling grade Yes Yes No
Employment and social protection
1+ household members employed Yes Yes No
Any adult/child did not eat a meal due to insufficient money Yes Yes No
Nobody w/ social protection2 Yes No No

1 Waste, carboard, tin, cane palm, straw, other
2 health insurance, contributing to social security system, receiving pension/retirement income
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5.2.3 Investigating the drivers of poverty using the Concentration Index

We wish to apply the unit-level estimation procedure to investigate the drivers of

poverty incidence. We demonstrate the utility of such insight through the the con-

centration index (CI), a metric which quantifies the socioeconomic gradient of an

outcome variable of interest along the income distribution. This gives insight into

both the small area distribution of a statistical moment, such as the multidimensional

poverty rate, but also the extent with which this statistical moment is correlated with

a given determining variable along the income distribution. The CI is easily quan-

tified and is measured between the ranges −1 and 1, with zero representing perfect

equality. The concentration index may be calculated as:

CI =
2

Hȳ

H∑
h=1

yhωh − 1 (13)

where yh represents an outcome variable of interest for household h; ȳ is the mean

value of the outcome variable; and ωh is the fractional rank of households along the

income distribution, where 1 is at the bottom and H is the top of this distribution.

The concentration index must be normalised to analyse a binary variable on the

-1 to +1 scale. This is the case for many of the xk predictor variables outlined in

Section 5.2.2. Two different approaches, proposed by Wagstaff and Erreygers, are

available to carry this out. (for discussion, see Erreygers and Ourti, 2011). We follow

Walsh and Cullinan (2015) and employ the Wagstaff normalisation (CIWag) which

takes the following form:

CIWag =
CI

1− ȳ
. (14)
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5.3 Empirical application results

Table 7 presents the predictive power of the CMC procedure. Each of these findings

will now be discussed in turn. First, relative bias and RMSE are low and within

acceptable bounds. We find that there is a relative bias of -0.047 for the MPI-LA

indicator. This compares favourably to measures of bias found in the literature. Das

and Chambers (2017), for instance, find a relative bias of 0.33 for the headcount

poverty ratio in a comparable SAE method, while Pokhriyal and Jacques (2017) find

a RMSE of 0.8 in their Senegal application. We see a correlation coefficient of 0.99

for both poverty headcount and MPI-LA indicators. Correlation is slightly lower, but

also still within acceptable bounds, for poverty depth. At 0.926, this suggests that

there is a residual degree of unobserved spatial heterogeneity in the intra-household

distribution of resources that leads to a slightly lesser correlation coefficient than that

for poverty headcount and MPI-LA results.

We consider the predictive power of the estimate as the proportion of true municipio-

level MPI-LA poverty rates that fall within the 95% and 99% confidence intervals.

MPI poverty depth performs marginally better than MPI poverty headcount in this

regard. Nevertheless, performance by all metrics is strong, with the actual poverty

metric falls within the confidence interval at a rate above 91% when measured at the

95% confidence interval and in excess of 97% when measured at the 99% confidence

interval. This compares favourably with predictive power found in the literature.

For comparison, Pokhriyal and Jacques (2017) found a correlation coefficients in the

range of 0.84-0.91 for a small area estimation procedure that uses machine learning

methods and is applied to a Senegalese application.

Indeed, the implications that this error may have for policy decision-making is

shown to be minimal in Figure 4, where the difference between simulated and actual
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poverty rates is almost indistinguishable. It is clear to see that the CMC procedure

captures the extremities quite well, effectively capturing the heterogeneity in social

outcome. Where prediction inaccuracies occur, they are infrequent and small in

magnitude. Figure 2 shows that a strong prediction is observed for the majority of

small areas. As such, the discriminate sampling employed by the CMC procedure is

effective in capturing the between-area heterogeneity associated with Mexican regions,

as outlined by Tarozzi and Deaton (2009).

To give futher insight into the distribution of estimator precision, Figure 5 provides

density distributions of the distance between actual and observed MPI-LA poverty

rates by small area. We see that these errors are normally distributed with the

majority of error within two standard deviations. There is a slight bias towards

underestimation as predicted by Table 7, suggesting that simulated findings should

be interpreted as a lower bound; expected poverty rates, on average, are at least the

value simulated, with an average bias of -0.047 for the MPI-LA estimator.

There are a few points to note in relation to simulation performance. First, there

is a greater error at the upper limit of reported MPI values when one examines Figure

2, suggesting that point estimates for the CMC procedure are marginally better for

regions with lower poverty rates. However, results stay within acceptable bounds.

Figure 3 gives some insight into the drivers of this variation. Deprivation depth for

the Mexican sample exists on a pretty small scale, with the margin of error pretty

homogeneous within that range, with extremely high values showing a wider margin

of error. Deprivation headcount shows a progressive widening of error. Therefore, one

may deduce that the wider margin of error for regions with extremely high rates of

deprivation is driven by both errors in the estimation of depth and headcount poverty

rates, with the error for regions with medium to medium-high rates of deprivation

driven primarily by error in headcount poverty rates.
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Figure 6 uses the concentration index methodology to project the correlation

between MPI-quantified vulnerability at the municipio-level and key socioecononomic

variables. Sanitation and food are chosen for illustrative purposes. As expected, we

see a pro-vulnerable distribution for both poverty components. There is a much

greater pro-vulnerability gradient with respect to food, suggesting that this likely of

greater importance in alleviating municipio-level vulnerability than sanitation. Policy

practitioners may use this and similar techniques to identify the most pertinent drivers

of small area vulnerability, identifying the factors and their locations to target effective

intervention. Should one wish to identify what regions to target, municipio level

deprivation rates for drivers may be mapped, as has been shown in the Appendix.

Similar to Figure 8, we can see that there is a strong positive correlation between

true and predicted rates of vulnerability at the individual indicator level.

35



Table 7: Predictive power of CMC procedure

Poverty indicator

MPI Poverty Headcount MPI Poverty Depth MPI-LA

Simulation error

Relative Bias -0.042 -0.003 -0.047

RMSE 0.031 0.014 0.014

Correlation - actual vs. simulated

Pearson correlation 0.991 0.926 0.992

Spearman correlation 0.990 0.916 0.992

Estimate precision

95% Confidence Interval 0.934 0.972 0.914

99% Confidence Interval 0.985 0.995 0.974

Note: Results derived from 100 simulation iterations. Estimate precision is calculated as the pro-
portion of simulated municipios for which the real value lies within the simulated 95% and 99%
confidence interval, calculated as sample mean + 2 standard deviations and the sample mean + 3
standard deviations, respectively. The calculated RMSE is the square root of the mean value of the
100 squared deviations of estimated and actual poverty. The calculated relative bias is the the mean
value of the 100 proportional deviations of estimated and actual poverty.
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Figure 2: Multidimensional Poverty Index (MPI-LA): Simulated vs. Actual
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Predictive power of the CMC method. Figure shows comparison of actual and predicted MPI values
for all municipios.

Figure 3: Deprivation depth and deprivation headcount: simulated vs. actual

(a) Deprivation headcount
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(b) Deprivation depth
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Figure 4: MPI by municipio

(a) MPI: Simulated

(b) MPI: Actual

Note: Simulated and actual MPI displayed by municipio. Municipios of southern region enlarged.
Categorisation according to natural breaks (jenks) in the data.

38



Figure 5: Estimator precision: distance between actual and observed small area
poverty rate

(a) Precision histogram

0

.1

.2

.3

.4

.5

D
e
n
s
it
y

−5 −3 −2 −1 0 1 2 3 5

Standard deviations
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LA poverty value lies within the stated distance from the simulated mean, calculated in terms of
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Figure 6: Distribution of poverty indicators across deprivation spectrum
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0

.2

.4

.6

.8

1

C
u
m

u
la

ti
v
e
 s

h
a
re

 o
f 
E

_
W

_
h
a
t_

p
ro

p
_
M

P
I_

s
a
n
_
d

0 20 40 60 80 100

Rank of E_W_hat_MPI_sim

L(p) 95% CI

(b) Food
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Note: Concentration index methodology used to quantify social gradient of climate impact incidence.
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6 Conclusion

Small area poverty estimates are important for social and economic policy however

the required data are often unavailable. A number of estimation procedures have

emerged since the original poverty mapping methodology proposed by Elbers et al.

(2003), with each procedure requiring careful consideration of data distribution and

modelling parameters (Molina and Rao, 2010; Pfeffermann, 2013; Rao, 2003) to ensure

unbiased inference. This paper has introduced a Conditional Monte Carlo (CMC)

procedure that provides robust estimates of small area poverty and is subject to fewer

restrictive assumptions. We present a theoretical derivation, a numerical validation

of concept and an empirical application to a Mexican case study. We demonstrate

that the CMC method estimates small area poverty rates with precision.

The CMC method expands upon similar survey reweighting methods by provid-

ing an estimate of precision, while the microdata-based estimation procedure widens

the scope of insight relative to common small area estimation procedures. Between-

area heterogeneity in the relationship between outcome and predictor variables is

accounted for through a discriminate sampling procedure. Using a Mexican case

study, this paper demonstrates the simulation of small area poverty estimates with

high degrees of precision. While Tarozzi and Deaton (2009) and Tarozzi (2011) show

that between area heterogeneity may create estimate bias when traditional SAE meth-

ods are employed, our results suggest that discriminate sampling has overcome this

limitation.

The findings of this paper have important policy implications. Estimates to calcu-

late welfare at the small area are widely used by policy decision-makers, with institu-

tions such as the World Bank investing heavily in the development of both methods

and analyses to aid the targeting of poverty relief. However, there is considerable un-
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certainty in the literature as to the most appropriate method to be applied to a given

context. The CMC method introduced in this paper presents greater transparency

and simplicity in estimation, potentially widening the applicability of robust small

area estimation.
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7 Appendix: Spatial profile of indicator variables
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Figure 7: Sanitation: actual vs simulated headcount deprivation

(a) MPI: Actual

(b) MPI: Simulated

Note: Simulated and actual MPI displayed by municipio. Municipios of southern region enlarged.
Categorisation according to natural breaks (jenks) in the data.
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Figure 8: Insufficient food: actual vs simulated headcount deprivation

(a) MPI: Actual

(b) MPI: Simulated

Note: Simulated and actual MPI displayed by municipio. Municipios of southern region enlarged.
Categorisation according to natural breaks (jenks) in the data.
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